
Computational Technologies Vol 7, No 4, 2002

FORMAL MODEL OF A GROUP
KEY AGREEMENT PROTOCOL

E. E. Enaw

University of Yaounde I

National Advanced School of Engineering, Cameroon

e-mail: ebotenaw@yahoo.com, eebot@uycdc.uninet.cm

Представлен вывод абстрактной спецификации по набору неформальных требо-
ваний для полного группового протокола согласования ключа, основанного на алго-
ритме Диффи—Хеллмана в модели с изменяющимся числом равноправных участни-
ков (Dynamic Peer Group, DPG). В работе использован язык спецификации системы
RAISE (RSL). В рамках компонентного подхода к построению спецификации исполь-
зовались средства раздельной разработки системы RAISE.

1. Introduction
Dynamic Peer Groups which include j video conferencing, distributed simulation, replicated
servers e.t.c. are fast becoming common in our society. The open nature of networks around
the world today, makes the need to secure communication among members of dynamic peer
groups very urgent.

In 1976 Whitfield Diffie and Martin Hellman proposed the Diffie—Hellman (DH) 2-party
key exchange protocol [6]. This protocol is however limited to a restrained group comprising
only two members and thus is not useful in its basic form in larger groups.

The introduction of computer networking and client server applications and the need to
secure communication between computers in such networks motivated the extension of this
basic 2-party Diffie—Hellman protocol to groups [1, 2, 4, 5, 10 – 12], so that the extended
protocol could be used for key agreement in Dynamic Peer Groups.

The fact that key distribution is the cornerstone of secure group communication further
motivated a lot of research in the area of extending the basic 2-party Diffie—Hellman key
agreement protocol to groups.

Unfortunately some of these protocols are only of theoretical interest and no formal proofs
are available for most properties of these protocols such as: (Contributory Authenticated,
Perfect Forward Secrecy, Resistance to Known Key Attacks). Only informal proofs have been
done, which rely on the hardness of the Diffie—Hellman decision problem described in [10].

It should be noted that the key exchange protocols that exist today are specified in natural
language even well-known protocols like the 2 party Diffie—Hellman protocol [6] hasn’t got
a rigorous formal definition. Informal specifications in the area of Dynamic Peer Groups may
lead to misinterpretations and thus to different implementations that will not be able to work
together.

c© E.E. Enaw, 2002.

18

FORMAL MODEL OF A GROUP KEY AGREEMENT PROTOCOL 19

In this paper we contribute to research in the area of key exchange protocols in DPGs by
providing a formal specification of a generic Group Diffie—Hellman with Complete Key Au-
thentication Protocol [1 – 3] using the formal specification and verification language “Rigorous
Approach to Industrial Software Engineering (RAISE)” [8, 9]. We use the technique of require-
ments tracing to validate our model by identifying precise locations in the formal specification
where specific requirements are met. Confidence conditions are generated for all the modules
used in the specification to show their correctness. The property that our system settles in a
stable state at the end of the protocol run is specified in the SYSTEM OK theory, which is
subsequently informally verified.

The main advantage of using formal techniques [13, 14] is that a formal specification is
a mathematical object which has an unambiquous meaning, therefore mathematical methods
could be used to analyse these specifications, such as formal justifications of the correctness of
the specification. Other benefits include:

— a formal specification provides a clear understanding of the system;

— the formalisation process can reveal inconsistencies, loose ends and incompletenesss in
the informal requirements;

— properties of the system could be separately specified and verification techniques such as
theorem proving and model checking could be used to prove that the specification of the model
of the system satisfies these properties.

This paper is organised as follows: In section 2 we present key establishment protocols. In
section 3 we present some notations used throughout the paper. In section 4 we present some
Diffie—Hellman based computations. In section 5 we present some Diffie—Hellman based
key generation operations. In section 6 we present requirements and properties of the Generic
Complete Group Key Authentication Protocol. In section 7 we outline the method used to
specify the system. In section 8 we present and specify the various components of the Generic
Complete Group Key Authentication Protocol used in Dynamic Peer Groups, using the RAISE
specification Language RSL [8]. In section 9 we provide a formal model of our system based
on the components specified in section 8. In section 10, through the formal specification and
justification of the “System ok theory”, we show that our formal model works properly. In
section 11, we conclude and give directions for future work.

2. Key establisment protocols

Several key agreement protocols geared for DPGs have been proposed recently. These protocols
were obtained by extending the two-party Diffie—Hellman key agreement to n parties, wich
perform initial key agreement (IKA) within the group. When the group is formed and the
initial key is agreed upon, group members may leave (or be excluded) and new members may
join. Any membership change must cause a corresponding change of the group key in order to
maintain key independence (old keys cannot be known to new members and new keys cannot
be known to former members).

There are two major categories of key establishment protocols: key agreement protocols [1]
and centralised key distribution protocols based on some form of trusted third party (TTP). In
this paper we focus on contributory key agreement and briefly note some features of centralised
key distribution that make it unsuitable for DPGs.

1. A TTP that generates and distributes keys to all members of the group is a single point
of failure and a likely performance bottleneck.

20 E. E. Enaw

2. A TTP presents a very attractive attack target for adversaries, since all group secrets
are generated in one place.

3. Some DPG environments (e. g. ad hoc wireless networks) are highly dynamic and no
group member is present all the time. However most key distribution protocols assume fixed
centers.

We therefore argue in favor of distributed, contributory key agreement for DPGs, we however
recognise the need for a centralised point of control for group membership operations such as
adding and deleting members.

2.1. Complete authenticated group Diffie—Hellman key agreement

SA-GDH.2 protocol

Let agent set(anb, d) = { a1, ... , anb } (DPG) be a set of users wishing to share a key Snb. The
protocol executes in nb rounds. In the first stage (nb − 1 rounds) contributions are collected
from individual group members and then in the last stage (nb− th round) the group controller
broadcast the group keying material to the other group members (Fig. 1).

Key confirmation is an important feature in key agreement protocols. Its purpose is to
convince one or more parties that its peer (or group thereof) is in possession of the key.

Complete key confirmation (in the spirit of complete key authentication) would make it
necessary for all group members to compute the key and then confirm to all other members the
knowledge of the key. This would entail, at the very least, one round of n simultaneous broad-
casts. In this paper we take a more practical approach by concentrating on key confirmation
emanating from the the group controller, the first group member to compute the actual key.

Agent 1
Agent 4

Group Controller(subkey 1) (subkey 2) (subkey 3) (subkey 4)

(Contribution 1) (Contribution 2)

Agent 2
Agent 3

Contribution 3)

(Contribution 4)

(Broadcast - subkeys)

Fig. 1. Key generation operations of a group key agreement protocol.

FORMAL MODEL OF A GROUP KEY AGREEMENT PROTOCOL 21

The last protocol message (the broadcast message from the group controller) contains the
group key as computed by the group controller (using the function controller group key()).

Upon receipt of the broadcast, each agent computes its key using the function agent
group key(). Each agent then uses the function match key(a, agent group key(), controller
group key()) to compare the group key it generates with that generated by the controller. In
the event where both keys are equal the agent changes to the AGENT OK state (indicating a
successful end of the protocol), in the event where both keys are not equal the agent changes
to the AGENT ERROR state from where the key generation process is repeated.

Key confirmation coupled with implicit key authentication, provides entity authentication
of the group controller to all other group members.

3. Protocol preliminaries

We use the following notation throughout the paper:

a A group member referred to as an Agent.
nb Number of protocol parties (group members).
c The group controller having the maximum index in the DPG.
n Nonce generated by a group member (random secret generated by a group

member).
created(a, n) Identifies an agent that creates and owns a given nonce.
pub key(a) The public key of agent “a”.

indx(a) Index of a group member “a”.
next(a) The agent “ai” that comes after agent “a” in the DPG, i. e. having index;

(indx(ai) = indx(a) + 1).
previous(a) The agent “ai” that comes before agent “a” in the DPG, i. e. having index;

(indx(ai) = indx(a) − 1).
Snb Group key shared among nb members (where nb = max index).
d The Dynamic Peer Group (set of all current group members).

kij Long term secret shared by agents ai and aj, with (i �= j).
Snb(c) Controller’s view of the group key generated by the function

controller group key(c, ,).
Snb(ai) Agent ai’s view of the group key generated by the function

agent group key(ai, ,).
is ok match key() True if controller’s view of the group key equals all group member’s

(agents) view of the group key. This ends the protocol run.
i, j Indices of group members.
ai ith group member; i ∈ [1, n].
G Unique subgroup of Z∗

p of order q with p, q prime.
q Order of the algebraic group.
α Exponentiation base; generator in group G.
xi Long-term private key of ai.
ni Random (secret) exponent (nonce) ∈ Z∗

p generated by ai.

The group controller is represented by letter “c” which is equal to anb i.e. the highest
indexed agent in the DPG where nb is equal to the total number of agents in the DPG, “c”
and anb are therefore interchangeable.

22 E. E. Enaw

4. Specification of Diffie—Hellman based computations

The Diffie—Hellman based computations specified below, are used throughout the paper:

The type Prime is specified as the subtype of the RSL built-in type Int. The predicate
is prime defines an integer p as a prime number if the only positive integers that divide p are
1 and p itself.

The type Long term secret key is defined as a subtype of the type Prime which falls
within the range {1 .. (q-1)} where q is the order of the algebraic group (a prime number).

The type Pub key is defined as a subtype of the type Int, which satisfies the predicate
is pub key.

type
Prime = { | i: Int • is prime(i) | },
Long term secret key = { | i: Prime • i ∈ {1 .. (q-1)}| },
Pub key = { | i: Int • is pub key(i) | },
Shared secret key = { | i : Int • is shared secret key(i) | }
value
α : Prime,
q : Prime,
p : Prime,
long term secret key : Agent → Long term secret key

The mod function has two arguments: Int and Int. The first argument represents some
arithmetic operation of result type Int. The function mod returns an Int which is the integer
remainder (modulus) resulting from the first integer divided by the second integer.

mod : Int x Int → Int
mod(p1, p2) ≡ p1 \ p2

The pub key function computes the public key of a given agent ai

pub key : Agent → Pub key
pub key(ai) ≡ mod(α(long term secret key(ai)), p)

The Kij function computes the long term secretKij shared by agents ai and aj, with (i �= j)

Kij : Agent x Agent → Shared secret key
Kij(ai,aj) ≡
mod(α(long term secret key(ai)∗long term secret key(aj)), p),

is pub key : Int → Bool
is pub key(i) ≡
(∃ a : Agent • pub key(a) = i ∧ is certificate in(a)),

is prime : Int → Bool
is prime(i) ≡
(∀ k : Int • (∃ j : Int • j> 0 ∧ k = i/j • (j = 1 ∨ j = i)))

The is shared secret key function simply states that if two agents ai and aj, are honest
and different (i �= j), then their long term secret keys are different.

is shared secret key : Long term secret key → Bool
is shared secret key(xi) ≡

FORMAL MODEL OF A GROUP KEY AGREEMENT PROTOCOL 23

(∀ ai, aj : Agent •
honest(ai) ∧ honest(aj) ∧
(∃ xj : Long term secret key •
long term secret key(ai) = xi ∧
long term secret key(aj) = xj ∧ ai �= aj ⇒
xi �= xj))

We assume that an agent can not guess a nonce used by another. A convenient way to
specify this is that a nonce is created by an agent and such an agent is unique.

created : Agent x Nonce → Bool
axiom
[created inj]

(∀ a1, a2 : Agent, n : Nonce •
created(a1, n) ∧ created(a2, n) → a1 = a2)

5. Key generation operations

Round i(0 < i < nb): An agent ai updates the message it receives from the previous agent in
the DPG by doing the following:

Adding its nonce to the set of nonces received from the previous agent.

add nonce : Nonce x Nonce-set → Nonce-set
add nonce(n, ns) ≡ {n} ∪ ns,

Adding the set of keys it shares with each and every member of the DPG (Kij) to the set
of shared keys it received from the previous agent.

add shared keys :
Shared secret key-set x Shared secret key-set→ Shared secret key-set
add shared keys(ska, skr) ≡ ska ∪ skr,

Adding its identity to the set of agents it received from the previous agent, using the
add agent set function specified below.

add agent set : Agent x Agent-set→ Agent-set
add agent set(ai, ac) ≡ {ai} ∪ ac,

The agent “ai” then uses the updated components to generate the send message(ns, ai,
pub key(ai+1), sks, as) message which represents its contribution towards the generation of
the group key, where:

ns = nonce set - generated above.
pub key(ai+1) = public key of the next agent in the DPG - used to encrypt the send message().
sks = set of keys it shares with each and every member of the DPG - generated above.
as = set of agents - generated above.

Round nb:

1. The group controller broadcast a set of all subkeys to the group.

2. Upon receipt of the broadcast message, each agent ai where i is the index of the agent,
selects the appropriate subkey Vi where:

24 E. E. Enaw

Vi = broadcast message(({n1, ..., nnb} \ {ni}), c, pub key(ai), {k1i, ..., Kni}, Snb(c))

ai then proceeds to compute its view of the group key, by adding its nonce to the set of nonces
received in the broadcast message:

Snb(ai) = nonces(Vi) ∪ {ni} = {n1, ..., nnb}
ai now compares the group key it just generated with that generated by the controller:

match key(ai, Snb(ai), controller key(Vi))

If both keys are equal the agent changes to the Agent ok state indicating the successful
completion of the protocol.

Obtain a received nonce set from a received message

nonces : Message → Nonce-set
nonces(m) is

case m of
message1(n, a, k) → {n},
message2(na, nb, a, k) → {na,nb},
message3(n, k) → {n},
receive message(ns, a, k, sk) → ns,
send message(ns, a, k, sk) → ns,
broadcast message(ns, a, k, sk, gk) → ns

end,

Obtain the controller’s view of the group key from the broadcast message

controller key : Message → Group key
controller key(m) ≡

case m of
broadcast message(ns, a, k, sk, gk) → gk

end,
match key : Agent x Group key x Group key → Bool

5.1. Certificate verification

Before sending a message, an agent gets the certificate of the destination agent from the public
key file (set of certificates of all agents in the DPG) which resides with each agent of the DPG,
checks to see if the certificate is valid and if it is valid it extracts the public key of the destination
agent of the DPG and uses it to encrypt the message before sending.

is certificate in : Agent → Bool
is certificate in(a) ≡

(∀ cert : Certificate, cs : Certificate-set •
cert = get certificate(a, cs) ∧

is certificate valid(cert) ⇒ cert ∈ cs),

is certificate valid : Certificate → Bool

get certificate : Agent x Certificate-set → Certificate

FORMAL MODEL OF A GROUP KEY AGREEMENT PROTOCOL 25

6. Requirements and properties
6.1. Requirements

1. All agents must participate in the generation of the group key.
2. Once a group is formed and the initial key is agreed upon, group members may leave (or

be excluded) and new members may join.
3. Any membership change must cause a corresponding group key change in order to preserve

key independence.
4. The group controller should be able to store the last upflow message it receives.
5. All agents are unique (can‘t have two identical agents).
6. Agent Ai can only make its contribution after receiving and updating agent Ai−1‘s con-

tribution, since its contribution is the updated contribution of agent Ai−1.
7. The group controller is the only agent that can broadcast, add members to and remove

members from the DPG.
8. The highest index agent is called the group controller.
9. The index of the group controller increases by one when members are added and reduces

by one when members are removed.
10. The DPG has a maximum size.

6.2. Properties of the model of a generic authenticated group key
agreement protocol

— The generic protocol is a contributory authenticated key agreement protocol.
— The generic protocol provides perfect forward secrecy.
— All group members participate in the generation of the group key.
— The group key must be genuine, i.e. a group key is genuine if all members of the protocol

end up generating the same key at the end of the protocol.
— The generic protocol provides key integrity.
— The generic protocol provides key confirmation.
— Group members could be honest (won‘t reveal the group key to outsiders) or dishonest.
These properties are necessary to achieve resistance to active attacks mounted by an in-

creasingly powerful adversary, and as always, ironclad security must be achievable with the
lowest possible cost.

7. Development method
The development process involved the following aspects:

1. Define a scheme TYPES containing the types and attributes for the non-dynamic entities
identified, and make a global object T for this.

2. Define a scheme Buffer containing operations for passing messages from one agent to
another.

3. Define the STATION scheme which contains the operations that an agent performs to
generate the group key.

4. Define the CONTROLLER scheme which contains the operations that the group con-
troller performs to generate the group key.

5. Define the ADD MEMBER scheme which contains the operations that the group con-
troller performs to add a new member to the group.

6. Define the REMOVE MEMBER scheme which contains the operations that the group
controller performs to remove an existing member from the group.

26 E. E. Enaw

7. Define the DPG scheme which specifies a “run” operation on the appropriate modules
to execute the key generation process of the DPG. The run terminates when all agents of the
DPG settle down in a stable state (ok or error).

8. Define theorems which specify properties of the system, identified in the properties
section above.

9. We show that the protocol works well, by tracing where requirements are met in the
specification and generating confidence conditions for all the modules used in the specification
to show their correctness.

10. Consider any efficiency improvements we can make on the final specifications of the
various schemes above.

11. Translate to the intended target language.

8. System components
If we want to develop systems of any size, it is a good idea to decompose their description
into components and compose the system from the (developed) components. In this section
we provide definitions of components of our system and later compose our system from the
specified components.

8.1. Agents
We use the short record RSL type definition to specify an Agent. This approach omits the
constructor in the definition since there is only one alternative and it would therefore appear odd
to include it. Agent is specified as a “sort” since in the requirements, it isn’t stated how agents
are to be represented in terms of their names, addresses etc. The short record definition for the
“sort” Agent has four destructors namely: state a, state r, state and msgs r, for decomposing
or extracting values of the “sort” Agent. The “sort” also has four corresponding reconstructors:
change state a, change state r, change state, change msgs, for modifying its values.

The destructor state is used in the Agent module STATION NEW specified below to
extract values of the sort Agent state. The destructor state is used as a value expression
of a case expression. Depending on the value of state, one of six states of the Agent defined
below is selected (returned).

The corresponding reconstructor change state is used to change from one Agent state to
another (i. e. modify values of the sort Agent state). The destructor is within the value ex-
pression of the corresponding pattern of the case expression. The destructor is not shown here
but appears in the full specification of the STATION NEW module. The explanation above
holds for the other constructors and destructors that appear in the short record definition of
an Agent above.
type

Agent ::
state a : Adding member state ↔ change state a
state r : Removing member state ↔ change state r
state : Agent state ↔ change state
msgs r : Message ↔ change msgs,

We identify two types of agents. The first type of agent is the ordinary member of the
DPG, while the second type is the group controller of the DPG. We note that a DPG has one
and only one group controller. This requirement is specified in the predicate is agent c below
which states that if two agents have the same index which is equal to max index then both
agents in question should be one and the same agent which is the group controller.

FORMAL MODEL OF A GROUP KEY AGREEMENT PROTOCOL 27

The two types of agents identified above, are specified below.

type
Agent s = { | a : Agent • is agent a(a) | },
Agent c = { | c : Agent • is agent c(c) | },

value
is agent a : Agent → Bool
is agent a(a) ≡ kind(a) = agent ∧ is indx(a),

is agent c : Agent → Bool
is agent c(c) ≡

(∀ a : Agent •
(indx(c) = indx(a) ⇒ c = a) ∧

kind(c) = controller ∧ indx(c) = max index),

The predicate is agent c defines the property that the group controller is the highest in-
dexed agent (having index max index) in the DPG. The predicate is agent a on the other
hand defines a property of an agent, which states that each and every agent of the DPG has
a unique index which is within the range (min index to max index) with the former belonging
to the first agent of the DPG and the later to the group controller.

type
Agent kind == agent | controller
Index

value
kind : Agent → Agent kind
index : Agent → Index,

is indx : Agent → Bool
is indx(a) ≡

min index ≤ indx(a) ≤ max index,

The agents indexable axiom specified below ensures that indexes of agents are unique.
axiom
[agents indexable]

(∀ a1, a2 : Agent •
indx(a2) = indx(a1) ⇒ a2 = a1),

As illustrated in Fig. 2 below an agent has six possible states of type Agent state specified
below.
type
Agent state ==

Agent 0 |
Agent 1 |
Agent 2 |
Agent 3 |
Agent OK |
Agent error,

The operations of an agent resulting to the generation of the agent’s view of the group
key are specified in the AGENT NEW module below. An agent uses the change state a
reconstructor to change from one state to another.

28 E. E. Enaw

receive_sent_message()

can_add_message = true

is_ok_match_key = false

is_ok_match_key = true

agent_group_key()

sent_update_message()

can_add_message = false can_add_message = false

can_add_message = false

Agent_OKAgent_error

Agent_3

Agent_2

Agent_1Agent_0

can_add_message = true

can_add_message = true select_broadcast_update_message()

Fig. 2. State transition diagram for a station in the DPG.

context: BUFFER, T, TYPES NEW
scheme STATION NEW =
class
object B : BUFFER(T{Message for Elem})
value

s next : T.Agent s × T.DPG → T.Agent s × T.DPG
s next(a, d) ≡
case T.state(a) of

T.Agent 0 → receive sent message(a, d),
T.Agent 1 → send update message(a, d),
T.Agent 2 → select broadcast update message(a, d),
T.Agent 3 → is ok match key(a, d),
T.Agent OK → (a, d),
T.Agent error → (a, d)

end,
end
State 1

Initially an agent is in state “Agent 0”. When it receives the send message (See the Mes-
sage section below for the set of messages available) from the previous agent in the Dynamic

FORMAL MODEL OF A GROUP KEY AGREEMENT PROTOCOL 29

Peer Group (DPG), using the function receive sent message, it changes to the next state
“Agent 1”. It should be noted that the received function specified below ensures that an agent
can only receive a message that is destined for it since the message must be encrypted with
its public key, which can only be decrypted by the agent in question. The first agent of the
DPG receives an empty set of messages in the first round of the protocol. The first station
function below specifies the properties of the first agent.

first station : Agent → Bool
first station(a) is

(∃
ac : Agent-set, ai : Agent index •

indx(a) = min index ∧ a ∈ ac ∧ a ∈ dom ai

State 2
In the second state the first agent of the DPG updates the message it received in the last
protocol round and sends the updated message to the next member of the DPG. The first
agent therefore carries out the following operations in the second state.

Updates the the message by doing the following:

— Adding its nonce to the empty set of nonces received in the first state.

— Adding the set of keys it shares with each and every member of the DPG to the empty
set of shared keys it received in the first state.

— Adding its identity to the empty set of agents it received in the first state, using the
add agent set function specified further ahead.

After carrying out these operations, the first agent now sends the updated message to the
second agent of the DPG. Before sending the message the first agent gets the certificate of the
second agent from the public key file (set of certificates of all agents in the DPG) which resides
with each agent of the DPG, checks to see if the certificate is valid, and if it is valid it extracts
the the public key of the second agent of the DPG and uses it to encrypt the message before
sending it.

This requirement is specified below in the send update message algorithm, used by all
agents to send an updated message.

send update message :
T.Agent s x T.DPG → T.Agent s x T.DPG

send update message(a, d) ≡
let
buff = T.stat buffs(d)(a, T.previous(a)),
(buff’, m) = B.get(buff)
in
case m of
T.send message(ns, T.previous(a), k, sk, ac) →
if k = T.pub key(a)
then
let
ad = T.next(a),
pkf = T.pub key file(ac),
ct = T.get certificate(ad, pkf)
in
if ∼ T.is certificate valid(ct)
then (T.change state(T.Agent error, a), d)
else ...

30 E. E. Enaw

After updating the message, the first agent sends the updated message to the next agent of
the DPG using the put msg in function specified in the Buffer section below. The put msg in
function makes use of the value stat buffs of type Station buffs defined below. Station buffs
= Agent x Agent →

m
Buffer,

The type Station buffs is a mapping from the product type (Agent x Agent) to the type
Buffer and thus represent’s the buffer between two given agents.

The next agent in the DPG (agent with index (i + 1) where i is the index of the first agent)
receives the message sent by the first agent only if the public key used to encrypt the sent mes-
sage belongs to the agent in question. This ensures that only the agent for which the message
is intended can read the message. The received function below specifies this requirement.

received : Agent x Message x State → Bool
received(a, m, se) ≡

(∀ st : Status •
(m, st) ∈ se ∧ key(m) = pub key(a)),

In this state the second agent of the DPG updates the message it received in the last protocol
round and sends the updated message to the next member of the DPG.

After updating the received message the second agent now sends the updated message to
the next agent. This process continues until the last but one agent sends its updated message
to the Group controller of the DPG which is the agent with the highest index. Its role is to
broadcast sub-keys used by the corresponding agents of the DPG to compute the group key. It
encrypts the sub-key of each member of the DPG with the public key of the agent in question,
ensuring that only the intended agent can read this sub key.

State 3
In this state when the agent receives the broadcast message from the group controller gener-
ated by the broadcast update message function specified in the CONTROLLER module, it
selects its corresponding sub-key (sub-key which it can decrypt) from the broadcast message
and changes to the next state “Agent 3”. It should be noted that the controller encrypts sub-
keys sent to the rest of the DPG with the public keys of the respective agents, thus an agent
selects the sub key it can decrypt, i. e. which the public key used to encrypt it is owned by the
agent in question.

State 4
In this state, an agent uses the agent group key function to compute the group key by adding
its nonce to the set of nonces it received through its sub key (broadcast message).

It then uses the match key function:

match key : T.Agent x T.Group key x T.Group key → Bool

to compare the generated group key to that generated by the controller. If both keys are equal,
(indicated by the is ok match key function) specified in the STATION NEW module it
then changes to the final state Agent OK. If however both keys are not equal, it changes state
to the Agent error state from which the key generation process is repeated.

Changing from one state to another is realised through the reconstructor change state a
of short record type DPG’ defined in the DPG section above.

FORMAL MODEL OF A GROUP KEY AGREEMENT PROTOCOL 31

8.2. Agents communication
Each agent of the DPG has a pair of buffers used for communication with other agents of
the DPG. We present a specification of the BUFFER module below, which buffers values of
abstract type Elem.

scheme ELEM = class type Elem end
context: E
scheme BUFFER(E : ELEM) =
class
type Buffer = E.Elem∗
value

empty : Buffer = 〈〉,
put : E.Elem × Buffer → Buffer,
get : Buffer →̃ Buffer × E.Elem,
is empty : Buffer → Bool

axiom
∀ e : E.Elem, q : Buffer • is empty(q) ≡ q = 〈〉,
∀ e : E.Elem, q : Buffer • put(e, q) ≡ q∧〈e〉,
∀ e : E.Elem, q : Buffer •

get(q) ≡ (tl q, hd q) pre ∼is empty(q)
end

The BUFFER scheme has four functions:
— empty: specifies an empty buffer;
— put: used for adding values of type Elem to the Buffer;
— get: used to remove values of type Elem from the Buffer;
— is empty: Given a Buffer, returns a Boolean which indicates whether the buffer is empty

or not.

Three corresponding axioms are used to specify the properties of the functions specified
above in terms of their signatures (names and types).

The BUFFER scheme is used by agents in all other modules of the system (STATION,
CONTROLLER, ADD MEMBER, REMOVE MEMBER and DPG) for communication with
other agents of the DPG.

An object B which is an instance of the BUFFER scheme is created as shown below, with the
type Message replacing the type Elem. The object B is therefore an instance of the scheme
BUFFER, which buffers messages of abstract type Message. The type message is specified in
the section that follows
object B : BUFFER(T {Message for Elem })

Passing of messages from one agent of the DPG to another is taken care of by the function
put msg in specified below. Agent “c” puts the message in the buffer of the receiving agent
“a”. The agent “c” on choosing a message for transmission deletes the message from its buffer
and puts the message in the buffer of the receiving agent “a”.

put msg in : Agent x Agent x Message x DPG → DPG
put msg in(c, a, m, d) ≡

let
buff = stat buffs(d)(c, a),
buff’ = put(m, buff),
c’ = change msgs(m, c)

in
change stat buff(

stat buffs(d) † [(c, a) �→ buff’], d)
end

pre (c, a) ∈ dom stat buffs(d)

32 E. E. Enaw

There is a unique buffer used for communication between Agents in the DPG. This require-
ment is specified in the unique station buff function below.

unique station buff : Station buffs → Bool
unique station buff(sb) ≡

(
(∀ a1, a2 : Agent •

((a1, a2) ∈ dom sb ⇒ (a1 �= a2),

8.3. Messages

Message is defined as a variate type comprising eight alternate messages. From the definition
below it is apparent that all the messages have parameters. The corresponding data types of
these parameters are specified in the TYPES module. It should be noted that in RSL the types
and attributes of non-dynamic entities of a system to be specified are specified in the TYPES
module which is subsequently instantiated into a global object T used by other modules of the
system.

type
Message ==
empty m |
message1(n1 : Nonce, a : Agent, k1 : Pub key) |
message2(

n2a : Nonce,
n2b : Nonce,
a2 : Agent,
k2 : Pub key) |

message3(n3 : Nonce, k3 : Pub key) |
receive message(

r m n : Nonce-set,
ar : Agent,
kr : Pub key,
r m sk : Shared keys-set,
Agent-set) |

send message(
sd m n : Nonce-set,
am : Agent,
ks : Pub key,
sd m sk : Shared keys-set,
Agent-set) |

select message(
s m n : Nonce-set,
ac : Agent,
kc : Pub key,
s m sk : Shared keys-set,
Agent-set) |

broadcast message(
b m n : Nonce-set,
ab : Agent c,
kb : Pub key,
b m sk : Shared keys-set,
ac : Agent-set,
b m sgkk : Group key),

FORMAL MODEL OF A GROUP KEY AGREEMENT PROTOCOL 33

8.4. The group controller

As illustrated in Fig. 3 below the controller has five possible states of type Controller state
specified below.

type
Controller state ==

Controller 0 |
Controller 1 |
Controller 2 |
Controller OK |
Controller error,

The operations of the group controller resulting to the generation of the group controller’s
view of the group key are specified in the CONTROLLER NEW module below. The controller
uses the change state c predicate to change from one state to another.

receive_sent_message()

can_add_message = true

can_add_message = false can_add_message = false

Controller_0 Controller_1

Controller_OKController_error

broadcast_update_message(i)

(1 =< i <= n-1)

where n = number of agents in the DPG
i = index of agents

controller_group_key()Controller_2

can_add_message = true

is_ok_match_key = true

(1 =< i <= n-1)

where n = number of agents in the DPG
i = index of agents

is_ok_match_key = false

Fig. 3. State transition diagram for the controller in the DPG.

34 E. E. Enaw

context: BUFFER, STATION NEW, S, T, E, B

scheme CONTROLLER NEW =
class
object S : STATION NEW

value
/∗state c : T.Controller state → Controller state
∗/
controller next :

T.Agent c × T.DPG → T.Agent c × T.DPG
controller next(c, d) ≡
case T.state c(c) of

T.Controller 0 → receive sent message(c, d),
T.Controller 1 → broadcast update message(c, d),
T.Controller 2 → is ok match key(c, d),
T.Controller OK → (c, d),
T.Controller error → (c, d)

end,
end

Initially the controller is in state “Controller 0”. When it receives the send message
using the function receive sent message from the last but one agent in the Dynamic Peer
Group (DPG) (agent with index (max index - 1)), it changes to the next state “Controller 1”.
While in this state, it updates the received message and sends the updated message using the
broadcast update message function, to each and every members of the DPG encrypting
each members’ sub key with its corresponding public key, after checking to ensure that its
certificate is valid. It then changes to the next state “Controller 2”. In this state, it computes
the group key using the controller group key function. It then uses thematch key function
to compare the generated group key to that generated by each and every member of the DPG.
If both keys are the same, in all the cases (as indicated by the is ok match key function) it
then changes to the final state Controller OK. If however both keys are not the same in one
or more cases, it changes state to the Controller error state, from which the key generation
process is repeated. The controller uses an if loop with the index of the agents in the DPG as
the control parameter, to loop through all agents in the DPG each time comparing its group
key with that generated by the agent that posseses the current index of the loop. The loop
starts with index (max index -1) and ends with min index (index of the first agent)

In RAISE in other to do justification, the specification should be minimal and functions like
broadcast and loops should be avoided. Since we have specified our system so as to eventually
do theorem proving (justification), we decided to model this last round of the protocol by
getting the group controller to send serial unicast messages to the rest of the DPG, instead of
a true broadcast. We however use the word broadcast in the name of the function that sends
this serial unicast messages to illustrate the point.

The function is controller specifies the requirement that the highest indexed agent is the
group controller.

is controller : Agent → Bool
is controller(c) ≡ indx(c) = max index,

Another role of the Group controller is to add members to the DPG and removemember from

FORMAL MODEL OF A GROUP KEY AGREEMENT PROTOCOL 35

the DPG. This requirement is specified in the can add member and can remove member
functions defined below.

Agent kind == agent | controller
kind : Agent → Agent kind

controller : Agent s → Agent c
can add member : Agent → Bool
can add member(a) ≡

kind(a) = controller ∧ indx(a) = max index,

can remove member : Agent → Bool
can remove member(a) ≡

kind(a) = controller ∧ indx(a) = max index,

An additional requirement is that the index of the controller increases by one when it adds a
new member into the DPG and the just added member is in the set of agents which constitutes
the DPG. The is add member function below specifies this requirement

is add member : Agent x Agent-set
∼→ Bool

is add member(a, ac) ≡
(∀ c : Agent, ac1 : Agent-set, d : DPG •

is controller(c) ∧ ac1 = add agent set(a, ac) ⇒
indx(c) = (max index + 1) ∧

indx(a) = (indx(c) - 1) ∧ a ∈ ac1 ∧
is agent set(d))

pre a /∈ ac,

This function is defined as a partial function because there are situations where it can not
be sensibly applied. This situation is specified as a precondition that follows the keyword pre.
ie to add a new member to a DPG, the member to be added should not already be in the DPG.

Yet another requirement is that the index of the controller decreases by one when it removes
an existing member from the DPG and the member to be removed should be in the DPG prior
to being removed. The is remove member function below specifies this requirement

is remove member : Agent x Agent-set
∼→ Bool

is remove member(a, ac) ≡
(∀ c : Agent, ac1 : Agent-set, d : DPG •

is controller(c) ∧ ac1 = remove agent set(a, ac) ⇒
indx(c) = (max index - 1) ∧ a /∈ ac1 ∧

is agent set(d))
pre a ∈ ac,

8.5. Imperative specification of the broadcast process of the Group
Controller

Scheme parameters could be object arrays, this typically occurs in the specification of concurrent
systems such as the Authenticated group Diffie—Hellman protocol.

A broadcasting process could be considered as one that inputs values from a single input
channel, and then outputs the values to several output channels each ending in some user
process. In our system the Group Controller has as input the last upflow message from the

36 E. E. Enaw

n − 1 agent. It updates this message using the broadcast update message function. The
updated message now serves as input to the broadcast process which outputs n−1 simultaneous
messages destined to the remaining n−1 agents in the Dynamic Peer Group, where n = number
of agents in the Dynamic Peer Group DPG.

The broadcast process or rather the scheme defining it is chosen to be parameterized with
the kind of data transmitted on the channels.

We therefore need a parameter requirement of the following form,

scheme DATA = class type Data end.

In addition, the broadcast process is chosen to be parameterized with the channel it inputs
from and the channels it outputs to. We therefore need a parameter requirement of the following
form,

scheme CHANNEL (D: Data) = class channel c : D.Data end.

This requirement is parameterized with respect to the type of the channel. A specific
requirement is obtained by instantiating the parameterized one with an actual channel type as
shown below.

The number of output channels associated with the broadcast process is also made a pa-
rameter. This is achieved by parameterizing with an array of output channels, where the array
index is an additional parameter satisfying the following requirements.

scheme INDEX =class type Index end

We now specify the broadcast process as follows:

context: T, D, I, INDEX, CHANNEL, ACTUAL INDEX, ACTUAL OUT, ACTUAL DATA,
ACTUAL IN, CONTROLLER

scheme BROADCAST(
I : INDEX, D : DATA, IN : CHANNEL(D),
OUT[i : I.Index] : CHANNEL(D)) =

class
value
broadcast :
Unit → in IN.c out {OUT[i].c | i : I.Index} Unit

axiom
broadcast() ≡
while true do
let data = IN.c? in

‖{ OUT[i].c!data | i : I.Index }
end

end
end

Here is a description of the parameters of the BROADCAST scheme. The type I.Index
contains all the indices of the output-channel array OUT, which corresponds to the indices of
the agents in the DPG.

The type D.Data is the type of the data transmitted on all channels. The channel IN.c is
the channel that the broadcast process inputs from. Each of the channels OUT[i].c, where i:
I.Index is an output channel of the broadcast process.

It is important to note the dependence between the parameters: I and D as referred to in

FORMAL MODEL OF A GROUP KEY AGREEMENT PROTOCOL 37

the definition of IN and OUT. This dependence expresses a requirement sharing between the
parameters: The I referred to in the definition of OUT is exactly the same I given as the first
parameter of the BROADCAST scheme. The same situation is true for D. This dependence
ensures the types of input and output data are the same, as there is only one object D and
hence only one type D.Data

The definition of the broadcast process can now be described as follows. The process inputs
from the IN.c channel and outputs to any of the OUT[i].c channels where i: I.Index. The out
access is described by the access description: out {OUT[i].c |i: I.Index}.

The axiom means that the process repeatedly input a value from the IN.c channel and then
output the value on each of the OUT[i].c channels where i: I.Index.

The output is expressed by the comprehended expression

‖ {OUT[i].c!data | i: I.Index}
which represents the parallel composition of all the processes. The outputs are put in parallel
and will be carried out at some point in time, leading to broadcasting.

In a DPG comprising four agents including the group controller which is considered here as
the broadcast process, the index type are the numbers from 1 to 4.

object ACTUAL INDEX : class type Index = {|i : Nat • 1 ≤ i ∧ i ≤ 4 |} end
The data transmitted on the channel are of type T.Message

context: T
object ACTUAL DATA : class type Data = T.Message end

The input channel to the broadcast process is defined as follows:

context: CHANNEL, ACTUAL DATA
object ACTUAL IN : CHANNEL(ACTUAL DATA)

Each user process (agent process) inputs from a channel and outputs to another. The data
at the input channel of the user proccess is of type T.Message i. e. the output from the broadcast
process and the data at the output channel is also of type T.Message. It is important to note
that the operations described so far are those originating from the broadcast process.

context: CHANNEL, DATA
scheme AGENT(D : DATA, IN : CHANNEL(D), OUT: CHANNEL(D))=

class value agent : Unit → in IN.c out OUT.c Unit end

The collection of channels output to by the agent process is represented as an array of
channels

context: CHANNEL, ACTUAL DATA, I
object ACTUAL OUT[i : I.Index] : CHANNEL(ACTUAL DATA)

9. Model of the system-group key agreement protocol

After providing formal descriptions of the various components of the system, in this section we
attempt to compose our system from the (developed) components. We start off by defining the
DPG as a set of agents (all group members)with the minimum indexed agent being the first
agent of the DPG while the maximum indexed agent is the group controller. This requirement is

38 E. E. Enaw

defined in the predicate is agent set specified below. We use a DPG comprising four members
to illustrate this requirement.

Short record definition is used to specify the type DPG’, having as destructors state dpg,
stat buffs, serv buffs with corresponding reconstructors change state dpg, change stat buff,
change serv buff.

type
DPG’ ::
state dpg : Dpg state ↔ change state dpg
stat buffs : Station buffs ↔ change stat buff
serv buffs : Server buffs ↔ change serv buff
agents set : Agent-set ↔ change agent set,

Here the type DPG is defined to have properties defined as part of the type via the subtype
predicate is agent set. The predicate is agent set specified below defines a DPG as a set of
agents comprising four members (agents).

type
DPG = { | d : DPG’ • is agent set(d) | },

value
is agent set : DPG → Bool
is agent set(d) ≡

(∀ a1, a2, a3, a4 : Agent, ac : Agent-set •
indx(a1) = min index ∧

indx(a2) = (indx(a1) + 1) ∧
indx(a3) = (indx(a2) + 1) ∧

indx(a4) = (indx(a3) + 1) ∧ indx(a4) = max index ⇒
first station(a1) ∧ is controller(a4) ∧
agent set(a4, d) =

add agent set(
a4,

add agent set(
a3,

add agent set(
a2,

add agent set(a1, empty agent set))))
),

The agent set function below defines the set of agents that constitute a DPG in terms of
the buffer that the controller uses to communicate with other members of the DPG. It states
that all agents that are in the domain of the function serv buffs that maps the function type
Agent c x Agent s to the type Buffers and thus represents the buffer between the controller
and an agent, make up the current set of agents that constitute the DPG.

agent set : Agent c x DPG → Agent-set
agent set(c, d) ≡

{a | a : Agent s • (c, a) ∈ dom serv buffs(d)},
The following functions indx, next and previous specified below, are used to determine the

order of the agents in the DPG.

FORMAL MODEL OF A GROUP KEY AGREEMENT PROTOCOL 39

indx: Agent → Index
Defines the next agent in the DPG
next : Agent → Agent
axiom
[next inj]

(∀ a1, a2 : Agent •
indx(a2) = (indx(a1) + 1) ⇒ a2 = next(a1)),

Defines the previous agent in the DPG
previous : Agent → Agent
axiom
[previous inj]

(∀ a1, a2 : Agent •
indx(a2) = (indx(a1) + 1) ⇒ a1 = previous(a2)),

We use a finite state machine approach to specify our system. The DPG system module
has three states. The execute s function is used to execute the operations in the first state,
while the execute c function is used to execute the operations in the third state. In the first
state, starting with the first agent of the DPG (agent with index min index) and proceeding
in order of occurence as determined by their indexes, all agents of the DPG (except the last but
one (agent with index (max index − 1)) and the controller) make their contributions towards
the generation of the group key following the procedure elaborated in the section 8.1 above.
In the second state the last but one agent of the DPG makes its contribution, while in the
third state, the group controller updates the contribution received from the previous agent of
the DPG. The updated contribution is used to generate the controller’s view of the group key
as well as generate sub keys sent to all agents of the DPG, which are subsequently used by
the corresponding agents to generate the group key. The DPG NEW module below specifies
the operation of the system. This module makes use of (the other modules that describe
components of the system), to generate the Group key. Each and every agent of the DPG ends
up generating the same group key.

context: BUFFER, STATION NEW, CONTROLLER NEW, TYPES NEW, E
scheme DPG NEW =
class
object S : STATION NEW, C : CONTROLLER NEW
value

dpg next :
T.Agent s × T.Agent s × T.Agent c × T.DPG →

T.Agent s × T.Agent s × T.Agent c × T.DPG
dpg next(a1, a2, c, d) ≡
case T.state dpg(d) of

T.Dpg 0 → execute s(a1, a2, c, d),
T.Dpg 1 →
let

(a2’, d′) = S.s next(a2, d),
(c′, d′′) = C.controller next(c, d′),
d′′ = T.change state dpg(T.Dpg 2, d′)

in
(a1, a2′, c′, d′′)

end,
T.Dpg 2 → execute c(a1, a2, c, d)

end,
end

The DPG system module uses the execute c and execute s functions to perform a run
operation on all agents of the DPG. It uses the index of the agents to control the loop to ensure
that all agents in the DPG participate in the key generation process. The specification of the
execute s function is given below.

40 E. E. Enaw

context: execute s :
T.Agent s × T.Agent s × T.Agent c × T.DPG →

T.Agent s × T.Agent s × T.Agent c × T.DPG
execute s(a1, a2, c, d) ≡

execute1(a1, a2, c, (T.min index − 1), d),
execute1 :

T.Agent s × T.Agent s × T.Agent c × T.Index ×
T.DPG →

T.Agent s × T.Agent s × T.Agent c × T.DPG
execute1(a1, a2, c, i, d) ≡
if i ≤ (T.max index − 1)
then
let

i = i + 1,
a1 = T.owner i(i),
a2 = T.next(a1),
(a1′, d′) = S.s next(a1, d),
(a2′, d′′) = S.s next(a2, d′)

in
if i = (T.max index − 1)
then

(a1′, a2′, c, T.change state dpg(T.Dpg 1, d′))
else execute1(a1′, a2′, c, i, d′′)
end

end
else error message(a1, a2, c, d)
end,

10. System OK theory

We can show that the specified protocol works properly by justifying that: If the agents and
controller settle in the ok or error states in the last round of the protocol, then they should
both be in a stable state. The SYSTEM OK T theory expresses this property.

context: T, C, S, DPG NEW
theory SYSTEM OK T :
axiom

[SYSTEM OK T]
in DPG NEW |−

∀ a1, a2 : T.Agent s, ns : T.Nonce-set •
∃ c : T.Agent c, d : T.DPG •

T.state c(c) = T.Controller 0 ∧
T.state(a1) = T.Agent0 ∧ T.state(a2) = T.Agent 0 ⇒
let (a1′, a2′, c′, d′) = run(a1, a2, c, d) in

T.state(a1′) = T.Agent OK ∧
T.state(a2′) = T.Agent OK ∧
T.state c(c′) = T.Controller OK

end
end

FORMAL MODEL OF A GROUP KEY AGREEMENT PROTOCOL 41

Verification (Informal)

The run function and associated functions completed ss, completed sc, completed s
and completed c specified and used in the DPG NEW module justify this property.

context: run :
T.Agent s × T.Agent s × T.Agent c × T.DPG →

T.Agent s × T.Agent s × T.Agent c × T.DPG
run(a1, a2, c, d) ≡
let (a1′, a2′, c′, d′) = dpg next(a1, a2, c, d) in
if

completed ss(a1′, a2′, d′) ∧
completed sc(a2′, c′, d′)

then (a1′, a2′, c′, d′)
else run(a1′, a2′, c′, d′)
end

end,

context: completed ss : T.Agent s × T.Agent s × T.DPG → Bool
completed ss(a1, a2, d) ≡

completed s(a1) ∧ completed s(a2),

completed sc : T.Agent s × T.Agent c × T.DPG → Bool
completed sc(a, c, d) ≡

completed s(a) ∧ completed c(c),

completed s : T.Agent s → Bool
completed s(a1) ≡

T.state(a1) = T.Agent OK ∨
T.state(a1) = T.Agent error,

completed c : T.Agent c → Bool
completed c(c) ≡

T.state c(c) = T.Controller OK ∨
T.state c(c) = T.Controller error,

The run function has four arguments: agent, agent, controller and DPG. The first two
arguments represent two agents with index (i and i+1) currently involved in message transmis-
sion for (i ≥ min index ∧ i ≤ max index) where i is the index of the agents, with min index
being the index of the first station and max index the index of the group controller. The run
function calls the execute c and execute s functions through the dpg next function. These
functions together execute all the operations in the other modules of the system, using the
index of the agents to cover all the current agents of the DPG, dealing with two neigbouring
agents (having index i and i + 1) in each loop.

The execute c function for example, starting with the index of the group controller
(max index), uses the outer “if” loop to execute all the functions in the STATION module
(which models all the agents of the DPG except the group controller) and CONTROLLER
module (which models the group controller). Each loop deals with two neigbouring agents
(having index i and i + 1), representing the first two arguments of the run, execute s and
execute c functions. After every loop the index of the agent is decremented by one and the
operation repeated for the next agent pair. The inner “if” loop is used to check if the index
of the first agent of the DPG has been attained. if this condition is true the DPG changes

42 E. E. Enaw

to the DPG OK state, if not the outer “if” loop carries on executing each time decrementing
the index by one and dealing with two neigbouring agents at a time, until the condition of the
inner “if” loop is true.

The run function then uses complete ss and complete sc functions on the results of the
execute c function to test if all the Agents of the DPG settled in either an Agent OK or
Agent error states. If this condition is not true, the run operation executes for all the states
of the DPG using the dpg next function each time to change to the next DPG state, until the
condition is satisfied.

The complete c function states that the operations of the CONTROLLER module are
completed if the controller is either in the Controller OK or Controller error states.

The complete s function states that the operations of the STATION module are completed
if all the agents settle in either the Agent OK or Agent error states.

The rigorous arguments presented above justify the SYSTEM OK theory.

11. Conclusion and future work

In this paper, we have presented a formal model of a Generic Group Key Agreement protocol.
We justified the safety of the protocol and showed that the protocol works properly by informally
verifying the SYSTEM OK theory.

The specification of the model of the system got srutinized through the generation and
verification of confidence conditions evolved from all the modules used in the specification of
the system. It should be noted that confidence conditions are generated by RSL automaticaly
on the specified modules. This confidence conditions give confidence to our specification by
showing that our specification is correct.

RSL allows algebraic, applicative or, imperative styles for specifying systems. In this paper
we provided an abstract applicative specification of the Authenticated Group Diffie—Hellman
protocol. This applicative style makes it easier to prove properties of the protocol using the
RAISE Tools.

Future work will involve coming up with an imperative specifications of the abstract model
specified here, and using the RAISE Justification editor to prove the properties informally
analysed in this paper. We shall also introduce concurrency in the last round of the protocol
where the group controller broadcast corresponding sub keys (subsequently used to generate the
group key) to each and every member of the DPG. In this paper we got the group controller
to send serial sub keys in the last protocol round, though we provide a separate imperative
specification of the broadcast process.

Our long-term goal is to come up with a fully specified and verified generic Authenticated
Group Key Agreement protocol for Dynamic Peer Groups (DPG).

Such a fully specified and verified system could find application in a wide variety of fields
where information security is a critical issue; examples include electronic commerce, electronic
bank transfers, video conferencing etc.

Our model shall be extended to include issues like periodic re-keying after using the key for
a given duration, or to encrypt or sign a given volume of data, which ever is more frequent.

References

[1] Amir Y., Ateniese G., Hasse D. et al. Secure group communication in asynchronous
networks with failures // Intergration and Experimentation. 1999. Aug. 22.

FORMAL MODEL OF A GROUP KEY AGREEMENT PROTOCOL 43

[2] Ateniese G., Steiner M., Tsudik G. Authenticated group key agreement and
friends // Proc. 5th ACM Conf. on Computer and Communication Security, Nov. 2–5,
1998, San Francisco, CA.

[3] Ateniese G., Chevassut O., Hassee D. et al. The design of a group key agreement
API. 1999. Aug. 25.

[4] Becker C., Willie U. Communication complexity of group key distribution // Proc.
ACM Conf. on Computer and Communication Security, Nov. 1998.

[5] Boneh D. The Decision Diffie—Hellman problem //Proc. Third Algorithmic Number
Theory Symp., Lecture Notes in Comp. Sci. Vol. 1423. B.: Springer-Verlag, 1998. P. 48–
63.

[6] Diffie W., Hellman M. New direction in cryptography // IEEE Trans. on Information
Theory. IT-22(6): 644–6. Nov. 1979.

[7] George C. Proving Safety of Authentication Protocols: a Minimal Approach. UNU/IIST
Report No. 154 Feb., 1999.

[8] The RAISE Language Group. The RAISE Specification Language. BCS Practitioner Ser.
Prentice Hall, 1992.

[9] The RAISE Method Group. The RAISE Development Method. BCS Practitioner Ser.
Prentice Hall, 1995.

[10] Harney H., Muckenhim C., Rivers T. Group Key Management Protocol (gkmp)
Architecture. INTERNET DRAFT, Sept. 1994.

[11] Ingemarsson I., Tang D., Wong C. A conference key distribution system // IEEE
Transactions on Information Theory. 1982. Vol. 28, No. 5. P. 714–720.

[12] Lim C. H. Authenticated Key Distribution for Security Services in Open Networks. Infor-
mation and Communications Research Center, Future Systems, Inc. May 19, 1997.

[13] Mauw S., Veltink G. J. Algebraic Specification of Communication protocols. Cam-
bridge Tracks in Theoretical Computer Science 1993. No. 36.

[14] Menezes A., Oorschot P. Van, Vanstone S. Handbook of Applied Cryptography.
CRC Press Series on Discrete Mathematics and its Application. CRC Press, 1996.

[15] Mohanty H., George C. Specifying a Communication Protocol And Composing Trans-
action Schedules For a Mobile Environment. UNU/IIST Report No. 142, Aug. 3, 1998.

[16] Steiner M., Tsudik G., Waider M. Diffie—Hellman key distribution extended to
groups // ACM Conf. on Computer and Communication Security, pages 31–37, March
1996.

[17] Steiner M., Tsudik G., Waider M. CLIQUES. A new approach to group key agree-
ment // IEEE Intern. Conf. on Distributed Computing System, May 1998.

[18] Tanaka T., George C. Proving Properties of a Security Protocol Specified in RSL.
UNU/IIST Report No. 143, July, 1998.

Received for publication January 14, 2002

