Article information
2015 , Volume 20, ¹ 5, p.27-52
Amelina E.V., Golushko S.K., Erasov V.S., Idimeshev S.V., Nemirovskii Y.V., Semisalov B.V., Yurchenko A.V., Yakovlev N.O.
Nonlinear deformation of carbon fiber reinforced plastics: experiment, model, and simulation
The current study focuses on modeling of the nonlinear behavior for carbon fiber reinforced plastics (CFRP), which are one of the most promising classes of advanced composite materials. A complete procedure of developing mathematical models for a nonlinear elastic flexural deformation of polymeric matrixes and CFRPs has been proposed and implemented. It takes into account the SD effect, i.e. the difference between the tensile and compression strengths. The mathematical tools for the analysis and processing of big data sets containing the results of mechanical tests were offered. They also can be used to eliminate the most significant artifacts of these tests. The tools considered here are based on both qualitative and regression analysis using the method of least-squares and the methods without saturation. Mathematical relations describing nonlinear elastic three-point bending of isotropic and reinforced beams with the SD effect were derived. An algorithm for numerical solution of the corresponding boundary value problem was proposed. A comparison of the results of computer simulations with experimental data obtained using mechanical testing has been done. The developed approach and the constructed mathematical models have shown that they are efficient for the computer simulation of a three-point bending of CFRP and polymeric beams. Simulation results are in good agreement with the results of mechanical testing. It has been established and it is shown that it is necessary to take into account the nonlinear properties and especially the SD effect of polymeric matrixes and CFRPs when simulating and designing the structures made from CFRP.
[full text] Keywords: composite, CFRP, polymeric matric, bending, nonlinear deformation, SD effect, mechanical test, mathematical model
Author(s): Amelina Evgeniya Valerjevna PhD. Position: Senior Research Scientist Office: Institute of Computational Technologies, Siberian Branch of the Russian Academy of Sciences Address: 630090, Russia, Novosibirsk, Akademika Lavrenteva ave., 6
Phone Office: (383)330-92-42 E-mail: amelina@ict.nsc.ru SPIN-code: 8814-0913Golushko Sergey Kuzmich Dr. , Professor Position: Vice-Rector Office: Novosibirsk State University, Institute of Computational Technologies SB RAS Address: 630090, Russia, Novosibirsk, Akademika Rzhanova ave., 6
Phone Office: (383) 363-56-01 E-mail: s.k.golushko@gmail.com SPIN-code: 8826-8439Erasov Vladimir Sergeevich Office: All-Russian Scientific Research Institute of Aviation Materials, State Research Center of the Russian Federation Address: Russia, Moscow, Novosibirsk, Akademika Rzhanova ave., 6
Idimeshev Semyon Vasilyevich Position: Junior Research Scientist Office: Federal Research Center for Information and Computational Technologies Address: 630090, Russia, Novosibirsk, Akademika Rzhanova ave., 6
Phone Office: (383)330-93-61 E-mail: idimeshev@gmail.com SPIN-code: 3793-6120Nemirovskii Yurii Vladimirovich Office: Institute of Theoretical and Applied Mechanics of SB RAS Address: 630090, Russia, Novosibirsk, 4/1 Institutskaya str.
Phone Office: 354273 E-mail: fomin@icans.nsk.su Semisalov Boris Vladimirovich Office: Design and Technology Institute of Digital Techniques of the Siberian Branch of Russian Academy of Sciences Address: Russia, Novosibirsk, Novosibirsk, 4/1 Institutskaya str.
Yurchenko Andrey Vasilyevich PhD. Position: director Office: Federal Research Center for Information and Computational Technologies Address: 630090, Russia, Novosibirsk, ac. Lavrentyev Ave. 6
Phone Office: (383) 334-91-16 E-mail: yurchenko@ict.sbras.ru Yakovlev Nikolay Olegovich Office: All-Russian Scientific Research Institute of Aviation Materials, State Research Center of the Russian Federation Address: Russia, Moscow, Novosibirsk, ac. Lavrentyev Ave. 6
References: [1] Erasov, V. S., Yakovlev, N. O., Nuzhnyy, G. A. Qualification Tests and the Study of Aviation Materials Strength. Aviation materials and tecnologes. 2012; (5):440-448. ( In Russ.)
[2] Erasov, V. S., Yakovlev, N. Î., Gladkikh, À. V., Goncharov, À. À., Skiba, Î. V., Boyarskikh, À. V., Podzhivotov, N. Y. Qualification tests of large polymer composite constructions on power floor FSUE «VIAM» im. G.V. Akimova. Kompozitnyy mir. 2014; (1):72-78. ( In Russ.)
[3] Golushko S. K., Nemirovskiy Yu. V. Pryamye i obratnye zadachi mekhaniki kompozitnykh plastin i obolochek vrashcheniya [Direct and inverse problems of mechanics of composite plates and shells]. Moscow: Fizmatlit; 2008: 432. (In Russ.).
[4] Dimitrienko, Yu. I., Fedonyuk, N. N., Gubareva, E. A., Sborschikov, S. V., Prozorovskiy, A. A., Erasov, V. S., Yakovlev, N. O. Modeling and development of three-layer sandwich composite materials with honeycomb core. Herald of the Bauman Moscow state technical university. Series: Natural Sciences. 2014; 5(56):66-81. (In Russ.)
[5] Boyce, M. C., Arruda, E. M. An experimental and anaiytical investigation of the large strain compressive and tensile response of glassy polymers. Polymer Engineering & Science. 2004; 30(20):1288-1298. Doi: 10.1002/pen.760302005.
[6] Odinokova, O. A., Odinokov, A. V. Termomekhanicheskie metody v tekhnologii proizvodstva i proektirovanii izdeliy iz plastmass [Thermo-mechanical methods in production technology and design of plastic products]. Moscow: RAN; 2008: 89. Available at: http://pnu.edu.ru/media/filer_public/2013/04/10/2-25_odinokova-odinokov.pdf (date of visit: 01 nov 2015). (In Russ.)
[7] Lagace, P. A. Nonlinear stress-strain behavior of graphite/epoxy laminates. American Institute of Aeronautics and Astronautics Journal. 1985; 23(10):1583-1589. Doi: 10.2514/3.9127.
[8] Sendeckyj, G. P., Richardson, M. D., Pappas, J. E. Fracture behavior of thornel 300/5208 graphite/epoxy laminates – Part 1: Unnotched Laminates. Composite Reliability, American Society for Testing and Material. 1973; (STP580):528-546.
[9] Vasiliev, V. V., Morozov, E. V. Advanced mechanics of composite materials. Amsterdam:Elsevier; 2007: 491. ISBN: 9780080453729.
[10] Timoshenko, S. P. Strength of materials. Part 1, Elementary theory and problems. New York: Van Nostrand; 1955: 442.
[11] Ambartsumyan S. A. Raznomodul'naya teoriya uprugosti [Theory of materials heteroresistant to tension and compression]. Moscow: Nauka; 1982: 317. (In Russ.)
[12] Ambartsumyan S. A. Soprotivlenie materialov, raznosoprotivlyayushchikhsya rastyazheniyu i szhatiyu [Strength of materials heteroresistant to tension and compression]. Erevan: RAU; 2004: 187. (In Russ.)
[13] Ambartsumyan, S. A., Gnuni, V. Ts. The flexion of non-linear elastic beam taking into consideration the material resistance to the tension and compression in different ways. Reports of NAS RA. Mechanics. 2005; (1). Available at: http://elib.sci.am/2005_1/07/07r.htm (date of visit: 01 nov 2015). (In Russ.)
[14] Abramov, À. V., Berezovskaya, Ì. Å., Voikina, Î. V., Chereneva, À. S. The processing of experimental data for determination of mechanical properties of structural materials. Scientific and Technical Journal «News of material science & technology». 2014; (1). Available at: http://www.materialsnews.ru/plugins/content/journal/uploads/articles/pdf/62.pdf (In Russ.)
[15] Adamov, À. À. Primary processing of experimental data of modern testing machine for identification of rheological models. Computational continuum mechanics. 2013; 6(2): 131-139. (In Russ.)
[16] Varenik, K. À. Approximation of the wood deformation diagram. Vestnik NovSU. Issue: Engineering sciences. 2013; 75(1): 60–64. (In Russ.)
[17] Lawson, C. L., Hanson, R. J. Solving least squares problems. SIAM; 1995: 337. ISBN 9781611971217
[18] Babenko, Ê. I. Osnovy chislennogo analiza [Basics of numerical analysis]. Moscow - Izhevsk: NITs «Regulyarnaya i khaoticheskaya dinamika»; 2002: 847. ISBN:5-93972-162-1. (In Russ.)
[19] Semisalov, B. V. Non-local algorithm of finding solution to the Poisson equation and its applications. Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki. 2014; 54(7):1110–1135. (In Russ.)
[20] Golushko, S. K., Idimeshev, S. V., Semisalov, B. V. Metody resheniya kraevykh zadach mekhaniki kompozitnykh plastin i obolochek: Uchebnoe posobie po kursu «Pryamye i obratnye zadachi mekhaniki kompozitov» [Methods for solving boundary-value problems in mechanics of composite plates and shells: Textbook for course "Direct and inverse problems in mechanics of composites"]. Novosibirsk: KTI VT SO RAN; 2014: 131. (In Russ.).
[21] Gornov, A. Yu. Vychislitel'nye tekhnologii resheniya zadach optimal'nogo upravleniya [Computing technology for solving optimal control problems]. Avtoreferat dissertatsii na soiskanie uchenoy stepeni doktora tekhnicheskikh nauk. Novosibirsk: Nauka; 2009: 279. (In Russ.)
[22] Golushko, S. K., Idimeshev, S. V., Shapeev, V. P. Development and application of collocations and least residuals method to the solution of problems in mechanics of anisotropic laminated plates. Computational technologies. 2014; 19(5):24-36. ( In Russ.) Bibliography link: Amelina E.V., Golushko S.K., Erasov V.S., Idimeshev S.V., Nemirovskii Y.V., Semisalov B.V., Yurchenko A.V., Yakovlev N.O. Nonlinear deformation of carbon fiber reinforced plastics: experiment, model, and simulation // Computational technologies. 2015. V. 20. ¹ 5. P. 27-52
|