 |
2.1.3. Сетки на плоскости x |  |
В случае, когда рассматриваемая область W
представляет собой прямоугольник [0, X1] × [0,
X2], по существу, нет никаких отличий от случая, рассмотренного в предыдущем пункте.
Если же область W представляет собой область сложной конфигурации, что отнюдь не редкость в практических задачах, то приходится так или иначе приспосабливаться к новой ситуации. Простейший из вариантов таков. Разобъем оси 0x1 и 0x2 отрезками длины h1 и h2 и проведем через концы отрезков прямые, параллельные, соответственно осям 0x2 и 0x1. Из узлов получившейся равномерной прямоугольной решетки выберем узлы, лежащие внутри W и отнесем их к внутренним узлам сетки (светлые точки на рис. 1.4). Точки
пересечения прямых решетки с границей области отнесем к граничным узлам (темные точки на рис. 1.4). Множество внутренних узлов обозначим через w, граничных через g, а множество w И g всех узлов сетки через w. Отметим, что хотя в рассматриваемом примере шаги по x1 и x2 регулярны (одинаковы в каждом направлении) и, следовательно, сетка w внутренних узлов может считаться регулярной, вся сетка w целиком регулярной не является, и, в частности, не может быть представлена в виде декартова произведения сеток по x1 и x2.

Рис. 1.4.
Точно так же, как и выше на x-плоскости можно рассматривать прямоугольные сетки с неравномерными шагами, а также нерегулярные сетки. Вообще следует заметить, что вопрос о классификации сеток далек от своего разрешения. В дополнение к вышеприведенным сеткам, некоторые из возможных сеток см. на рис. 1.5.

Рис. 1.5.
Ничем, кроме меньшей наглядности и более сложной структуры, не отличаются сетки в трехмерном пространстве и в пространстве R3 × R.