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В работе предложен численный подход к одновременному определению двух ко-
эффициентов в обратной задаче для уравнений диффузного типа. Исследуемая мо-
дель была предложена в работе [1] для описания процессов долговременной эволюции
берегового профиля. Итерационная процедура восстановления двух коэффициентов
основана на минимизации функционалов невязки. Численные эксперименты с реаль-
ными данными показали эффективность работы предложенных алгоритмов.

Introduction

In the paper [1], a model of diffusion type was proposed to describe the evolution of the
coastal profile. The diffusion coefficient in the governing equation (its physical dimension is
length squared divided by time) corresponds to the time scale of shoreline change following a
disturbance (wave action).

The aforementioned diffusion model can be described by the following basic equation:

∂(δX)

∂t
= D2(z)

∂2(δX)

∂z2
+ g

(

t, z, δX,
∂(δX)

∂z

)

. (1)

Here δX(z, t) represents the change of the cross-shore position (i.e., change in the depth at the
distance z from the shore line) of the coastal profile and D(z) is the diffusion coefficient.

Following [1], we give some explanations for special cases of the term g(t, z, δX, ∂(δX)/∂z).
If g = S(z, t) (an external source function), it is possible to introduce the effects of random
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forcing, along-shore transport gradients, and human interference such as nourishment and sand
mining [1].

The linear choice g = B(z) ∂(δX)/∂z or g = B(z)δX is also interesting in view of applications.
In these models, the coefficient B(z) represents the speed of along-shore sand wave movement.
We assume that g = B(z)δX in (1). So, we shall consider the following.

Inverse Problem. Given the function δX0(t) (the change of the cross-shore position at
the point z = 0), find the coefficients D(z) and B(z) such that the solution δX(z, t) to the
problem

∂(δX)

∂t
= D2(z)

∂2(δX)

∂z2
+ B(z) δX, (2)

δX|t=0 = 0, (3)

∂(δX)

∂z

∣

∣

∣

∣

z=0

= ϕ0(t), δX|z=H = 0 (4)

satisfies the equation (surface measurements)

δX|
z=0 = δX0(t). (5)

Note that the parameter H can be thought of as an estimate of the depth of closure, i.e.,
the location where the diffusive and transport phenomena virtually end.

1. Numerical reconstruction of two coefficients of the

equation

1.1. Description of the algorithm

As the first step to solve the aforementioned Inverse Problem numerically, we apply the Fourier
transform. Thus, the original dynamic problem is replaced by a Helmholtz equation with a
complex-valued coefficient. The point is that recovering the space-dependent coefficients D(z)
and B(z) in the frequency domain, we do not need to go back to the time domain. Here we
have used the term frequency domain for retaining a formal analogy with inverse problems for
the wave equation, in which case the frequency domain concerning Fourier images of solutions
has a clear physical meaning (see, e.g., [2, 3]).

For numerical processing we apply to the problem (2)–(4) the formal Fourier transform
under assumption that the coefficients are smooth: D(z), B(z) ∈ C2(0, H), and ω ∈ [ω1, ω2].

So, we consider the problem

d2V

dz2
+

B(z) − iω

D2(z)
V = 0, (6)

dV

dz

∣

∣

∣

∣

z=0

= F (ω), V |z=H = 0, (7)

where V (z, ω) =
∫

∞

0
e−iωtδX dt and F (ω) =

∫

∞

0
e−iωtϕ0(t) dt.

The inverse problem we are interested in consists in reconstructing both functions D(z) and
B(z) from the additional information

V0(ω) = V (0, ω), ω1 ≤ ω ≤ ω2, (8)



THE DIFFUSION MODEL FOR LONG-TERM COASTAL PROFILE EVOLUTION ... 5

where [ω1, ω2] is the interval of available frequencies.
We solve the inverse problem (6)–(8) by minimizing the cost functional

Φ[D,B] =

∫

ω2

ω1

∣

∣V0(ω) − K[D,B](ω)
∣

∣

2
dω + β sup

z

|D − Dest| + γ sup
z

|B − Best|, (9)

where the operator K[D,B](ω) maps the current “test” values of D(z) and B(z) into the trace
of the solution of the boundary value problem (6), (7) at z = 0. Here β and γ are some weighted
regularization parameters, 0 ≤ β ≤ 1, 0 ≤ γ ≤ 1, and Dest and Best are the estimated values
of D and B, respectively, that can be obtained from physical measurements.

In the modification of the numerical algorithm which is used here, we operate with the
gradient of the “uniform” cost functional (9), i.e., the functional with β = 0 and γ = 0. In
this case, after rather technical calculations (omitted here since, e.g., a similar approach can
be found in [6]), we obtain the following formulas for the gradients of the cost functional with
respect to D and B:

(∇DΦ[D,B])(z) = −4Re

∫

ω2

ω1

B(z) − iω

D3(z)
F̄ (ω)

[

V0(ω) − F (ω) G(z, 0; ω)
]

×

× Ḡ(z, z; ω) Ḡ(z, 0; ω) dω, (10)

(∇BΦ[D,B])(z) = 2Re

∫

ω2

ω1

D−2(z)F̄ (ω)
[

V0(ω) − F (ω) G(z, 0; ω)
]

×

× Ḡ(z, z; ω) Ḡ(z, 0; ω) dω. (11)

Here G(z, ζ; ω) is the Green function of the problem (6), (7) and the bar denotes the complex
conjugation.

Here we do not consider a rather nontrivial theoretical question of uniqueness as well as
existence of the global minimum point of the cost functional (9). Instead, we refer the reader
to the paper [4] in which similar questions are discussed for a more simple statement of the
inverse problem.

To minimize the cost functional (9), the conjugate direction method was used (see [5]).

1.2. Numerical experiments for synthetic data

Computer codes were prepared in C++; and we used Mathematica 3.0 for verification and
visualization. Only resources of a personal computer are needed. On each iteration, the function
V (z, ω) was computed by the so-called semi-analytical method described in [4].

We approximated the coefficients D(z) and B(z) by piecewise constant functions, i.e.,
6 layers with equal width 200 meters. According to the results of auxiliary numerical tests,
the regularization parameters β and γ were chosen equal to 0.3 and 0.2, respectively. The
results of reconstruction (obtained after 98 iterations) are shown in Fig. 1.

In order to test the robustness of the algorithm, the inversion data were artificially corrupted
by adding a randomly distributed white noise. A normally distributed random noise with
average fluctuations equal to 5% of the data amplitudes was added to the inversion data.
The result of simultaneous identification of two coefficients is shown in Fig. 2. The initial
approximations for D(z) and B(z) were the same as in the previous test, see Fig. 1.

To conclude this section we would like to stress that the proposed version of the numerical
inversion algorithm has demonstrated quite reasonable performance and accuracy. Thus, a basis
for real data processing has been established.
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Fig. 1. Simultaneous reconstruction of both coefficients D(z) and B(z). True functions are shown by
solid lines, the initial guess by dotted lines, and the result of reconstruction by dashed lines.
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Fig. 2. Results of simultaneous reconstruction of two coefficients D(z) and B(z) from corrupted data.

2. Validating the diffusion model: numerical experiments

for real data

Real data representing the long-term evolution of the cross-shore position of coastal profiles
were collected over a period of 10 years from 1981 to 1991 at Duck, North Carolina, and are
presented in Fig. 3. Real data δXr(z, t) (the subscript “r” stands for “real”) for the cross-shore
position consist of a 100×250 array. This means 100 observation points in the spatial variable z,
each being an average over 80 meters, and 250 observation times, each being an average over
15 days. In addition, the source function f(t) was measured at the same observation times.
This function represents the average height of waves over the observation periods and is also
shown in Fig. 3.

It was supposed that the coastal profile evolution is described by the model equations (2)–
(5), where, in equation (2), the function f(t) is added to the right-hand side.

First, the data were numerically recalculated in terms of the Fourier transform F in order
to obtain the data Vr(z, ω) = F [δXr(z, t)] and ψ(ω) = F [f(t)]. More precisely, to solve the
problem we use the Fourier-type representation

V (z, ω) =

∫

T

0

δX(z, t) e−iωt dt, (12)

where T is the whole period of observation; with the inverse transform given by the formula

δX(z, t) =
1

T

∑

n

V (z, ωn) eiωnt, (13)

where ωn = nπ/T , n = 1, 2, . . . , N .
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Fig. 3. Real data for the cross-shore position and the source term.

Then the cost functional was computed by the formula

Φ =

∫

ωN

ω1

∫

H

0

|Vr − Vsynth|
2 dz dω, (14)

where the data Vsynth (“synthetic”) were obtained as the solution to the direct problem

d2V

dz2
= −

iω − B

D2
V +

ψ(ω)

D2
, (15)

dV

dz

∣

∣

∣

∣

z=0

= F (ω), V |z=H = h(ω). (16)

The boundary data were obtained as follows:

F (ω) =
Vr(∆z, ω) − Vr(0, ω)

∆z
, h(ω) = Vr(H,ω) (∆z = 80 m).
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First, the cost functional was studied in the case where both coefficients of the equation
are constants : D(z) ≡ const and B(z) ≡ const. Then a contour plot of the cost functional
on the plane (B,D) was calculated (Fig. 4). Each point in Fig. 4 corresponds to the value
of the functional (14) for a pair of constants (B,D). The following step-sizes for numerical
computations were chosen: ∆B = 10, ∆D = 0.02. The intervals for B and D were taken
(0, 800) and (0, 0.5), respectively.
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Fig. 4. Contour plot and 3D visualization of the cost functional. The point shows the position of the
global minimum.
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We can see that the cost functional has a rather complicated structure even in the simplified
case of the governing equation (2) with constant coefficients D and B.

Usual gradient methods provide very poor convergence in such cases and it is practically
impossible to find the global minimum.

Therefore the global minimum of the functional (14) was found numerically by exhaustive
search over a rough mesh. We denote the corresponding values of the parameters of the problem
by Bmin and Dmin; Bmin = 400 and Dmin = 0.25. Next, the solution Vmin(z, ω) to the direct
problem (15), (16) (with constants Bmin and Dmin substituted for D and B, respectively) was
computed.

Finally, the time-dependent profile, δXmin1(z, t) was determined after inverse Fourier transformation,
see (13).

A 3D plot of the profile δXmin1(z, t) is shown in Fig. 5. For comparison with the measured
data, we calculated the time integral of the relative error:

δ(z) =

∫

T

0

∣

∣

∣

∣

δXr − δXmin1

δXr

∣

∣

∣

∣

dt. (17)

The average relative error is 15.8%. We can see that the rough assumption that the parameters
of the problem are just constants, B = Bmin and D = Dmin, turns out to be in a rather good
qualitative agreement with the measured data, see Fig. 3. It is important that in our case the
relative error δ(z, t) = |(δXr − δXmin1)/δXr| does not increase with the growth of time.

Then, using the procedure of minimization of the cost functional by the conjugate direction
method we reconstructed the coefficients B(z) and D(z) under the assumption that they are
piecewise constant functions (see Fig. 6). The range of the spatial variable was divided into
9 layers of equal width. The values D = Dmin and B = Bmin, which were obtained in the
previous numerical test, are shown by dashed line.

The corresponding 3D plot of the profile δXmin2(z, t) is shown in Fig. 7. Comparison with
the measured data was made as above, see (17). The average relative error is 5.4%. We can
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Fig. 5. Results of numerical reconstruction of the cross-shore position for constant values of D and B.
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Fig. 6. Results of reconstruction of D(z) and B(z) for 9 layers of equal width.
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Fig. 7. Results of numerical reconstruction of the cross-shore position for piecewise constant D(z) and
B(z) (Fig. 6).

see that piecewise constant coefficients provide a better agreement with the measured data, see
Figs. 3, 5, and 7.

So, the results obtained can validate the diffusion model which was proposed by de Vriend
and Capobianco in [1] for description of the long-term coastal profile evolution.
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