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На примере начальной и начально-краевой задач для системы уравнений акустики
изучаются вопросы влияния краевых условий на устойчивость конечно-разностной
схемы расщепления. Эта схема широко используется для численной аппроксимации
решений задач аэродинамики [1]. Показано, что устойчивость схемы зависит не только
от типа задачи (начальная или начально-краевая), но и от ее размерности.

1. Introduction

Nowadays, researchers often use finite-difference schemes to find approximate solutions to
equations of mathematical physics. A wide range of finite-difference schemes is applied to
numerical calculations of external and internal flows of a gas with shock waves in problems
of supersonic aerodynamics; among them there are the Godunov scheme [2], the MacCormack
scheme [3] and others. The paradox of situation is that a researcher seeks numerical approximations
to solutions of a mixed (i. e., initial-boundary value) problem having not a notion if the solution
really exists.

Necessity of simultaneous study of the differential problem and its finite-difference analog
has long been discussed in the theory of differential equations. We refer the reader to the
fundamental paper [4] and monographs [5–7] where this approach was developed and applied
to problems of mathematical physics.

As in [7], construction of a difference scheme to the gas dynamics equations and study of
its stability were based on the requirement of adequacy between the difference model and the
differential problem. The author of [7] considers the difference scheme adequate if it provides the
existence theorem for the differential problem. The latter is of great importance for calculation
practice since with the existence theorem in hands a researcher can be sure that approximate
solutions really converge to the solution of the differential problem as grid steps tend to zero.

While considering numerical approximations to solutions of a mixed problem, a researcher
naturally arrives at the question on stability of the difference scheme [8, 9].
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In order to answer this question in regard to the problems of gas dynamics considered in
[7] the following program was realized. First, well-posedness of the linear differential mixed
problem was studied with the help of dissipative energy integrals. Then the difference scheme
which admits existence of a difference analog of the dissipative energy integral was constructed.
Existence of such analog gives possibility to obtain an energy estimate and then to prove
stability of the suggested finite-difference scheme (see also [8]). As the result, adequacy of the
difference model to the linear differential problem was established.

It is seen that such program requires careful theoretical study of the differential problem.
Apparently, in the framework of existing techniques it can not be done in every case even for
linear problems, not to mention nonlinear mixed problems. By this reason researchers usually
restrict themselves to the spectrum analysis of the difference initial value problem (see [8, 9]
on spectrum analysis of stability of difference schemes) and then directly use the obtained
restrictions on grid steps in the case of the difference mixed problem.

There exist examples of finite-difference scheme, both explicit and implicit, for which it is
strictly proved that stability of the difference mixed problem does not follow from stability of
the difference initial value problem [10]. It means absurdity of attempts to use recommendations
obtained for the difference initial value problem in the case of the difference mixed problem.

In this paper, using the well-known finite-difference splitting scheme [1], we give another
confirmation to this conclusion. As well as in [10], the linear mixed problem on stability of
shock waves is considered.

In § 2 we describe differential problems. In § 3 we construct finite-difference analogs of these
differential problems on the basis of the splitting scheme from [1]. This algorithm leads to
additional boundary conditions which are used in the difference analogs of the mixed problems.
This section also contains results of spectrum analysis of difference initial-value problem. The
spectrum analysis of the one-dimensional difference mixed problem is carried out in § 4. The
difference analog of the Hadamard-type ill-posedness example which proves instability of the
two-dimensional difference mixed problem is given in § 5 (concerning the Hadamard-type ill-
posedness examples see [6]). Concluding remarks form the last section.

2. Preliminaries

Following [7, 10], we consider the linear mixed problem on stability of shock wave. Nonstationary
equations of gas dynamics written in the Cartesian co-ordinates x, y and linearized with respect
to the main constant solution behind the oblique shock with the equation x = 0 under certain
scaling form the well-known acoustics equations system. The Rankine — Hugoniot relations on
the shock wave are linearized in a similar way, and then the function which describes a small
perturbation of the front is excluded from the obtained relations. As the results we arrive at
the following linear mixed problem on stability of the shock wave (for detail, see [7]): in the
domain R3

++ the solution W = W(t, x, y) to the acoustics equations system

Wt + A1Wx + A2Wy = 0 , (2.1a)

which satisfies boundary conditions at x = 0, (t, y) ∈ R2
+:

u + dp = 0 , vt + ωvy − λpy = 0 (2.1b)

and initial data at t = 0, x ≥ 0, y ∈ R1

W(0, x, y) = Φ(x, y) (2.1c)
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is sought. Here

W =





w1

w2

w3



 =





p
Mu
Mv



 ,

A1 =





1 κ 0
κ 1 0
0 0 1



 , A2 =





ω 0 κ
0 ω 0
κ 0 ω



 ;

M , κ, ω are constants:

0 < M < 1 , κ = 1/M > 1 , ω ≥ 0 ;

d , λ are constants defined in [7]; p , u , v are small perturbations of the pressure and the
components of the velocity vector;

R3
++ = {(t, x, y) | t, x > 0 , y ∈ R1} , R2

+ = {(t, y) | t > 0 , y ∈ R1} .

Along with problem (2.1) we consider its one-dimensional variant: in the domain R2
++ the

solution W = W(t, x) to the acoustics equations system

Wt + AWx = 0 , (2.2a)

which satisfies boundary condition at t > 0, x = 0:

u + dp = 0 (2.2b)

and initial data at t = 0, x ≥ 0

W(0, x) = Φ(x) (2.2c)

is sought. Here

W =

(

w1

w2

)

=

(

p
Mu

)

, A =

(

1 κ
κ 1

)

,

R2
++ = {(t, x) | t, x > 0} .

Finally, we consider also the initial value problem for the acoustics equations system: in the
domain R3

+ the solution W = W(t, x, y) to the system

Wt + A1Wx + A2Wy = 0 , (2.3a)

which satisfies initial data at t = 0, (x, y) ∈ R2:

W(0, x, y) = Φ(x, y) (2.3b)

is sought. Here

R3
+ = {(t, x, y) | t > 0 , (x, y) ∈ R2} .
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3. Difference model. Spectrum analysis of difference

initial value problem

We introduce the grid

ω∆
hxhy

= {(n∆, khx, lhy) |n, k, |l| = 0, 1, . . .} ,

where ∆, hx, hy are the grid steps, in the domain

R
3

++ = {(t, x, y) | t, x ≥ 0 , y ∈ R1}.

The system (2.1a) is approximated by the splitting scheme over the physical processes and
spatial variables from [1]. By its linearity, it turns into

W̃
0

kl = −
(

rxI3ξ̄ + ryωI3η̄ + rx(B1ξ + B∗

1 ξ̄) + ry(B2η + B∗

2 η̄)
)

Wn
kl , (3.1a)

(

1 + β1ξ̄
)

W̃
1/4

kl = W̃
0

kl , (3.1b)

(

1 + β2η̄
)

W̃
1/2

kl = W̃
1/4

kl , (3.1c)

(

I3 + β3(B1ξ + B∗

1 ξ̄)
)

W̃
3/4

kl = W̃
1/2

kl , (3.1d)

(

I3 + β4(B2η + B∗

2 η̄)
)

W̃
1

kl = W̃
3/4

kl , (3.1e)

τWn
kl = W̃

1

kl , n, |l| = 0, 1, . . . , k = 1, 2, . . . . (3.1f)

Here

B1 =





0 0 0
κ 0 0
0 0 0



 , B2 =





0 0 0
0 0 0
κ 0 0



 ;

B∗

i is the transpose to Bi, I3 is the identity matrix of order 3;

τ = ψn − 1 , ξ = ψk − 1 , ξ̄ = 1 − ψ−1
k ,

η = (−ψ2
l + 4ψl − 3)/2 , η̄ = (3 − 4ψ−1

l + ψ−2
l )/2

are the difference operators:

ψkW
n
kl = Wn

k+1 l , ψlW
n
kl = Wn

k l+1 ,

ψnW
n
kl = Wn+1

kl , ψ−1
k Wn

kl = Wn
k−1 l ,

ψ−1
l Wn

kl = Wn
k l−1 , Wn

kl = W(n∆ , khx , lhy)

is the numerical approximation to W. Functions W̃
s

kl are grid vector one,

β1 = rxα1 , β2 = ryωα2 , β3 = rxα3 ,

β4 = ryα4 , rx = ∆/hx , ry = ∆/hy;

α1, α2, α3, α4 > 0 are constants.
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We begin with construction of the difference analog of mixed problem (2.1). Algorithm
(3.1) requires some additional boundary conditions for grid vector functions W̃

s

kl. Following
the algorithm from [1], we assign the following boundary conditions at points of the grid ω∆

hxhy

with k = 0:
W̃

1/4

0l = 0 , (3.2a)

(1 + β2η̄)W̃
1/2

0l = 0 , (3.2b)

(w̃2)
3/4
0l = 0 , κβ3ξ(w̃1)

3/4
0l = (w̃2)

1/2
0l , (w̃3)

3/4
0l = (w̃3)

1/2
0l , (3.2c)

(

I3 + β4(B2η + B∗

2 η̄)
)

W̃
1

0l = W̃
3/4

0l , (3.2d)

τWn
0l = W̃

1

0l, |l| = 0, 1, . . . . (3.2e)

Besides, we assign the boundary conditions of “tending to zero” and “periodicity” for W̃
s

kl so
that the solution Wn

kl → 0 at k → ∞ and Wn
kl = Wn

k l+m where m is a positive integer number.
In what follows we will seek solutions to the difference mixed problem with these properties.

Now we give a brief description how the splitting scheme (3.1) is realized (its detailed
description can be found in [1]). Let the solution to this scheme on the n-th time layer be
known, it tends to zero by k and is m-periodic by l. First from (3.1a) by the explicit formulae

we determine the grid vector function W̃
0

kl, k = 1, 2, . . . , |l| = 0, 1, . . . . With the help of (3.1b)

we determine the grid vector function W̃
1/4

kl at k = 1, K0 − 1, |l| = 0, 1, . . .

W̃
1/4

kl =
W̃

0

kl + β1W̃
1/4

k−1 l

1 + β1

,

assuming for the sake of simplicity that W̃
1/4

kl = 0 at k ≥ K0, |l| = 0, 1, . . . . Here K0 is
sufficiently large positive integer number. Consequently, in a view of (3.2a), the grid vector

function W̃
1/4

kl is determined at k = 1, K0 − 1 by the running count. Then from (3.1c) for
every fixed index k = 0, 1, . . . we obtain a vector difference equation and pose the periodicity
boundary conditions:

β2W̃
1/2

k l−2 − 4β2W̃
1/2

k l−1 + (2 + 3β2)W̃
1/2

kl = 2W̃
1/4

kl , l = 2,m + 1 ,

W̃
1/2

k0 = W̃
1/2

km , W̃
1/2

k1 = W̃
1/2

k m+1 .

The solution to this vector difference equation is found by the scalar sweep method which is well-
posed for sufficiently small time step ∆. Now from (3.1d) it follows that (w̃3)

3/4
kl = (w̃3)

1/2
kl , for

the remained components of the grid vector function W̃
3/4

kl we obtain the three-point difference
equations at each fixed index l = 0,±1, . . .

−κ2β2
3(w̃1)

3/4
k−1 l + (1 + 2κ2β2

3)(w̃1)
3/4
kl − κ2β2

3(w̃1)
3/4
k+1 l = (w̃1)

1/2
kl − κβ3ξ̄(w̃2)

1/2
kl ,

k = 1, K1 − 1 ,

−κ2β2
3(w̃2)

3/4
k−1 l + (1 + 2κ2β2

3)(w̃2)
3/4
kl − κ2β2

3(w̃2)
3/4
k+1 l = (w̃2)

1/2
kl − κβ3ξ(w̃1)

1/2
kl ,

k = 1, K2 − 1 .

We take first two relations from (3.2c) as the boundary conditions for these difference

equations, and we assume that (w̃1)
3/4
kl = 0 at k ≥ K1 and (w̃2)

3/4
kl = 0 at k ≥ K2 where K1,
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K2 are sufficiently large positive integer numbers. Solutions of these difference equations are
determined by the sweep method which is well-posed at sufficiently small ∆. Then it follows
from (3.1e) that (w̃2)

1
kl = (w̃2)

3/4
kl , and it is possible to obtain five-point difference equations

for the grid functions (w̃1)
1
kl, (w̃3)

1
kl, the boundary conditions are the conditions of periodicity.

Solutions to these equations also exist for sufficiently small ∆. Finally the solution on the
(n + 1)-th time layer is determined from (3.1f). The obtained solution Wn+1

kl tends to zero
by k and is m-periodic by l. Thus, given the initial data W0

kl = Φkl such that Φkl → 0 at
k → ∞, Φkl = Φk l+m, after realization of the algorithm from above we come to the solution
Wn

kl, n = 1, 2, . . . to (3.1) which tends to zero by k and is m-periodic by l.
Boundary conditions (2.1b) are approximated in the following way

dpn+1
0l + un+1

0l = 0 , ryλη̄pn+1
0l − (τ + ryωη̄)vn

0l = 0 . (33)

Algorithm from [1] provides subjection of the solution on the (n + 1)-th time layer to the
boundary conditions (33), i. e., the so-called determining component, for example (w1)

n+1
0l , is

chosen and the rest of components of the vector Wn+1
0l are redetermined with the help of

boundary conditions (33).
In order to carry out theoretical investigation, in particular, the spectrum analysis, it is

convenient to exclude the grid vector functions W̃
s

kl from (3.1). As the result we arrive at the
implicit scheme:

(1 + β1ξ̄)(1 + β2η̄)
(

I3 + β3(B1ξ + B∗

1 ξ̄)
)(

I3 + β4(B2η + B∗

2 η̄)
)

τWn
kl +

+
(

rxI3ξ̄ + ryωI3η̄ + rx(B1ξ + B∗

1 ξ̄) + ry(B2η + B∗

2 η̄)
)

Wn
kl = 0 . (34)

In order to stay within the limits of the grid ω∆
hxhy

it is necessary to take k = 2, 3, . . .
in the first equation of scheme (34) and k = 1, 2, . . . in the second and third equations of
scheme (34). Thus, with four boundary conditions on the left boundary of the grid ω∆

hxhy
and

the “periodicity” and “tending-to-zero” conditions, similar to the ones for (3.1), scheme (34)
becomes solvable, and its solutions tend to zero by the index k and are m-periodic by l if the
initial data Φkl → 0 at k → ∞, Φkl = Φk l+m. As we have only two boundary conditions
(33) on the left boundary, we, consequently, have to find two additional boundary conditions.
We derive these conditions taking into account (3.1). By this algorithm, one component of the
vector Wn+1

0l (let it be (w1)
n+1
0l ) is determined immediately after realization splitting scheme

(3.1). Excluding corresponding components of grid vector functions W̃
s

0l in (3.2), we obtain the
relation for (w1)

n+1
0l :

(1 + β2η̄)(1 − κ2β2
4ηη̄)ξτ(w1)

n
0l = 0 ,

which is considered as the first additional boundary condition. Besides, the first equation in
(34) at points of the grid ω∆

hxhy
with k = 1 should be realized in a special way. Excluding W̃

s

kl

with k = 1 from (3.1) and taking into account that (w̃2)
3/4
0l = 0 (see the first condition in

(3.2c)), we have the first equation of (34) at points of the grid ω∆
hxhy

with k = 1

a1(w1)
n
1l + ã2(w2)

n
1l + a3η̄(w3)

n
1l = 0 .

Here
a1 = bτ + rxξ̄ + ryωη̄ , ã2 = κ(β3bτ + rxξ̄) ,

a3 = κ(β4bτ + ry) , b = (1 + β1ξ̄)(1 + β2η̄) .
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This relation serves as the second additional boundary condition.
We now formulate a difference analog of mixed problem (2.1): we look for the solution Wn

kl

of the scheme
a1(w1)

n
kl + a2ξ̄(w2)

n
kl + a3η̄(w3)

n
kl = 0 , k = 2, 3, . . . ,

a2ξ(w1)
n
kl + a1(w2)

n
kl + a4(w3)

n
kl = 0 ,

a3η(w1)
n
kl + a1(w3)

n
kl = 0 , k = 1, 3, . . . ,

n, |l| = 0, 1, . . . , (3.5a)

satisfying the boundary conditions

d(w1)
n+1
0l + κ(w2)

n+1
0l = 0 ,

ryλη̄(w1)
n+1
0l − κ(τ + ryωη̄)(w3)

n
0l = 0 ,

(1 + β2η̄)(1 − κ2β2
4ηη̄)ξτ(w1)

n
0l = 0 ,

a1(w1)
n
1l + ã2(w2)

n
1l + a3η̄(w3)

n
1l = 0 ,

n, |l| = 0, 1, . . .

and the initial data
W0

kl = Φkl , k, |l| = 0, 1, . . . . (3.5b)

Here
a2 = κ(β3bτ + rx) , a4 = κ2β3β4bξη̄τ .

Scheme (3.5a) is the component-wise presentation of scheme (34). Boundary conditions (3.5b)
consist of boundary conditions (33) and two additional boundary conditions.

We now construct a difference analog of mixed problem (2.2). In the domain

R
2

++ = {(t, x) | t, x ≥ 0}

we introduce the grid
ω∆

h = {(n∆, kh) |n, k = 0, 1 . . . } ,

where ∆, h are grid steps. The one-dimensional variant of splitting scheme (3.1) is given below

W̃
0

k = −r
(

(I2 + B∗)ξ̄ + Bξ
)

Wn
k ,

(

1 + β1ξ̄
)

W̃
1/2

k = W̃
0

k ,

(

I2 + β2(Bξ + B∗ξ̄)
)

W̃
1

k = W̃
1/2

k ,

τWn
k = W̃

1

k ,

n = 0, 1, . . . , k = 1, 2, . . . . (36)

Here

B1 =

(

0 0
κ 0

)

,

I2 is the identity matrix of order 2, Wn
k = W(n∆ , kh) is the numerical approximation to

W, W̃
s

k are grid vector functions,

β1 = rα1, β2 = rα2, r = ∆/h ;
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α1, α2 > 0 are constants.

It is easy to show that, given

W̃
1/2

0 = 0 , (w̃2)
1
0 = 0 ,

ξ(w̃1)
1
0 = 0 , τWn

0 = W̃
1

0 (37)

and “tending-to-zero” (Wn
k → 0 at k → ∞) boundary conditions, at sufficient small time step

∆ the solution to (3.6) exists, and it tends to zero by k, if the initial data Φk → 0 at k → ∞.
Excluding W̃

s

k from (3.6), we formulate a difference analog to (2.2): we seek the solution
Wn

k of the scheme
a1(w1)

n
k + a2ξ̄(w2)

n
k = 0 , k = 2, 3, . . . ,

a2ξ(w1)
n
k + a1(w2)

n
k = 0 , k = 1, 3, . . . , n = 0, 1, . . . , (3.8a)

which satisfies the boundary conditions

d(w1)
n+1
0 + κ(w2)

n+1
0 = 0 ,

ξτ(w1)
n
0 = 0 ,

a1(w1)
n
1 + ã2(w2)

n
1 = 0 , n = 0, 1, . . . (3.8b)

and the initial data
W0

k = Φk , k = 0, 1, . . . . (3.8c)

Here
a1 = (1 + β1ξ̄)τ + rξ̄ ,

a2 = κ(β2(1 + β1ξ̄)τ + r) ,

ã2 = κ(β2(1 + β1ξ̄)τ + rξ̄) .

It should be noticed that the first condition from (3.8b) is obtained by approximation of
boundary condition (2.2b), the second and third ones are determined by scheme (3.6) in view
of boundary conditions (37).

Finally we construct a difference analog of initial value problem (2.3). We consider scheme
(3.1) on the grid

Ω∆
hxhy

= {(n∆, khx, lhy) |n, |k|, |l| = 0, 1, . . .} .

It is easy to show that, given the periodicity boundary condition (Wn
k+m1 l = Wn

kl, Wn
k l+m2

=
Wn

kl, m1, m2 are positive integers), at a sufficiently small time step ∆, the solution to (3.1)
exists, it is m1-periodic by k and m2-periodic by l if the initial data are periodic: Φ

n
k+m1 l = Φ

n
kl,

Φ
n
k l+m2

= Φ
n
kl.

We now formulate a difference analog of initial value problem (2.3): at the grid Ω∆
hxhy

we
seek the solution Wn

kl to (34), satisfying initial data (3.5b).
Further, we carry out the spectrum analysis of the difference initial value problem, i. e. we

check out the fulfilment of the necessary von Neumann stability condition (see also [8, 9]).
Under assumption on periodicity of initial data (3.5b) Φkl = eikϕeilψW0, we look for the
solution to (34) of the form

Wn
kl = qneikϕeilψW0 , (39)

where W0 is a constant vector; ϕ, ψ are arbitrary real values, i =
√
−1, q = q(ϕ, ψ) is a

complex value. Values q for the initial-value problem form the spectrum of the operator of
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scheme (34) while passing from one time layer to another one (see [9]). The necessary von
Neumann stability condition for (34) is in fulfilment of the inequality

|q(ϕ, ψ)| ≤ 1 , (310)

for every ϕ, ψ that means that the spectrum of the difference initial-value problem lies in the
unit circle.

As inequality (310) is difficult to be cheeked out for arbitrary ϕ, ψ we restrict ourselves to
a particular case. Assumed ϕ = ψ, we determine conditions when (310) becomes true. With
this purpose in a view we substitute (39) into (34). As the result we obtain a linear algebraic
system to determine components of the vector W0

ΓW0 = 0 . (311)

Here

Γ =





γ1 γ2σ̄ γ3m̄
γ2σ γ1 γ4

γ3m 0 γ1



 ,

γ1 = a + rxσ̄ + ryωm̄ ,

γ2 = (β3a + rx)κ , γ3 = (β4a + ry)κ ,

γ4 = κ2β3β4aσm̄ , a = (1 + β1σ̄)(1 + β2m̄)δ ,

δ = q − 1 , σ = eiϕ − 1 , σ̄ = 1 − e−iϕ,

m = (−ei2ϕ + 4eiϕ − 3)/2 ,

m̄ = (3 − 4e−iϕ + e−i2ϕ)/2 .

If (39) is the nontrivial solution to (34), then (311) must also have the nontrivial solution,
consequently, the determinant of the matrix Γ must be equal to zero. The equality detΓ = 0 is
treated as an equation to determine q = q(ϕ). It is difficult to obtain general explicit formulae
for q(ϕ). By this reason, we use the technique of almost eigenfunctions from [9]. Let consider
the case of “long waves”, i. e., we consider partial solutions (39) with the wave length much
more then grid steps hx, hy, i. e., ϕ = o(1). At ϕ = 0 detΓ = 0 if q = 1. Consequently, if
ϕ = εϕ′, where ε > 0 is a small parameter, ϕ′ is real, then q = 1 + εq′ + ε2q′′ + O(ε3). In this
case condition (310) transforms into: Re q′ < 0; if Re q′ = 0 then 2Re q′′+(Im q′)2 < 0.

Put ϕ = εϕ′ into detΓ = 0, then find three different roots

qj = 1 + εq′j + ε2q′′j + O(ε3) , j = 1, 2, 3 ,

q′1 = −ib1ϕ
′ ,

q′′1 = −
(

(β1 + β2)b1 + rx/2
)

(ϕ′)2 ,

q′2,3 = −i(b1 ±
√

b2)ϕ
′ ,

q′′2,3 = −
(

(β1 + β2)(b1 ±
√

b2) + rx/2 + b3(1 ± b1/
√

b2)
)

(ϕ′)2 ,

where
b1 = rx + ryω , b2 = κ2(r2

x + r2
y) ,



THE STABILITY OF NUMERICAL BOUNDARY TREATMENT 49

b3 = κ2(β3rx + β4ry) .

Here and in the sequel, a square root means its principal value. Consequently, condition (310)
is fulfilled for any ϕ′ if

(b1 − 2(β1 + β2))b1 − rx < 0 ,

(b1 ±
√

b2 − 2(β1 + β2))(b1 ±
√

b2) − rx − 2b3(1 ± b1/
√

b2) < 0 .

The last inequalities are fulfilled, in particular, for arbitrary rx, ry if

α1 = α2 = α3 = α4 ≥ 1/2 .

Thus, the spectrum analysis of the difference initial value problem has not revealed any
restrictions to the time step ∆.

It is seen, however, that influence of the boundary conditions, including additional conditions,
on stability of (34) are not considered by the spectrum analysis carried out above. So, it is
expedient to analyze the spectrum of difference mixed problems (3.5), (3.8).

4. Spectrum analysis of mixed difference scheme

in one-dimensional case

In this section we analyze the spectrum of difference mixed problem (3.8). We assume that the
initial data Φk are of the form

Φk =
3

∑

j=1

χk
jW

(j)
0 , (41)

where W
(j)
0 are constant vector, χj are different complex numbers, |χj| < 1, j = 1, 3. The

solution to (3.8) with initial data (41) under certain choice of χj = χj(q), j = 1, 3 have the
form

Wn
k = qn

3
∑

k=1

χk
jW

(j)
0 , (42)

where q is a complex number. Thus, for (3.8) to be stable, the inequality

|q| ≤ 1 (43)

must be fulfilled for all partial solutions (42) with parameters |χj| < 1, j = 1, 3.
In the sequel, instead of testing of this inequality, we will show that, under certain circumstances,

difference mixed problem (3.8) does not have solutions of the type (42) with |q| > 1. First we
find χj = χj(q), j = 1, 3 as functions of q which should be taken in (42). To do this we look
for partial solutions Wn

k = qnχkW0 to (3.8a) where χ is a complex number. Substituting this
solution into (3.8a), we obtain a linear algebraic system to determine the vector W0

ΓW0 = 0 . (44)

Here

Γ =

(

γχ ω
ω γ

)

,

γ = (χ + β1σ)δ + rσ ,
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ω = (β2(χ + β1σ)δ + rχ)κσ ,

δ = q − 1 , σ = χ − 1 .

As Wn
k = qnχkW0 is the nontrivial solution to (3.8a), the determinant of the matrix Γ must

be equal to zero. Considering detΓ = 0 as the equation to determine χ, we derive four roots
χj = χj(q), j = 1, 4. The component w

(j)
1 , w

(j)
2 of the vectors W

(j)
0 (W

(j)
0 are solutions to (44)

corresponding to the root χj) are connected by the relations
√

χ
1
w

(1)
1 + w

(1)
2 = 0 ,

√
χ

2
w

(2)
1 − w

(2)
2 = 0 ,

√
χ3w

(3)
1 − w

(3)
2 = 0 ,

√
χ4w

(4)
1 + w

(4)
2 = 0 . (45)

Explicit formulae for the roots χj are written down for the particular case q = 1 + εq′, where
ε > 0 is a small parameter, q′ is a complex number:

χ1 = M2 + O(ε) ,

χ2 = ε2
(β1β2κq′

r

)2

+ O(ε3) ,

χ3 = 1 − ε
q′

r(κ + 1)
+ O(ε2) ,

χ4 = 1 + ε
q′

r(κ − 1)
+ O(ε2) .

It is apparent that |χ1|, |χ2| < 1 for any q′. If Re q′ > 0 (in this case condition (43) is broken
down), then |χ3| < 1 and |χ4| > 1.

Thus, χ1, χ2, χ3 are the roots which must be taken in (42). It remains to choose q such that
(42) satisfies boundary conditions (3.8b). Substituting (42) into (3.8b) and taking into account
(45), we arrive at a linear algebraic system to determine the vector W̃0

Γ̃W̃0 = 0 , (46)

where

Γ̃ =

















d κ d κ d κ
σ1 0 σ2 0 σ3 0
γ1 ω̃1 γ2 ω̃2 γ3 ω̃3√
χ1 1 0 0 0 0
0 0

√
χ2 −1 0 0

0 0 0 0
√

χ3 −1

















,

W̃0 = (w
(1)
1 , . . . , w

(3)
2 )∗ ,

ω̃j = κβ2(χj + β1σj)δ + κrσj ,

σj = χj − 1 , γj = γ(χj) , j = 1, 3 .

System (46) must have the nontrivial solution, consequently, its determinant must be equal to
zero. Expending detΓ̃ into series by powers of ε, we have

detΓ̃ = −κr(1 − M2)M(d + κ) + O(ε) .

It is apparent that if d 6= −κ then detΓ̃ 6= 0 (it is easy to show that for the so-called perfect
gas d 6= −κ, see [7]). Thus, difference mixed problem (3.8) does not have solutions of the form
(42) with parameters |q| > 0, |χj| < 1, j = 1, 3 at least for q = 1 + εq′.
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5. Instability of difference mixed problem

in two-dimensional case

In this section we prove instability of difference mixed problem (3.5). Let initial data (3.5b) be
of the form

Φkl = eilϕ

4
∑

j=1

χk
jW

(j)
0 , (51)

where W
(j)
0 are constant vectors, χj are different complex numbers, |χj| < 1, j = 1 , 4; ϕ is

real, i =
√
−1. Solution of difference mixed problem (3.5) with initial data (51) under certain

choice of χj(q, ϕ), j = 1, 4 have the form:

Wn
kl = qneilϕ

4
∑

j=1

χk
jW

(j)
0 , (52)

where q = q(ϕ) is complex. Problem (3.5) is stable if all its partial solutions (52) with parameters
|χj(q, ϕ)| < 1, j = 1 , 4 satisfy the following condition for any ϕ:

|q(ϕ)| ≤ 1 . (53)

Further we show that for (3.5) there exists a difference analog of the Hadamard-type ill-
posedness example (see [6, 7]), i. e., a partial solution of the form (52) with |χj(q, ϕ)| < 1,
j = 1, 4 at |q(ϕ)| > 1. In this case, on one hand solution (52) at n = 0 tends to zero at k → ∞,
on the other hand it indefinitely grows up at n → ∞, what means instability of (3.5) in any
grid norm (see [6, 7]).

To prove that we look for partial solutions to (3.5a) of the form Wn
k = qnχkeilϕW0, where

χ is complex. Substituting this solution into (3.5a), we obtain the linear algebraic system to
determine the vector W0

ΓW0 = 0 , (54)

where

Γ =





γ1χ γ2 γ3m̄
γ2 γ1 γ4

γ3m 0 γ1



 , γ1 = ν1σ + γχ ,

γ2 = κσ(ζ3σ + ν3χ) , γ3 = κχ(ζ4σ + ν4χ) ,

γ4 = κ2ζ1m̄σ(β1σ + χ) , σ = χ − 1 ,

m = (−ei2ϕ + 4eiϕ − 3)/2 ,

m̄ = (3 − 4e−iϕ + e−i2ϕ)/2 ,

γ = hδ + ryωm̄ , δ = q − 1 ,

h = 1 + β2m̄ , ν1 = β1hδ + rx ,

ν3 = β3hδ + rx , ν4 = β4hδ + ry ,

ζ1 = β3β4hδ , ζ3 = β1β3hδ , ζ4 = β1β4hδ .

Apparently, the determinant of the matrix Γ must be equal to zero. The equality detΓ = 0
serves as the equation to determine χ = χ(q, ϕ). We study (3.5) on “long” waves, i. e., under
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assumption that ϕ = εϕ′, where ε > 0 is a small parameter, ϕ′ is real. In this case q, χ are
sought in the form q = 1 + εq′ + O(ε2), χ = χ0 + εχ′ + O(ε2).

With this remark in a view we derive the roots of detΓ = 0

χ1 = M2 + O(ε) ,

χ2 = ε2
(κβ1β3q

′

rx

)2

+ O(ε3) ,

χ3 = 1 − ε
γ′

rx

+ O(ε2) ,

χ4 = 1 + ε
γ′ −

√
ã

rx(κ2 − 1)
+ O(ε2) ,

χ5 = 1 + ε
γ′ +

√
ã

rx(κ2 − 1)
+ O(ε2) ,

where
γ′ = q′ + iryωϕ′ ,

ã = κ2(γ′)2 + (κ2 − 1)κ2r2
y(ϕ

′)2 .

It is obvious that |χ1| < 1, |χ2| < 1 for any q′, ϕ′. If Re q′ > 0 (in this case |q| > 1), then

|χ3| < 1, |χ4| < 1, |χ5| > 1. Thus, in (52) we should take χ1, χ2, χ3, χ4. Components w
(j)
1 , w

(j)
2 ,

w
(j)
3 of the vector W

(j)
0 (it is the solution to (54) corresponding to the root χj, j = 1, 4) must

be connected by relations

γ1jχjw
(j)
1 + γ2jw

(j)
2 + γ3jm̄w

(j)
3 = 0 ,

γ3jmw
(j)
1 + γ1jw

(j)
3 = 0 , j = 1 , 4 , (55)

where γ1j = γ1(χj), γ2j = γ2(χj), γ3j = γ3(χj). Substituting solutions of the form (52) into
boundary conditions (3.5b) and taking into account relations (55), we obtain the linear algebraic
system to determine the vector W̃0

Γ̃W̃0 = 0 , (56)

where

Γ̃ =









































d κ 0 d κ 0 d κ 0 d κ 0

K̃1 0 K̃3 K̃1 0 K̃3 K1 0 K3 K1 0 K3

σ1 0 0 σ2 0 0 σ3 0 0 σ4 0 0
γ11 γ̃21 γ̃31 γ12 γ̃22 γ̃32 γ13 γ̃23 γ̃33 γ14 γ̃24 γ̃34

γ11χ1 γ21 γ31m̄ 0 0 0 0 0 0 0 0 0
γ31m 0 γ11 0 0 0 0 0 0 0 0 0

0 0 0 γ12χ2 γ22 γ32m̄ 0 0 0 0 0 0
0 0 0 γ32m 0 γ12 0 0 0 0 0 0
0 0 0 0 0 0 γ13χ3 γ23 γ33m̄ 0 0 0
0 0 0 0 0 0 γ32m 0 γ12 0 0 0
0 0 0 0 0 0 0 0 0 γ14χ4 γ24 γ34m̄
0 0 0 0 0 0 0 0 0 γ34m 0 γ14









































,

W̃0 = (w
(1)
1 , . . . , w

(4)
3 )∗ ,
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γ̃2j = κσj(ζ3 + ν3) , γ̃3j = κm̄(ζ4σj + ν4χj) ,

σj = χj − 1 , j = 1, 4 ,

K̃1 = ryλm̄q , K̃3 = −κ(δ + ryωm̄) .

System (56) has the nontrivial solution if detΓ̃ = 0. This equality is treated as the equation
to determine q. Expending detΓ̃ into series by powers of ε, we finally come to

detΓ̃ = ε8 · iκ3r2
xryβ

3
1β

3
3ϕ

′(q′)3M(1 − M2)×

×
(

κ2γ′ −
√

ã
)(

γ′ −
√

ã
)

×

×
(

λr2
y(ϕ

′)2 − d(γ′)2 − γ′

√
ã

)

+ O(ε9) = 0 .

The expression at ε8 in this relation turns into zero if, for example, κ2γ′ −
√

ã = 0. The last
inequality is fulfilled if γ′ = ryϕ

′. Thus, if ϕ′ > 0 then Re q′ = ryϕ
′ > 0. Consequently, at

q′ = ryϕ
′ − iryωϕ′, ϕ′ > 0 (52) is the solution to (3.5) with the parameters

|q| > 1, |χ1| < 1, |χ2| < 1, |χ3| < 1, |χ4| < 1.

That means existence of the Hadamard-type ill-posedness example and, consequently, instability
of (3.5).

6. Conclusive remarks

Here we comment the obtained results. First, we showed that in the case of difference mixed
problem it makes very little sense to follow directly the recommendations on choice of the
grid steps, obtained for the difference initial value problem. Second, it was established that
stability of a problem can depend on its dimension. In principle, these conclusions are not
of great surprise for researchers since they have been already discussed in scientific literature
(see [9, 12]). But, in our opinion, these facts must be necessarily reminded since researchers
restrict themselves to very cursory theoretical analysis of the applied difference schemes. As the
result of such nonstrict analysis, usual calculation instability is often treated as a new physical
phenomenon.

Results of linear analysis of the finite-difference splitting scheme which was carried out
in this paper does not mean that this scheme can not be used in calculation practice to
find approximate solutions to nonlinear mixed problems. It has been only shown that the
recommendation obtained for the linear case can not be directly applied to nonlinear problems.
This fact also has been noted in scientific literature (see, for example, [13]).

The finite-difference splitting scheme which was discussed in this paper is often used for
numerical approximation to solutions of nonlinear aerodynamics problems, in particular, the
problem on supersonic regimes of flowing around blunted solids with application of steady-
state calculations [1]. From our viewpoint, instability of the finite-difference splitting scheme
established in this paper at the linear level appears in the way that steady-state calculations
are very sensitive to the choice of initial data [1].

Calculation instability of numerical algorithm based on the considered finite-difference
splitting scheme was discovered in [14] while calculating transsonic and hypersonic
stationary regimes for flowing around blunted solids. Thus, instability of the finite-difference
splitting scheme established at the linear level appears in one or other form in nonlinear
problems too.
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