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Jlnst nBazk bl nudpdepeHImpyeMbix PYHKITUN TPEICTABIEHO IIPOCTOE BBIPAXKEHUE JIJIs
ONTUMAJILHBIX IEHTPUPOBAHHBIX (POPM MHTEPBAJLHOTO pacimmperust pyakimit. o Bcex
BO3MOXKHBIX IIEHTPOB B IIpeesax 3aJaHHOIO MWHTepBaJa IpejjaraeMas IeHTPUPOBaHHAS
dopma mpesocTaBIsieT HanOOJIBIIYI0 HIXKHIOI U HANMEHBIITYIO BEPXHIOIO IPAHUIIBI HHTEP-
BaJIbHOIO pacimpenus. Kpome Toro, 06061ieH u yiydineH pesysibrar [1] u g1okaszaHo, 941o
npejjiaraeMasi IeHTPUPOBaHHasl pOpMa UMeeT JIYUIIYI0 TOYHOCTH, UeM IPE/ICTaBJICHHA
B [1].

Introduction

In applications of interval mathematics, it is extremely important to determine sharp enclosure
for the range of a given function f : D C R" — R! on a given interval in R". If f € C'(D),
then, as it is well known [1, 2|, an interval extension of f can be obtained using the mean value
theorem, which itself has been used quite successfully in several applications [2]. The interval
extension F': I(D) x D — I(R) of f defined by

(IE1) F(X,e) = f(c)+ (X — )T F'(X) (0.1)

is called a mean value form interval extension of f on X with the center ¢ € X, where F'(X) =
(FI(X),...,F(X))", Fj(X) is an interval extension of df(x)/0x; on X.

But we now consider its dependence on the point ¢. Baumann (1986) provided formulas
for ¢ € X such that we can obtain optimum lower or upper bounds for f(X) in a sense that
is made precise below. Baumann’s results which were derived in a more general setting are as

follows. Let F'(X) = [I,1] and the vectors ¢ and ¢ are defined as follows

T, <0,

¢ = gj’ £1 Z O, _ (()2)
(liz; — sz)/(lz —1,), otherwise,
z, [;<0,

(Liz; — L;z) /(L; — I;), otherwise,
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fori=1,2,...,n. Then
inf F(X,c) <inf F(X,c), supF(X,¢) <supF(X,c)

for all ¢ € X. These formulas mean that we may use ¢ or ¢ instead of any other ¢ € X when
we are interested in optimum lower or optimum upper bounds of f in X, respectively, where
F'(X) is assumed to be fixed.

A form that yields the greatest lower bound and the lowest upper bound of a mean value
form on a given interval will be called an optimum form with respect to the lower bound and
the upper bound. It is obvious that the optimum form improve the efficiency of algorithms that
are based on the upper or lower bound.

The purpose of this paper is, under 2 times differentiability condition, to present a class
of new interval extension (optimal centered form interval extension) by combining choosing
optimum ¢ with optimum F’(X), to improve and expand Baumann’s results and range of
application, and to prove the interval extension having smaller excess-width than Baumann’s
results [1].

1. Optimal centered form interval extension

For f: D C R" — R' and f € C?(D), we present two classes of interval extension forms on a
given interval D. We construct the following interval functions.
The first interval extension form is as follows:

(IE2) F(X)=f(c)+ (X —-¢)'B (1.1)
where ¢ € X, B is defined as follows

( [E;(ala"'7ai717Qi7ai+17'"7an)7F17j/(a17"'7aifl>ai7ai+17"'7an)]7
1 .
Fi(X) > 0,0 € int(F; (X)),
Bi - [E;(alu'"7a’i7176’i7ai+17'"7an>7F;'/(a17"'7a’i717gi7ai+17"'70‘n)]7 (12>

F7(X) <0,0 € int(F/(X)),

, )
\ Fl(a1,...,a;-1,a;a;41,...,a,), otherwise,

X (E/(X) 20, F(X) < 0) or (FAX) <0, F/(X)
>0)0

X, > 0),
X r (Fjj(X) <0,F/(X) <0)

a; = Xi, (E;/(X)Z(),F/( ) (i:1,2,...,n),
X;, otherwise,
and FJ/(X) is an interval extension of 9*f(x)/0x? on X.
The other interval extension is
(I1E3) Fo(X,c) = [inf(f(c) + (X — )" B), sup(f(c) + (X —¢)" B)] (1.3)
where the value of the vector B is the same as (1.2), the vectors ¢, ¢ are defined as follows
T, B; <0,
=%z, B;>0, (i=1,2,...,n), (1.4)
(Biz, — Bi#;)/(Bi — B,), otherwise
£i7 Bz S 07

(Biz; — sz:z)/(EZ — B;), otherwise
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2. Main theory

Theorem 2.1. Assume that f : D C R" — R' and f € C*(D). Then the interval function
(IE2) F(X) defined by (1.1) is an interval extension of f(x), and satisfies

(IE2) F(X)C (IE1)F(X,c). (2.1)
Proof. Firstly, Vo € X, for (IE2)F(X), it is obvious that
Pl@) = f(z). 22)
Secondly, Vo € X, let the range of f'(z) on X be f'(X) then Ve € X, one has

f@) € flo) + (X —o)" [I(X) = flo) + Z (Xi — ) fi(X), (2.3)
f(@) € fle) + (X — o) [I(X) C fle) + (X — o) F'(X). (2.4)

Now discuss respectively as follows:
(1) when F,)(X) >0 (i = 1,...,n) the following three cases are discussed respectively.

If [7{(X) > 0, then )
choose a; = X; C X;, that is, B; = F/(a1,...,a;_1, Xi, @11, ..., a,), one has
sup(f{(X)) < sup(B;) < sup(F;(X))

for the interval (X; — ¢;) B;, one has

Sup((Xz - Ci)Bz) max{ - Cz)Bz (Xz - ci)ﬁia (KZ - Ci>Bi7 (Kl - Cz)ﬁz} =
= (Xi — ) B; > (Xi — ¢;) sup(f{(X)) = sup((X; — 1) f{ (X)),
inf((X; —¢;)B;) = mln{ —¢) B, (Xs — ¢)B;, (X, — i) By, (X, — Ci)ﬁi} =
=(X;—c)Bi < (L ci)sup(f;(X)) < inf((X; — ;) f;(X),
and, from the above remarks, one has (X; — ¢;) f/(X) C (X; — ¢;)B;.
It can be derived analogously that (X ¢)B; C(X; — ci)Fi’ (X). Therefore, one has

(Xi — ) fi(X) € (Xi — i) B € (Xi — ;) F{(X).
With the same reason, it follows that when F/(X) < 0 and 0 € int(F/(X)), we have
(Xi — ) fi(X) € (Xi — i) Bi € (X; — i) F{(X).
From the above discussion, it follows that for £,,”(X) >0 (i = 1,...,n), one has
(Xi — ) f{(X) C (X — ) Bi C (Xi — &) F{(X).

)

And with the same reason, it follows that
(2) under the case of F/"(X) <0 (i=1,...,n) and 0 € int(F;"(X)), one has

(Xi — ) fi(X) € (Xs —¢i)Bi € (X; — ¢;) F{(X).
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Combining (1), (2) with (2.3), f(z) € (IE2)F(X) can be obtained. It follows that interval
function (/E2) F(X) is interval extension of f(z).
From (X; —¢;)f/(X) C(X; —¢)B; € (X; — ) F/(X)( = 1,...,n) and (2.3), (2.4), (2.1)
can be obtained, which completes the proof. U
Theorem 2.2. Assume that f: D C R" — R' and f € C*(D). Then the interval function
(IE3)Fy(X,c) defined by (1.8) is an interval extension of f(x), and satisfies

(IE3) Fy(X,c) C (IE2)F(X) C (IE1)F(X,c). (2.5)
Proof. Firstly, Vo € X, for (IE3)Fy(X,c), it is clear that
Fo(z,¢) = £(@). 2.6)

Secondly, Vo € X, one has f(z) = f(c)+ f'(¢)(x—¢), where ¢ € X isrelated to z, f'({)(z—c) €
B(X — ¢) follows easily from theorem 2.1, thus

f(z) € (IE3)Fy(X, ¢). (2.7)
So (IE3)Fy(X,c) is an interval extension of f(x). And also
inf((IE2)F(X)) = f(c) +inf(B(X — ¢)) <
< f(c) +sup(B(c—c¢)) +inf(B(X —¢)) = f(g)Jri(sup(Bi(cl-—gi))+inf(BZ-(Xi—ci))). (2.8)
Now, let us consider consequently in view o;_;he different values of sup(B;(c; — ¢;)) +
inf(B;(X; — ¢;)):

Case 1:if B; <0 < B, then

for ¢; > ¢;, one has {

for ¢; < ¢;, one has {
for ¢; = ¢;, one has {
Case 2: if B; > 0, then
B.
for ¢; > ¢;, one has { B
Case 3: if B; <0, then
for ¢; < ¢;, one has { —i
Gathering three above cases, we deduce that

sup(B;(c; — ¢;)) + inf(B;(X; — ¢;)) = min {Ei(f{i —¢), Bi(X,— QZ>} ,

)
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thus,

= f(c) + Zmin {EZ(XZ — QZ‘>7Bi(Xi - Qz)} =

= f(c) +inf(B(X — ¢)) = inf((I E3)Fy(X, ¢)). (2.9)
With (2.8), (2.9), we can conclude that

inf((IE2)F(X)) < inf((IE3)Fy(X,¢)). (2.10)
With the same reason, it follows that
sup((IE2)F(X)) > sup((IE3)Fy(X, c)). (2.11)

Then (2.7) can be deduced from(2.10), (2.11)and theorem 2.1, and the proof is completed. [
Theorem 2.3. Suppose that a function f: D C R" — R' satisfies f € C*(D). Then (1.3)
the following statements over all X € I(D) are valid

inf((1E1)F(X, ¢)) < inf((1E3)Fo(X, 0)), (2.12)

sup((TE3)Fy(X, 7)) < sup(IE1)F(X,?)), (2.13)

where (IE3)Fy(X,¢), (IE1)F(X,¢) are defined by (1.3) and (0.2), (0.3), respectively.
Proof. Under different cases, discuss respectively as follows
Case 1: if F(X) > 0 then B; > 0 that is

(IE3)c, =z, = (IEl)e,, (IE3)z =7; = (IE1)G.
Case 2: if F/(X) <0, then B; <0, that is
(IE3)e, = 7 = (IEl)e,, (IE3); = a; = (IE1)G.

Case 3: if 0 € int(F](X)) then B; has two cases.

b) 0 € B, at this moment, (I E3)¢; is uncertainly equal to (I E1)¢;, and (I E3)c; is uncertainly
equal to (I E2)c; too.

Let us denote

d; = (IE3)¢;, d,=(IE3)c; (i=1,2,...,n),
¢ =(IE1l¢, ¢ ={UElg (1=1,2,...,n),
I={il0€int(F/(X)), 0€ B;} I=1{il0€int(F/(X)), 0¢ B;}.

For all i from I when ¢ > d;,

—fi(G)(¢ — d;) + inf(Bi(X; — d;)) — inf(Li(X; — ¢;)) =

= —fi(G)¢; — &) + Biz; — &;) — Li(z; — ¢;) =
= z,(Bi — Li) + di(Li — f{(¢) + &i(f{(&) — Bi) >
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When ¢; < d,,
—fi(G) (e — d;) + inf(Bi(X; — d,)) — inf(Li(X; — ¢;)) =
= —fi(G)(e; — d;) + By(Zi — d;) — Li(Ti — ¢;) =
—[i(C)(e; — d;) + By(%i — d;) — Ly(%: — ¢;) + [i(C)Ti — fi(G)Ti =
= (Ti = d;)(B; — £;(G) + (fi(G) = L)(Zi — ¢;) >
> (2 —d;)(B; — L;) > 0.

1

From the above discussion, it follows that

inf((IE3)Fy(X,c)) —inf((IE1)F(X)) =

= f(d) — f(c) + inf (Z Bi(X; —c_m) — inf ( > Lix, q-)) =

iel ic(1ul)

= 3 FlG)e — d;) + it (ZB >inf( > Li(Xicl-)) >

ie(IUl) i€l ie(1UI)
Zf (G)(c ) + inf <Z Bi(X; — d, > — inf (Z Li(X; — Ql)> =
iel iel iel
=) (- d;) + nf(B;(X; — d;)) — inf(Li(X; — ¢;))) = 0,
iel

that is,
inf(IE1)F(X,¢) <inf(IE3)Fy(X,¢c).

With the same reason, it follows that
sup(IE3)F(X,¢) <sup(IF1)F(X,¢).

The proof is completed. Il

Example. If f(z) = 2? — 2123+ 1229 X = ([-2,—1],[-3, 2]), we estimate the range of f(x)
on X.

With interval extension form of (I E3)Fy(X,c), we can obtain By =[-8, —6], By = [4,20],
and also
¢ = _]-a Gy = _Sa
61 = —2, 62 = 2.
By (1.3), the computation result is

F{Wang Cao} ([-2,—1],[-3,2]) = [-26, 36]

With the optimal centered form of Baumann, we have F|(X) = [—13,4], F5(X) = [0, 20].

¢ = —21/17, cy = —3,
¢ = 13/17; Gy =2.
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So the range of f is as follows

F{Baumann} (-2, —1],[—3,2]) = [-26.415225, 70.6470578]

and
F{Wang Cao} ([-2,—1],[-3, 2]) C F {Baumann} ([-2,—1],[-3,2])].

Conclusions

In this paper, we presented an optimal centered form interval extension which extended and
improved the result in [1]. The optimal centered form improves the approximation of a function
extension, and it can be applied in a number of problems such as bounding the range of a
function f(x) over a box X, solving systems of non-linear equations or non-linear inequalities,
global optimization, etc. The numerical results obtained seem to indicate that the optimal
centered form might lead to a considerable improvement in their numerical efficiency too.
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