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IIpencrapieH aJropuT™ MapaJiiebHON TeHepalud TPEXMEPHBIX HECTPYKTYPHUPOBaH-
HBIX ceTOK n3 rmosepxuocTHoro CAD onmcanust. AKIEHT cesiaH Ha TPaKTHIECKUX podJie-
Max 1 peaju3annun. VICIoab30BaH METO, pa3jIoyKeHUsl PacdeTHOH obJjiacT Ha 10100/I1aCTH.
[TapastenpbHBIT TeHEPATOP CETOK OBLI COENMHEH C IPOTrPaMMOil, pernamolieil ypaBHEeHUsT
MEXaHUKH.

Introduction

Unstructured mesh techniques take an important place in grid generation. The main feature
of unstructured grids consists, in contrast to structured grids, in a nearly absolute absence of
any restrictions on grid cells, grid organization, or grid structure. It allows placing the grid
nodes locally irrespective of any coordinate direction, so that complex geometries with curved
boundaries can be meshed easily and local regions in which solution variations are large can
be resolved with a selective insertion of new points without unduly affecting the resolution in
other parts of the physical domain.

Unstructured grid methods were originally developed in solid mechanics. Nowadays these
methods influence many other fields of applications beyond solid modeling, in particular,
computational fluid dynamics, where they are becoming widespread.

At the present time the methods of unstructured grid generation have reached the stage
where three-dimensional domains with complex geometry can be successfully meshed. The most
spectacular theoretical and practical achievements have been connected with the techniques for
generating tetrahedral grids. There are at least two basic approaches that have been used to
generate these meshes: Delaunay [1] and advancing front [2]. In this paper we are dealing
with Delaunay approaches only. Delaunay property means that the hypersphere of each n-
dimensional simplex defined by n + 1 points is void of any other points of the triangulation
(fig. 1). This empty circum-circle property gives us some grounds to expect that the grid cells
of a Delaunay triangulation are not too deformed |[3].

The most famous Delaunay triangulation algorithms are the “Divide & Conquer” paradigm
algorithm [4] and the incremental insertion algorithm [5].
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no Delaunay triangles  Delaunay triangles

Fig. 1. Delaunay property and Delaunay triangulation.

A CAD object description is a set of points, curves, surfaces and solids that model the
product. There are many different standards. Two of them are the most famous: IGES, which
is popular in the US, and STEP, created by the International Standard Organization. We
use a triangular mesh as an approximation, so we come to another format which represents
surface triangulation: STL (stereolithography format) and OFF (object file format). In fig. 2
two triangles approximating curved surface are written in these formats. The STL format is
shown on the left side of the picture. It specifies triangular surfaces with normals. The OFF
format is shown on the right side and specifies vertices coordinates and their incidents.

The introduction of scalable parallel computers is enabling ever-larger problems to be solved
in such areas as Computational Mechanics (CM), Computational Fluid Dynamics (CFD) and
Computational Electro Magnetics (CEM). Grids in excess of 107 elements have become common
for production runs in CFD [6-10] and CEM |11, 12]. The expectation is that in the near future
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endfacet 241
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outer loop
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wertex 250 200 0.00
endloop
endfacet

Fig. 2. STL and OFF triangulation formats.
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Fig. 3. A foam microstructure of sinter material.

grids in excess of 108-10% elements will be required [13]. As mesh sizes becomes as large as
this (fig. 3), the process of mesh generation on a serial computer becomes problematic both
in terms of time and memory requirements. For applications where remeshing is an integral
part of simulations, e.g. problems with moving bodies [14-20] or changing topologies [21, 22|,
the time required for mesh regeneration can easily consume more than 50 % of the total time
required to solve the problem [13]. Faced with that problem, a number of efforts have been
reported on parallel grid generation [13, 23-42].

For instance, Cignoni [37, 38| investigated algorithms for the parallelization of Delaunay
triangulation. Different solutions were designed and evaluated. The first one, which is a parallel
implementation of the Divide & Conquer paradigm, was faster but showed limited scalability.
The second one operates a regular geometric partition of the dataset and subdivides the load
among m independent asynchronous processors, using on each node an incremental construction
algorithm (InCoDe); this solution is algorithmically quite simple and allows sufficiently good
scalability. It was used for computer graphics applications.

Recently, the author [31] introduced an algorithm for parallel generation of three-dimensional
unstructured grids using domain decomposition approach. This paper provides an extensive
description of the algorithm stressing practical issues and implementation. The author prefers
to have several or many relatively simple algorithmic steps rather than complex algorithms
such as mentioned above.

The paper is organized as follows: in section 1 the problem is formulated, the section 2 gives
an extensive description of the algorithm and explores load balancing and mesh optimization,
in section 3 the parallelization strategy and its implementation are discussed and analyzed, the
section 4 is devoted to coupling the parallel grid generator with the parallel FEM solver, and
section 5 summarizes and concludes the paper.

1. Problem formulation

The goal of the work is to create a parallel grid generator for high-quality unstructured volume
tetrahedral grids with good properties for solving PDEs (e.g. Delaunay property). It should
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Fig. 4. Scheme of implementation steps.

be fully automatic, adaptive (via coupling with the solver) and, of course, be able to generate
large meshes. The input data is a CAD surface description of an object.

In fig. 4 the main steps of implementation are shown. We have a CAD boundary representation
of the object which we approximate with triangular mesh. So we have a global surface mesh and
we want to use the domain decomposition approach. After dividing the domain into subdomains
it is necessary to perform a mesh optimization. Then we construct a compatible surface mesh
for each subdomain and, if good load-balance is achieved, perform independent and parallel
volume mesh generation within each subdomain.

2. Parallel generation algorithm

The domain decomposition approach has been used for a parallel grid generation. The algorithm
consists of several major steps:

1. Load balanced decomposition of an object into open subdomains by using a set of cutting
planes.

2. Construction of 2D constrained Delaunay triangulation on each interface and of closed
and compatible surface mesh for each subdomain.

3. Performing surface mesh optimization.

4. Independent and parallel volume meshing within each subdomain based on its surface
mesh.

In fig. 5 the major steps of the algorithm are shown in two dimensions. Equality of volumes
is chosen as splitting criteria in order to achieve good load-balancing. The goal of the parallel
generation algorithm is to perform simultaneous construction of three-dimensional grid in each
subdomain. This is the heaviest computations with running time O(N?), where N is a number
of mesh nodes.

Fig. 5. Major steps of the algorithm. Two dimensions.
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Fig. 6. Flow chart of the parallel grid generator.
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The advantage of this algorithm is that it allows us to use sequential classic 2D and 3D
Delaunay triangulators, which are capable of producing high-quality Delaunay meshes with
different conditions and constraints. They are widely available [43].

The programs TRIANGLE from Shewchuk [44] and TetMesh-GHS3D [45] from Simulog
and INRIA have been used for 2D and 3D triangulation.

The disadvantage of this method is that domain decomposition is not always efficient and
therefore needs to be continuously improved.

The flow chart of the parallel grid generator is shown in fig. 6.

Having described the general procedure, details will be given in the following paragraphs.

2.1. Forming the interface and compatible surface mesh for each
subdomain

The intersections of the cutting planes with the surface triangles are calculated. Then the
intersection points are sorted such, that they form a closed and continuous cross-section
contour. These points and contour are used for the construction of two-dimensional Delaunay
triangulation of the cross-section surface. TRAINGLE 1.5 [44] has been employed for generating
high-quality Delaunay triangulation with constraints on minimal triangle angle and maximum
triangle area. The intersected triangles are split into three other triangles so the domain can
be decomposed into subdomains along the contours (see fig. 7).

2.2. Load balancing

The load balancing always has been a big issue for a parallel applications algorithm. Several
well known techniques and criteria are considered in the paper.

— Prepartition along the same direction. The object is partitioned along several
partitioning planes which are parallel one to another. A partitioning of an object into N
subdomains would require N — 1 parallel tasks. The partitioning can be done in parallel.

Setting the cutting planes up Forming contour and performing 2D Compatible and closed
finding of intersection pointsl constrained triangulation within it by surface mesh for the
using TRIANGLE subdomain

SDA SDI

Fig. 7. Forming the interface and surface mesh for each subdomain.
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— Recursive prepartitioning. An object cut in two. Then for each of the parts the cutting
plane is chosen and the parts are cut in two and so on. Note, that first task is sequential, second
task involves two parallel tasks, and the kth step involves 2¥~! ones.

— Overdecomposition. An object is decomposed into many subdomains. Number of
subdomains is much larger than processors exist. Then in the case of load imbalance the master
process gives the task to idle processor.

The partitioning criteria for the object decomposition could be volume, number of boundary
facets, number of nodes, moment of inertia.

The moment of inertia criterion requires more detailed explanation. Each object is cut
perpendicular to its smaller principal inertia axis. It means that for each part with the set of
nodes V, the inertia matrix should be computed, where (z4,v,, z,) are the coordinates of the
center of gravity V. Then one of the eigenvectors with the smallest eigenvalue is selected. This
gives us family of planes.

Z(yv_yg)2+(zv_zg>2 — 2 (@ — 1) (g0 — Yy) = 2 (T —xg) (20 — 2¢)

veV veV veV

- ;/(yv — Yg)(xy — ) ;(Zv =z’ + (1o —wg)* - ;(yv — Yg) (20 — 29)
- ;V( —zg) (X0 —1g)  — EZV( — 2g) (4o — Yy) ;/(% —29)* + (Yo — Yy)?

“Node inertia matrix”

Nevertheless it happened to be hard to find a reasonable criterion for predicting a good
load balancing in advance. Even if the number of elements is approximately the same for each
subdomain, the CPU time spent on each part could be quite different [32].

The volume criterion was chosen in present work. The cutting planes are located so that the
volumes of the subdomains are the same. The initial cut is done by equidistant set of planes
and then the planes are iteratively moved to achieve the equality of volumes.

2.2.1. Orientation of boundary facets

It is important to mention that after operations on the surface mesh such as cutting of triangles,
insertion of new nodes, constructing of a new mesh on the interfaces, it could happen that
boundary faces are not properly oriented. The Delaunay volume grid generator is sensitive
to the orientation of the boundary faces. Also for volume comparison it is necessary to have
properly oriented triangles.

J J
/ k [ k
(4) ’ (B) :
Face 1 order: kj/ Face 1 order: kj/
Face 2 order: Zg'j Face 2 order: lji

Fig. 8. Correct orientation of two adjacent triangles in (A).
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A technique described in [30] has been used. Two adjacent triangles are considered to have
the same orientation if the shared edge exists on order ij on the first triangle, and the same
edge ordered ji on the other triangle. In fig. 8 two adjacent triangles are oriented correctly in
(A). Original boundary faces always point in the correct direction, because their orientation is
preserved. So the algorithm starts from original boundary face and change the order of vertices
which are oriented differently.

2.2.2. Volume calculation

Gauss’s Theorem relates the divergence of a vector field within a volume to the flux of a vector

field through a closed surface by:
// Vde://Fda, (1)
1% s

where the surface S encloses the volume V| V is defined by:
o o0 0
V=|—=— = . 2
(8x’ dy’ 82) @)

F(x,y,z) = (z,0,0). (3)

Then, VF =1 and equation (1) becomes the volume

J[[ 1= [[ paa (4)

Equation (4) tells us that the flux of the vector field F' through the closed surface S is equal
to the volume enclosed by S. When S is defined by a set of triangles, the enclosed volume is
equal to the sum of the flux of F' through every triangle. A straightforward parameterization
of the triangle {V1, V5, V3} is given by:

When F' is set to:

€1 =vy — vy, ey =uv3—v1, S(u,v)=u;+ue;+ vey, (5)

where the evaluation of s(u,v) yields any point on the triangle for u € [0,1] and v € [0,1 — u].
Under this parameterization the surface element da from equation (4) can be written as:

da = (e; X e2) dvdu. (6)
The flux of F' through the triangle {Vi, V5, V3} becomes

o = /1 /1 F (s(u,)) (e1 % e2) dvdu; (7)

11
d = // (V1z + uery + vegy,) (erye2, — e1,€9,) dudu. (8)
0 0

The solution to equation (8) can be written as:

1

¢ = G [( 2y — V1y) (V3. — V1) — (V2. — V1) (V3y — Uly)] (V1 + Voz + V32) - 9)
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The right hand side of equation (9) yields the flux of F' through the triangle {V;, V5, V3}.
Given a closed and clockwise wound triangle set {V;, Vg, Vis} for i = {0,1,2,...,n} the enclosed
volume is computed by evaluating the sum:

1
volume = ¢ > [(vizg — viny) (vizz — virz) — (Vizz = vinz) (Visy — Ving)] (Vita + Vize + Vise) . (10)

%

2.3. Mesh optimization

As it is seen in fig. 9 the cutting of the surface mesh can produce “bad triangles” — triangles
with small angles. One of the ways to get rid of them is to perform mesh optimization. An
optimization technique described in [46] has been used for improving the mesh.

Given a set of data points scattered in three dimensions and an initial triangular mesh M,
the task is to produce a mesh M, of the same topological type as My, that fits the data well
and has a small number of vertices.

Here it is important to distinguish connectivity of the vertices and their geometric positions.

Formally a mesh M is a pair (K,V’), where K is a simplicial complex representing the
connectivity of the vertices, edges and faces, thus determining the topological type of the mesh
and V = {vy,...,v,}, v; € R? is a set of vertex positions defining the shape of the mesh in R?
(its geometric realization).

We find a simplicial complex K and a set of vertex positions V' defining a mesh M = (K, V)
that minimizes the energy function

E<K7 V) = Edist(K7 V) + Erep(K) + Estring(Ka V)

The distance energy Fqisi (K, V) is equal to the sum of squared distances from a given set
of points to the mesh. It measures the closeness of fit. The representation energy E,.,(K) is
proportional to the number of vertices m of K. It penalizes meshes with a large number of
vertices. The spring energy FEgying(K, V') places on each edge a spring of rest length 0 and
spring constant k. It guarantees existence of a minimum. More detailed information can be
found in [46].

This optimization method is used in computer graphics applications. In our specific case we
are optimizing mesh for further FEM calculations. So in present work we are not changing the

original optimized

Fig. 9. Mesh optimization.
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Fig. 10. Independent volume mesh generation within each subdomain.

topology of the mesh and the number of its nodes, but are just moving the mesh nodes. As it
can be seen in fig. 9 this optimization technique improves the quality of the mesh.

2.4. Parallel volume meshing

After a compatible and closed surface mesh for each subdomain is constructed, it is possible
to generate the volume mesh inside independently. The TetMesh-GHS3D meshing software
component [45] has been used for volume meshing. It creates tetrahedral Delaunay volume
meshes from closed triangular surface meshes (fig. 10).

3. Parallelization

The MPI library has been used for the implementation of the parallel grid generator. A Single
Program — Multiple Data computational model was employed. It means that each processor
runs the same executable program so the message passing must be masked by IF statements,
for example.

If we consider one processing element for the parallel grid construction, then the sequence
of its actions can be described by scheme shown in fig. 11.

surface mesh close __> interface to
wflompes0 compatible She rlaht
1 M

wJgitinteriace,, of right

]

Loodnterface.
FRERTRY .\ c— S
A .. meshing
the left surface mesh

il
— contour of triangulation pyolume of SD

Fig. 11. Scheme of the sequence of actions for one processing element (p.e.).
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Fig. 12. Parallel and sequential actions.

It is clear that the construction of the two-dimensional mesh, cutting of volume and other
operations with the surface mesh are easy computations with maximum running time O(N?),
where N is a number of mesh nodes. Hence it is not computationally expensive and, could
be done sequentially. But from an algorithmic point of view it is easier to do it in parallel.
Then one does not have to take care of the data distribution since each processing element
already has the data. The goal of all parallelization is to perform simultaneous construction

of three-dimensional grid in each subdomain. This is the heaviest computations with running
time O(N?) (fig. 12).

4. Coupling parallel grid generator with DDFEM solver

DDFEM [47] is a parallel 3D linear elasticity solver for steady-state problems, developed at
ITWM. The parallelization is based on the domain decomposition approach and PETSc routines
are used for the parallel solution of the linear system. At the moment the program reads the
whole mesh and then partitions it among the CPUs by using METIS [48]. This sequential step
can be a real bottleneck when large meshes are involved. Therefore it is necessary to couple a
parallel grid generator with the parallel solver in order to provide the mesh for each CPU and
remove the bottleneck. So the “throughout” use of parallel programming will be achieved.

After independent generation of the volume meshes we have several meshes with local node
enumeration. It is necessary to have global enumeration of nodes and elements because the
solver has to distinguish nodes which are in one subdomain only from those which are common
for two neighboring subdomains (fig. 13).

In fig. 14 an example solution is shown. The mesh was generated by the parallel grid
generator and then the elasticity problem was solved by DDFEM. Dirichlet boundary conditions

SD1 SD2
Common ®
3 plane 3

[ I\
wnil@

Nodes #: 1,2,3 Nodes #: 3,4,5

Fig. 13. Global enumeration of the nodes.



14 E. G. Ivanov

‘l distributed surface force ‘

elastic ball

fixed nodes (displacement is not allowed)

Fig. 14. Elasticity problem. Deformation of elastic ball under applied force.

were applied to the bottom (displacement is not allowed) and face traction boundary conditions
at the top (distributed surface force).

5. Summary and conclusion

A parallel generator for unstructured three-dimensional tetrahedral grids has been developed.
The algorithm based on domain decomposition approach was described in the paper. This
algorithm allowed us to use standard sequential 2D and 3D triangulators in parallel. The
programs TRIANGLE [44] and TetMesh-GHS3D [45] were employed for construction of 2D
and 3D high-quality Delaunay meshes. Different aspects of load balancing methods and criteria
such as prepartitioning along the same direction are also explored in the paper. The surface
mesh optimization technique has been used for improving the mesh quality. The parallelization
strategy is based on Single Program — Multiple Data computational model and employs the
MPI library for the implementation of the parallel grid generator. Hence the most expensive
computations, the construction of volume mesh inside each subdomain is totally independent
and performed in parallel. The developed parallel grid generator has been coupled with the
DDFEM solver in order to remove the grid generation bottleneck and achieve “throughout”
use of parallel programming at all stages of solving the problem. Further work on testing,
handling real-life examples with complex geometries, automatic evaluation of the mesh quality,
improving of surface mesh optimization technique, creating of an interface with CAD and
performing local adaptive mesh refinement is in progress.
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