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Paccmotrpeno npeobpasosanue @ypobe siiapa Ko g+, e a, 3,7,V — KOMILICKCHBIE Ta-
pamerpol. Mccienosano npeobpasosanue Dypbe ceeprku Ko gy, * Ko gy, TOE
a, B3,v,v,a, 3,7,V — KOMILIEKCHbIE TapaMeTphI.

1. Introduction

The operator @* can be factorized into the form

P 2 pt+q 2 F p pt+q k P pt+q k
o2 o2 52 5? o2 o2
(Y5 ) - 7 DY VAN 11
@ <T_18x$> ( aﬁ) [T_18x$+z ale Llaxg ! ale (1)

j=p+1 j=p+1 - J j=pt1 -/

where p + ¢ = n is the dimension of the space C", i = v/—1 and k is a nonnegative integer.

P92 \? pte 92
The operator (Z > —| >, == | isfirst introduced by A. Kananthai [1] and named

=1 0z} j=p+1 al’?
the Dimond operator denoted by

2 2
P o2 p+q o2
@:( _>< LAY (12)
r=1 al‘% Jj=p+1 E)x?

Let us denote the operators L, and L, by

p 82 p+q 82
r=1 T j=p+1 J
P p+q
0* 0?
L2 = ax2 —1 Z W (14)
r=1 T j=p+1 J
Thus (1.1) can be written by
oF = OFLFLE. (1.5)
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Now consider the convolutions R (u) * R(v) * S, (w) * T, (z) where R, R}, S, and T, are
defined by (2.2), (2.4), (2.6) and (2.7) respectively.
We defined the distributional kernel K, g, by

Kopnw =RI« Ry xS, xT,. (1.6)

Since the function R (u), R§(v), S, (w) and T),(z) are all tempered distribution see [1, p. 30,
31] and [6, p. 154, 155], then the convolutions on the right hand side of (1.6) exists and is a
tempered distribution. Thus K, s, is well defined and also a tempered distribution.

In this paper, at first we study the Fourier transform 3K, 5., or [gﬁ\»}, » where K, g, is
defined by (1.6).

After that we put @« = § = v = v = 2k, then we obtain ng/gkzﬁgk related to the elementary
solution of the operator ®F.

We also study the Fourier transform of the convolution K g, * Ko g4/ 0

2. Preliminaries

Definition 2.1. Let x = (21, 23, ..., x,) be a point in the space C" of the n-dimensional complex
space and write

22 2 2 2
W=7+ Ty T, T — = T, (2.1)

where p+ q = n s the dimension of C".
__Denote by I'y. = {z € R": zy > 0 and u > 0} the set of an interior of the forward cone and
['y denotes it closure and R™ is the n-dimensional Euclidean space.
For any complex number «, define
uT
Rl (u) = ¢ Ku(a)
0 for x&T,

for xely, (2.2)

where the constant K,(«) is given by the formula

n— 2 - 1 -
mlr( ra ")F( O‘) T'(a)
2 2
K,(a) = 5T :
a — —
r P (=2
2 2
The function R¥ is called the ultra-hyperbolic Kernel of Marcel Riesz and was introduced
by Y. Nozaki [5, p. 72].
It is well known that RY is an ordinary function if Re(a) > n and is a distribution of o if
Re(a) < n. Let supp R (u) denote the support of R¥ (u) and suppose supp R¥(u) C T',, that

is supp R (u) is compact.
Definition 2.2. Let © = (x1, 2o, ..., x,) € R" and write

v=a]+a5+ ... +a2. (2.3)
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For any complex number 3, define

RY(v) = 2 %n#'T (” F 5) F“<;) . (2.4)

The function Rg(v) is called the elliptic Kernel of Marcel Riesz and is ordinary function for
Re(f) > n and is a distribution of 3 for Re(f) < n.

Definition 2.3. Let © = (x1,x9,...,x,) be a point of the space C" of the n-dimensional
complex space and write

w:x%—i—xg—i—...%—xi—i(x§+1+$§+2+...+x§+q), (2.5)

where p+ q = n is the dimension of C" and i = /—1.
For any complex number v, define the function

S, (w) =27 FT <” 5 7) Fwé) . (2.6)

The function S, (w)is an ordinary function if Re(y) > n and is a distribution of y for Re(vy) < n.
Definition 2.4. For any complex number v, define the function

" n—v\ z 2
T,(z) = 2 mr( . ) S (2.7)
r(3)
2
where
z=al4 o+t ti(al o, T, (2.8)

= (11,29,....,2,) € C", p+q=n is the dimension of C" and i = /—1.
We have T, (z)is an ordinary function if Re(r) > n and is a distribution of v for Re(v) < n.
Definition 2.5. Let f(z) be continuous function on R™ where x = (x1, 23, ...,x,) € R".
The Fourier transform of f(x) denoted by Sf or f(€) and is defined by

3f(a) = fl6) = [ e f(a)da, (2.9
A
where & = (£1,&2, ..,&,) €ER™ and (§,2) = &1 + Eomg + ... + £y

Definition 2.6. Let p(z) be a tempered distribution with compact support. The Fourier
transform of u(x) is defined by

E) =< p(x), e > (2.10)

Lemma 2.1. The functions R?, RS, S, and T, defined by (2.2), (2.4), (2.6) and (2.7)
respectively, are all tempered distributions.

Proof see [1, p. 30, 31| and [6, p. 154, 155].

Lemma 2.2. The function (—1)* Ko opor.2r(2) is an elementary solution of the operator
@®F, that is ®F(—1)* Kog ap or.2x(2) = § where &F is defined by (1.1), Ko ok 2x.2x () is defined by
(1.6) with o = =~y =v = 2k and ¢ is the Dirac-delta distribution.
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Proof see [4, p. 66].
Lemma 2.3. 1. The Fourier transform of the convolution R (u) x Rg(v) is gien by the
formula

g

S (R (u)*RS(v)) = (i)Q%ﬁF(%)F(g) i JZ&? %52 5 Ji}? (2.11)
a s Kn(a)Hn(ﬂ)T<n;a)F( . ) et 25|

where R (u) and Rf(v) are defined by (2.2) and (2.4) respectively,

r (é) 2673

\2)

(5
2

In particular, if o« = 3 = 2k then (2.11) becomes

H,(B) = and i =+/—1.

(=DF

P ? Pty ?
(56) (5e)
r=1 J=p+1

where k is nonnegative integer and (—1)*RE (u) * RS, (v) is an elementary solution of the
operator $F iterated k-times defined by (1.2).

Moreover |S(RE (u)* RS, (v))| < M, where M is constant, that is S is bounded, that implies
S is continuous on the space S" of the tempered distribution.

2. The Fourier transform of the convolution S,(w) x T, (z) is given by the formula

g (1 >
(S (w) * To(2)) = Hn(V)lﬂ”(V) :(n 2 j)%)(l; <22V>> X

JZ{Z—HZ{Q JZgng? : (2.13)

Jj=p+1 Jj=p+1

S (R (u) * Ry (v)) =

- (2.12)

where S, (w) and T,(z) are defined by (2.6) and (2.7) respectively,

w\:
!
VS

| =
——

\V)

S

3
SIE]

v
H,(7) F<> and H,(v)=

()

In particular, if v = v = 2k then (2.13) becomes

1

S(Sy(w) * T,,(2)) = s ; ) . L
[(51 HE+ &)+ (G T2t T 6 }

(2.14)
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where k is a nonnegative integer and (—1)F(—i)2 Sor(w) and (—1)F(—i)2Tor(2) are elementary
solutions of the operators Ly and Ly defined by (1.3) and (1.4) respectively.
Proof: 1. To prove (2.11) and (2.12) see |2] and to show that & is bounded, now

(—1)* 1

A= s
(- (2] [Ea) (2

where p+ ¢ =n for large {, € R (r =1,2,...,n).
That implies that & is continuous on the space S’ of tempered distribution. For the case
(—=1)*RE (u) x RS, (v) is an elementary solution of the operator {*, see [1].

2. We have
. ()

where H,(y) = —2~—
gk
(=)
and w = ai + x5+ ...+ 2 —i(2 F2n,+ . T,
Now, changing the variable 1 = y1, 22 = y2, ..., Tp, = yp,

RIeAT

Yp+1 Yp+2 Yp+q

LTp+1 = \/——_i’ Tpt+2 = \/——_i’ o Tprg = \/——_z

Then we obtain w = y2 +y2 + ... + yﬁ + y§+1 + y§+2 +...+ y§+q-
Let p2:y%+y§+...+y§+q,p+q:n. Then

1 , —n 1 . 0 ey Ty
39, (w) = /e_l(g’x)w%dx = /e_’(g’x)pv_” (21,2, @ ;dyldyQ...dyn =

Hn(V) Hn(P}/) a(ylng, oy Yn
R™ R"
_ 1 ; /p’y ne—z(£1y1+§2y2+ +£pyp+ryp+1+ +ryp+q)dy:
H,(7)(=1)2
R”
! r(3)
n . -
oo - (Va+8+. +8+il@n+En+ . +8y)  (215)
" r
(=)
by [5, p. 194]
Similarly, for 7,(z) = ;I EV) we have z = af + 23 + ... + 27 +i(zp,, + 2l + ..+ 20, ,).

- _ _ _ _ Y11 _ Yptq 20,2 2
Putting 1 = y1, 22 = y2, ..., Tp = Yp, Tpt1 = W’ ey Tppqg = N Thus z = YitysttYpigs

p+q=n. Let p2:yf+y§+...+y}2,+q,p+q:n. Then

]. ; vr—m
%TV(Z) = i% (V) /el(&x)z2d1‘ =

]Rn

_ : /pu n€*1(§1y1+§2y2+ +§pyp+ \/- Lypr1te. + \/- L Yp+q) dy _
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14
2 C)

H,(v (Qi)% r <n ; v

> (JE&+8+ 48— i@+t +&)) . (216)

Since S, (w) and T, (z) are tempered distributions, then S, (w) * T, (2) exists and (S, (w) *
T(2)) = (55 (w))3(T,(2))-
Thus

by (2.15) and (2.16).
Now consider

- Nr (Y
Hj(y)Hn(u) - (nF2<’$; ; ((31)2 V) : (2.18)
Putting v = v = 2k, thus (2.18) becomes
v P(Z)0(E) et ().
H,(2k)H, (2K) (n —2 Zk:) - (n —2 2k> 24k 7rn T(k)T (k)
() (57
Thus, from (2.17)
S(Sap(w) * Top(2)) = ! . (2.19)

() (%9)]

3. Main results

Theorem 3.1. The Fourier transform of the distributional kernel K, 3., () is given by the

formula
(W)Qn(@')QZO‘*ﬁ*V*”F (%) r (g) r (%) r %) (\/é §2 — jp%il 5]2> @
K () Hn(8)Hn () Ha

%Kaﬁ’%l,(l’) = X

n(V)
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() () () ()

In particular, if « = f =~ =v = 2k then (3.1) becomes
—1)*
%Ka7g7fy7,,($) = ( ) . (32)

k
(@+8+. +8) — (G + Gt + &)

Moreover (—1) Koy, op. a1 2k() s an elementary solution of the operator &% defined by (1.1).
Proof. Now Kop,,(z) = Rl (u) * Rj(v) * S,(w) * T,(2) by (1.6). Since RY, Rj, S, (w)
and T,(z) are all tempered distributions by Lemma 2.1, thus SK, 4. (2) = S(RE(u) *
RG(v))S(S,(w) * Tp,(2)). By (2.11) and (2.17), we obtained (3.1) as required. For the case
a=0=v=v=2Fk by (2.12) and (2.19) we obtain (3.2) as required.
For (—1)¥ Koy, o1 2126 () is an elementary solution of the operator &* see [4, p. 66].
Theorem 3.2. The Fourier transform of the convolution Ko g, (x)* Ky g4 () is given
by the formula

X

P
=1
r

S (Kaﬁ,%V(x) * Kot gy (z)) = %Kaﬂmv(x)gKa’ﬂ’,v’,u’ (z), (3.3)

where K, 5..,(2) is defined by (1.6), o, B, v, v, &, B', 7 and V' are complex numbers.
Proof. Now K, .. (%) = RE (u) * Rj(v) * S, (w) * T,(2) by (1.6). Since Ko g, (2) is the
convolutions of all tempered distributions, thus K, s..(x) is also a tempered distribution and
the convolution K, g, () * Ko g . (2) exists.
Since K, 4,.(2) is a tempered distribution, then the Fourier transform

S (Kopnu(@) % Kargr oy (1)) = (SKa,p0(2) (SKar gy (2))

where (K, 54, (7)) is given by (3.1).
Corollary 3.1. (The alternative proof of Theorem 3.1). The Fourier transform

(=DF

%KQk,2k,2k,2k(x) = k>

P 4 ptq ‘
(Le) - ( 5 s;)
i=1 j=p+1

where k is a nonnegative integer and K, . (x) is defined by (1.6).

Proof. From Theorem 3.1 with the particular case « = 3 = v = v = 2k, we can find
S Kok 2k 2k 2 () directly from the elementary solution of the operator ®" defined by (1.1). Since
(—1)* Kop ok 21.21() is an elementary solution of the operator @F.

Thus @*(—1)* Kop, on 2.2k (%) = 6 or (®F(=1)%6) * Kop g or.2n(x) = 6.

By taking the Fourier transform both sides, we obtain

(@ (=1)"0) % SKop ok 2021 (7) = I6 = 1. (3.4)

Now consider (¥(—1)%4). Since ¢ is tempered distribution with compact support. Thus
J(@F(—1)k0) =< @BF(=1)F6,e 80 >= < GFLELE(—1)k5, e &7 > by (2.10) where @F =
OFLYLE by (1.5). Thus

< OFLELE(—1)%6, 67 >=< OFL16, (= 1)FLEe 160 > =
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p+q p+q
=< OF L6, (— (Zg2 ZZ§> (6m) > =< kg, (Zﬁ—ng)LeW =

p+1 =p+1

p+q pt+q
:<<>’f5,< 5—%Z£> <Z€+ZZ§) S

Jj=p+1 =p+1
k

p+q 2
o (g (£ o
Jj=p+1
P ptaq 2 ptaq g
=<6, (=1)* (Z&f) (Z? ( ) (Zf) e 6N >
r=1 Jj=p+1

J=p+1 )
p p+q g p 4 p+q
=<4, (—1)F (ng) — ) e >— ( 5) (Zf)
r=1 —p+1 r=1 =p+1

Thus S(@F(—1)%6) = (—1) (ze) . (iﬁf)

Thus by (3.4) we obtain

S K og 2k 26,2 (T) =
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