Article information

2022 , Volume 27, ¹ 4, p.15-32

Bochkarev S.A.

Numerical simulation of natural vibrations of a cylindrical shell partially filled with fluid and embedded in an elastic foundation

The paper presents the results of studies on natural vibrations of circular vertical cylindrical shells completely or partially filled with a stationary compressible fluid and embedded in a Pasternak two-parameter elastic foundation. In the meridional direction, the elastic medium is both homogeneous and inhomogeneous, and is an alternation of areas, in which this medium is present or absent. The behavior of the elastic structure and compressible fluid is described within the framework of classical shell theory based on the Kirchhoff — Love hypotheses and the Euler equations. The equations of motion of the shell combined with the corresponding geometric and physical relations are reduced to a system of ordinary differential equations for new unknowns. The acoustic wave equation is also reduced to a system of ordinary differential equations using the straight line method. The formulated boundary value problem is solved by the Godunov orthogonal sweep method involving the numerical integration of differential equations by the fourth order Runge —Kutta method. The natural frequencies of vibrations are calculated using a combination of stepwise procedure and subsequent refinement by the half-division method. The validity of the obtained results is confirmed by comparing them with the known numerical-analytical solutions. The dependences of minimum vibration frequencies versus the level of fluid are analyzed for simply supported, clamped and cantilevered cylindrical shells of various types of inhomogeneity along the length of the body and with different stiffness. It is demonstrated that with increase in the level of filling of shells with fluid, the influence of the elastic foundation on the frequency spectrum of the structure decreases

[full text] [link to elibrary.ru]

Keywords: classical shell theory, compressible fluid, Godunov orthogonal sweep method, method of lines, natural vibrations, elastic Pasternaks medium

doi: 0.25743/ICT.2022.27.4.003

Author(s):
Bochkarev Sergey Arkadiyevich
PhD.
Position: Senior Research Scientist
Office: Institute of Continuous Media Mechanics, Ural Branch of RAS
Address: 614068, Russia, Perm, 1, Acad. Korolev Str.
Phone Office: (342) 237-83-08
E-mail: bochkarev@icmm.ru
SPIN-code: 3804-5025

References:

1. Pasternak P.L. On a new method of analysis of an elastic foundation by means of two foundation constants [Osnovy novogo meto da rascheta fundamentov na uprugom osnovanii pri pomoshchi dvuh koeffitsientov posteli]. Moscow: Gosstroyizdat; 1954: 56. (In Russ.)

2. Vlasov V.Z., Leont’ev N.N. Beams, plates, shells on elastic foundation [Balki, plity, obolochki na uprugom osnovanii]. Moscow: Fizmatgiz; 1960: 491. (In Russ.)

3. Gorbunov-Posadov M.I., Malikova T.A. Calculation of structures on elastic foundation [Raschet konstruktsiy na uprugom osnovanii]. Moscow: Stroyizdat; 1973: 627. (In Russ.)

4. Kerr A.D. Elastic and viscoelastic foundation models. The Journal of Applied Mechanics. 1964; 31(3):491–498. DOI:10.1115/1.3629667.

5. Bochkarev S.A. Free vibrations of a cylindrical shell partially resting on elastic foundation. Journal of Applied Mechanics and Technical Physics. 2018; 59(7):1242–1250. DOI:10.1134/S0021894418070039.

6. Shah A.G., Mahmood T., Naeem M.N., Arshad S.H. Vibrational study of fluid-filled functionally graded cylindrical shells resting on elastic foundations. ISRN Mechanical Engineering. 2011; (2011):892460. DOI:10.5402/2011/892460.

7. Shah A.G., Mahmood T., Naeem M.N., Arshad S.H. Vibration characteristics of fluid-filled cylindrical shells based on elastic foundations. Acta Mechanica. 2011; 216(1–4):17–28. DOI:10.1007/s00707-010-0346-1.

8. Shahbaztabar A., Izadi A., Sadeghian M., Kazemi M. Free vibration analysis of FGM circular cylindrical shells resting on the Pasternak foundation and partially in contact with stationary fluid. Applied Acoustics. 2019; (153):87–101. DOI:10.1016/j.apacoust.2019.04.012.

9. Baghlani A., Khayat M., Dehghan S.M. Free vibration analysis of FGM cylindrical shells surrounded by Pasternak elastic foundation in thermal environment considering fluid-structure interaction. Applied Mathematical Modelling. 2020; (78):550–575. DOI:10.1016/j.apm.2019.10.023.

10. Sheng G.G., Wang X. Thermomechanical vibration analysis of a functionally graded shell with flowing fluid. European Journal of Mechanics — A/Solids. 2008; 27(6):1075–1087. DOI:10.1016/j.euromechsol.2008.02.003.

11. Mohammadi K., Barouti M.M., Safarpour H., Ghadiri M. Effect of distributed axial loading on dynamic stability and buckling analysis of a viscoelastic DWCNT conveying viscous fluid flow. The Journal of the Brazilian So ciety of Mechanical Sciences and Engineering. 2019; (41):93. DOI:10.1007/s40430-019-1591-4.

12. Sokolov V., Razov I., Dmitriev A. Influence of the length parameter of an underground oil pipeline on the frequency of free oscillation. E3S Web of Conferences. 2020; (164):03024. DOI:10.1051/e3sconf/202016403024.

13. Amabili M., Garziera R. Vibrations of circular cylindrical shells with nonuniform constraints, elastic bed and added mass; Part I: Empty and fluid-filled shells. Journal of Fluids and Structures. 2000; 14(5):669–690. DOI:10.1006/jfls.2000.0288.

14. Tj H.G., Mikami T., Kanie S., Sato M. Free vibrations of fluid-filled cylindrical shells on elastic foundations. Thin-Walled Structures. 2005; 43(11):1746–1762. DOI:10.1016/j.tws.2005.07.005.

15. Kim Y. Effect of partial elastic foundation on free vibration of fluid-filled functionally graded cylindrical shells. Acta Mechanica Sinica. 2015; (31):920–930. DOI:10.1007/s10409-015-0442-5.

16. Park K.J., Kim Y.W. Vibration characteristics of fluid-conveying FGM cylindrical shells resting on Pasternak elastic foundation with an oblique edge. Thin-Walled Structures. 2016; (106):407–419. DOI:10.1016/j.tws.2016.05.011.

17. Lakis A.A., Sinno M. Free vibration of axisymmetric and beam-like cylindrical shells, partially filled with liquid. International Journal for Numerical Metho ds in Engineering. 1992; (33):235–268. DOI:10.1002/nme.1620330203.

18. Godunov S.K. Ordinary differential equations with constant co efficients. Providence: AMS; 1997: 283.

19. Yudin A.S., Safronenko V.G. Vibroakustika strukturno-neodnorodnykh obolochek [Vibroacoustics of structurally inhomogeneous shells]. Rostov-on-Don: Izd-vo YuFU; 2013: 424. (In Russ.)

20. Pa ̈ıdoussis M.P. Fluid-structure interactions: slender structures and axial flow. Vol. 1. 2nd ed. London: Academic Press; 2014: 888.

21. Pa ̈ıdoussis M.P. Fluid-structure interactions: slender structures and axial flow. Vol. 2. 2nd ed. London: Academic Press; 2016: 942.

22. Gorshkov A.G., Morozov V.I., Ponomarev V.I., Shklyarchuk F.N. Aerogidrouprugost’ konstruktsiy [Aerohydroelasticity of structures]. Moscow: Fizmatlit; 2000: 591. (In Russ.)

23. Shmakov V.P. Izbrannye trudy p o gidrouprugosti i dinamike uprugikh konstruktsiy [Selected works on hydroelasticity and the dynamics of elastic structures]. Moscow: Izd-vo MGTU im. N.E. Baumana; 2011: 287. (In Russ.)

24. Yudin A.S., Ambalova N.M. Forced vibrations of coaxial reinforced cylindrical shells during interaction with a fluid. International Applied Mechanics. 1989; 25(12):1222–1227. DOI:10.1007/BF00887148.

25. Karmishin A.V., Lyaskovets V.A., Myachenkov V.I., Frolov A.N. Statika i dinamika tonkostennykh obolochechnykh konstruktsiy [The statics and dynamics of thin-walled shell structures]. Moscow: Mashinostroenie; 1975: 376. (In Russ.)

26. Berezin I.S., Zhidkov N.P. Computing methods. Vol. 2. N.Y.: Pergamon Press; 1965: 680.

27. Demidovich B.P., Maron I.A., Shuvalova E.Z. Chislennye metody analiza [Numerical methods of analysis. Approximation of functions, differential and integral equations]. Moscow: Nauka; 1967: 368. (In Russ.)

28. Bochkarev S.A. Natural vibrations of a cylindrical shell with fluid partly resting on a two-parameter elastic foundation. International Journal of Structural Stability and Dynamics. 2022; 22(6):2250071. DOI:10.1142/S0219455422500717.

29. Khalifa M.A. Natural frequencies and mode shapes of variable thickness elastic cylindrical shells resting on a Pasternak foundation. Journal of Vibration and Control. 2016; 22(1):37–50. DOI:10.1177/1077546314528229.

30. Amabili M., Pa ̈ıdoussis M.P., Lakis A.A. Vibrations of partially filled cylindrical tanks with ringstiffeners and flexible b ottom. Journal of Sound and Vibration. 1998; 213(2):259–299. DOI:10.1006/jsvi.1997.1481.

31. Kim Y.-W., Lee Y.-S., Ko S.-H. Coupled vibration of partially fluid-filled cylindrical shells with ring stiffeners. Journal of Sound and Vibration. 2004; 276(3–5):869–897. DOI:10.1016/j.jsv.2003.08.008.

32. Maxuch T., Horacek J., Trnka J., Vesely J. Natural modes and frequencies of a thin clamped-free steel cylindrical storage tank partially filled with water: FEM and measurement. Journal of Sound and Vibration. 1996; 193(3):669–690. DOI:10.1006/jsvi.1996.0307.

33. Bochkarev S.A., Lekomtsev S.V., Matveenko V.P. Numerical modeling of spatial vibrations of cylindrical shells, partially filled with fluid. Computational Technologies. 2013; 18(2):12–24. (In Russ.)

34. Ergin A., U ̆gurlu B. Hydroelastic analysis of fluid storage tanks by using a boundary integral equation method. Journal of Sound and Vibration. 2004; 275:489–513. DOI:10.1016/j.jsv.2003.07.034.

35. Kashfutdinov B.D., Shcheglov G.A. Validation of the open source Co de_Aster software used in the modal analysis of the fluid-filled cylindrical shell. Science and Education of the Bauman MSTU. 2017; (6):101–117. DOI:10.7463/0617.0001170. (In Russ.)

Bibliography link:
Bochkarev S.A. Numerical simulation of natural vibrations of a cylindrical shell partially filled with fluid and embedded in an elastic foundation // Computational technologies. 2022. V. 27. ¹ 4. P. 15-32
Home| Scope| Editorial Board| Content| Search| Subscription| Rules| Contacts
ISSN 1560-7534
© 2024 FRC ICT