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Рассмотрено преобразование Фурье ядра Kα,β,γ,ν , где α, β, γ, ν — комплексные па-

раметры. Исследовано преобразование Фурье свертки Kα,β,γ,ν ∗ Kα′,β′,γ′,ν′ , где

α, β, γ, ν, α′, β′, γ′, ν ′ — комплексные параметры.

1. Introduction

The operator ⊕k can be factorized into the form

⊕k =





(

p
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r=1

∂2

∂x2
r

)2

−
(

p+q
∑

j=p+1

∂2

∂x2
j

)2




k
[

p
∑

r=1

∂2

∂x2
r

+ i

p+q
∑

j=p+1

∂2

∂x2
j

]k[ p
∑

r=1

∂2

∂x2
r

− i

p+q
∑

j=p+1

∂2

∂x2
j

]k

, (1.1)

where p + q = n is the dimension of the space Cn, i =
√
−1 and k is a nonnegative integer.

The operator

(

p
∑

r=1

∂2

∂x2
r

)2

−
(

p+q
∑

j=p+1

∂2

∂x2
j

)2

is first introduced by A. Kananthai [1] and named

the Dimond operator denoted by

♦ =

(

p
∑

r=1

∂2

∂x2
r

)2

−
(

p+q
∑

j=p+1

∂2

∂x2
j

)2

. (1.2)

Let us denote the operators L1 and L2 by

L1 =

p
∑

r=1

∂2

∂x2
r

+ i

p+q
∑

j=p+1

∂2

∂x2
j

, (1.3)

L2 =

p
∑

r=1

∂2

∂x2
r

− i

p+q
∑

j=p+1

∂2

∂x2
j

. (1.4)

Thus (1.1) can be written by
⊕k = ♦kLk

1L
k
2. (1.5)
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Now consider the convolutions RH
α (u) ∗ R`

β(v) ∗ Sγ(w) ∗ Tν(z) where RH
α , R`

β, Sγ and Tν are
defined by (2.2), (2.4), (2.6) and (2.7) respectively.

We defined the distributional kernel Kα,β,γ,ν by

Kα,β,γ,ν = RH
α ∗ R`

β ∗ Sγ ∗ Tν . (1.6)

Since the function RH
α (u), R`

β(v), Sγ(w) and Tν(z) are all tempered distribution see [1, p. 30,
31] and [6, p. 154, 155], then the convolutions on the right hand side of (1.6) exists and is a
tempered distribution. Thus Kα,β,γ,ν is well defined and also a tempered distribution.

In this paper, at first we study the Fourier transform =Kα,β,γ,ν or K̂α,β,γ,ν where Kα,β,γ,ν is
defined by (1.6).

After that we put α = β = γ = ν = 2k, then we obtain ̂K2k,2k,2k,2k related to the elementary
solution of the operator ⊕k.

We also study the Fourier transform of the convolution Kα,β,γ,ν ∗ Kα′,β′,γ′,ν′ .

2. Preliminaries

Definition 2.1. Let x = (x1, x2, ..., xn) be a point in the space Cn of the n-dimensional complex
space and write

u = x2
1 + x2

2 + ... + x2
p − x2

p+1 − ... − x2
p+q, (2.1)

where p + q = n is the dimension of Cn.

Denote by Γ+ = {x ∈ Rn : x1 > 0 and u > 0} the set of an interior of the forward cone and
Γ+ denotes it closure and Rn is the n-dimensional Euclidean space.

For any complex number α, define

RH
α (u) =











u
α−n

2

Kn(α)
for x ∈ Γ+,

0 for x 6∈ Γ+,

(2.2)

where the constant Kn(α) is given by the formula

Kn(α) =

π
n−1

2 Γ

(

2 + α − n

2

)

Γ

(

1 − α

2

)

Γ(α)

Γ

(

2 + α − p

2

)

Γ

(

p − α

2

) .

The function RH
α is called the ultra-hyperbolic Kernel of Marcel Riesz and was introduced

by Y. Nozaki [5, p. 72].

It is well known that RH
α is an ordinary function if Re(α) ≥ n and is a distribution of α if

Re(α) < n. Let supp RH
α (u) denote the support of RH

α (u) and suppose supp RH
α (u) ⊂ Γ̄+, that

is supp RH
α (u) is compact.

Definition 2.2. Let x = (x1, x2, ..., xn) ∈ Rn and write

v = x2
1 + x2

2 + ... + x2
n. (2.3)
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For any complex number β, define

R`
β(v) = 2−βπ

−n
2 Γ

(

n − β

2

)

v
β−n

2

Γ

(

β

2

) . (2.4)

The function R`
β(v) is called the elliptic Kernel of Marcel Riesz and is ordinary function for

Re(β) ≥ n and is a distribution of β for Re(β) < n.
Definition 2.3. Let x = (x1, x2, ..., xn) be a point of the space Cn of the n-dimensional

complex space and write

w = x2
1 + x2

2 + ... + x2
p − i

(

x2
p+1 + x2

p+2 + ... + x2
p+q

)

, (2.5)

where p + q = n is the dimension of Cn and i =
√
−1.

For any complex number γ, define the function

Sγ(w) = 2−γπ
−n
2 Γ

(

n − γ

2

)

w
γ−n

2

Γ
(γ

2

) . (2.6)

The function Sγ(w)is an ordinary function if Re(γ) ≥ n and is a distribution of γ for Re(γ) < n.
Definition 2.4. For any complex number ν, define the function

Tν(z) = 2−νπ
−n
2 Γ

(

n − ν

2

)

z
ν−n

2

Γ
(ν

2

) , (2.7)

where
z = x2

1 + x2
2 + ... + x2

p + i
(

x2
p+1 + x2

p+2 + ... + x2
p+q

)

, (2.8)

x = (x1, x2, ..., xn) ∈ Cn, p + q = n is the dimension of Cn and i =
√
−1.

We have Tν(z)is an ordinary function if Re(ν) ≥ n and is a distribution of ν for Re(ν) < n.
Definition 2.5. Let f(x) be continuous function on Rn where x = (x1, x2, ..., xn) ∈ Rn.

The Fourier transform of f(x) denoted by =f or f̂(ξ) and is defined by

=f(x) = f̂(ξ) =

∫

Rn

e−i(ξ,x)f(x)dx, (2.9)

where ξ = (ξ1, ξ2, ..., ξn) ∈ Rn and (ξ, x) = ξ1x1 + ξ2x2 + ... + ξnxn.
Definition 2.6. Let µ(x) be a tempered distribution with compact support. The Fourier

transform of µ(x) is defined by

µ̂(ξ) =< µ(x), e−i(ξ,x) > . (2.10)

Lemma 2.1. The functions RH
α , R`

β, Sγ and Tν defined by (2.2), (2.4), (2.6) and (2.7)
respectively, are all tempered distributions.

Proof see [1, p. 30, 31] and [6, p. 154, 155].
Lemma 2.2. The function (−1)kK2k,2k,2k,2k(x) is an elementary solution of the operator

⊕k, that is ⊕k(−1)kK2k,2k,2k,2k(x) = δ where ⊕k is defined by (1.1), K2k,2k,2k,2k(x) is defined by
(1.6) with α = β = γ = ν = 2k and δ is the Dirac-delta distribution.
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Proof see [4, p. 66].
Lemma 2.3. 1. The Fourier transform of the convolution RH

α (u) ∗ R`
β(v) is given by the

formula

=
(

RH
α (u)∗R`

β(v)
)

=

(i)q2α+βΓ
(α

2

)

Γ

(

β

2

)

πn

Kn(α)Hn(β)Γ

(

n−α

2

)

Γ

(

n−β

2

)





√

√

√

√

p
∑

r=1

ξ2
r −

p+q
∑

j=p+1

ξ2
j





−α



√

√

√

√

n
∑

r=1

ξ2
r





−β

, (2.11)

where RH
α (u) and R`

β(v) are defined by (2.2) and (2.4) respectively,

Hn(β) =

Γ

(

β

2

)

2βπ
n
2

Γ

(

n − β

2

) and i =
√
−1.

In particular, if α = β = 2k then (2.11) becomes

=(RH
2k(u) ∗ R`

2k(v)) =
(−1)k





(

p
∑

r=1

ξ2
r

)2

−
(

p+q
∑

j=p+1

ξ2
j

)2




k
, (2.12)

where k is nonnegative integer and (−1)kRH
2k(u) ∗ R`

2k(v) is an elementary solution of the
operator ♦k iterated k-times defined by (1.2).

Moreover |=(RH
2k(u)∗R`

2k(v))| ≤ M , where M is constant, that is = is bounded, that implies
= is continuous on the space S ′ of the tempered distribution.

2. The Fourier transform of the convolution Sγ(w) ∗ Tν(z) is given by the formula

=(Sγ(w) ∗ Tν(z)) =
1

Hn(γ)Hn(ν)

2γ+νπnΓ
(γ

2

)

Γ
(ν

2

)

Γ

(

n − γ

2

)

Γ

(

n − ν

2

)×

×





√

√

√

√

p
∑

r=1

ξ2
r + i

p+q
∑

j=p+1

ξ2
j





−γ 



√

√

√

√

p
∑

r=1

ξ2
r − i

p+q
∑

j=p+1

ξ2
j





−ν

, (2.13)

where Sγ(w) and Tν(z) are defined by (2.6) and (2.7) respectively,

Hn(γ) =
Γ

(γ

2

)

2γπ
n
2

Γ

(

n − γ

2

) and Hn(ν) =
Γ

(ν

2

)

2νπ
n
2

Γ

(

n − ν

2

) .

In particular, if γ = ν = 2k then (2.13) becomes

=(Sγ(w) ∗ Tν(z)) =
1

[

(

ξ2
1 + ξ2

2 + ... + ξ2
p

)2
+

(

ξ2
p+1 + ξ2

p+2 + ... + ξ2
p+q

)2
]k

, (2.14)
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where k is a nonnegative integer and (−1)k(−i)
q
2 S2k(w) and (−1)k(−i)

q
2 T2k(z) are elementary

solutions of the operators L1 and L2 defined by (1.3) and (1.4) respectively.
Proof: 1. To prove (2.11) and (2.12) see [2] and to show that = is bounded, now

∣

∣=(RH
2k(u) ∗ R`

2k(v))
∣

∣ =

∣

∣

∣

∣

∣

(−1)k

[

(

p
∑

r=1

ξ2
r

)2

−
(

p+q
∑

j=p+1

ξ2
j

)2
]k

∣

∣

∣

∣

∣

≤ 1
∣

∣

∣

∣

∣

(

p
∑

r=1

ξ2
r

)2

+

(

p+q
∑

j=p+1

ξ2
j

)2
∣

∣

∣

∣

∣

k
≤ M,

where p + q = n for large ξr ∈ R (r = 1, 2, ..., n).
That implies that = is continuous on the space S ′ of tempered distribution. For the case

(−1)kRH
2k(u) ∗ R`

2k(v) is an elementary solution of the operator ♦k, see [1].
2. We have

Sγ(w) =
w

γ−n
2

Hn(γ)
, where Hn(γ) =

Γ
(γ

2

)

2γπ
n
2

Γ

(

n − γ

2

)

and w = x2
1 + x2

2 + ... + x2
p − i(x2

p+1 + x2
p+2 + ... + x2

p+q).
Now, changing the variable x1 = y1, x2 = y2, ..., xp = yp,

xp+1 =
yp+1√
−i

, xp+2 =
yp+2√
−i

, ..., xp+q =
yp+q√
−i

.

Then we obtain w = y2
1 + y2

2 + ... + y2
p + y2

p+1 + y2
p+2 + ... + y2

p+q.
Let ρ2 = y2

1 + y2
2 + ... + y2

p+q, p + q = n. Then

=Sγ(w) =
1

Hn(γ)

∫

Rn

e−i(ξ,x)w
γ−n

2 dx =
1

Hn(γ)

∫

Rn

e−i(ξ,x)ργ−n ∂(x1, x2, ..., xn)

∂(y1, y2, ..., yn)
dy1dy2...dyn =

=
1

Hn(γ)(−i)
q
2

∫

Rn

ργ−ne
−i(ξ1y1+ξ2y2+...+ξpyp+

ξp+1√
−1

yp+1+...+
ξp+q√

−1
yp+q)

dy =

=
1

Hn(γ)(−i)
q
2

2γπ
n
2

Γ
(γ

2

)

Γ

(

n − γ

2

)

(√

ξ2
1 + ξ2

2 + ... + ξ2
p + i(ξ2

p+1 + ξ2
p+2 + ... + ξ2

p+q)
)−γ

(2.15)

by [5, p. 194]

Similarly, for Tν(z) =
z

ν−n
2

Hn(ν)
we have z = x2

1 + x2
2 + ... + x2

p + i(x2
p+1 + x2

p+2 + ... + x2
p+q).

Putting x1 = y1, x2 = y2, ..., xp = yp, xp+1 =
yp+1√

i
, ..., xp+q =

yp+q√
i

. Thus z = y2
1 +y2

2 + ...+y2
p+q,

p + q = n. Let ρ2 = y2
1 + y2

2 + ... + y2
p+q, p + q = n. Then

=Tν(z) =
1

Hn(ν)

∫

Rn

e−i(ξ,x)z
ν−n

2 dx =

=
1

Hn(ν)(i)
q
2

∫

Rn

ρν−ne
−i(ξ1y1+ξ2y2+...+ξpyp+

ξp+1√
i

yp+1+...+
ξp+q√

i
yp+q)

dy =
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=
2νπ

n
2

Hn(ν)(i)
q
2

Γ
(ν

2

)

Γ

(

n − ν

2

)

(√

ξ2
1 + ξ2

2 + ... + ξ2
p − i(ξ2

p+1 + ξ2
p+2 + ... + ξ2

p+q)
)−ν

. (2.16)

Since Sγ(w) and Tν(z) are tempered distributions, then Sγ(w) ∗ Tν(z) exists and =(Sγ(w) ∗
Tν(z)) = =(Sγ(w))=(Tν(z)).

Thus

=(Sγ(w) ∗ Tν(z)) = =(Sγ(w))=(Tν(z)) =

=
2γ+νπn

Hn(γ)Hn(ν)

Γ
(γ

2

)

Γ

(

n−γ

2

)

Γ
(ν

2

)

Γ

(

n−ν

2

)





√

√

√

√

p
∑

r=1

ξ2
r + i

p+q
∑

j=p+1

ξ2
j





−γ



√

√

√

√

p
∑

r=1

ξ2
r − i

p+q
∑

j=p+1

ξ2
j





−ν

(2.17)

by (2.15) and (2.16).
Now consider

2γ+νπn

Hn(γ)Hn(ν)

Γ
(γ

2

)

Γ
(ν

2

)

Γ

(

n − γ

2

)

Γ

(

n − ν

2

) . (2.18)

Putting γ = ν = 2k, thus (2.18) becomes

24kπn

Hn(2k)Hn(2k)

Γ

(

2k

2

)

Γ

(

2k

2

)

Γ

(

n − 2k

2

)

Γ

(

n − 2k

2

) =
24kπn

24kπn

Γ

(

n − 2k

2

)

Γ

(

n − 2k

2

)

Γ(k)Γ(k)
×

× Γ(k)Γ(k)

Γ

(

n − 2k

2

)

Γ

(

n − 2k

2

) = 1.

Thus, from (2.17)

=(S2k(w) ∗ T2k(z)) =
1





(

p
∑

i=1

ξ2
i

)2

+

(

p+q
∑

j=p+1

ξ2
j

)2




k
. (2.19)

3. Main results

Theorem 3.1. The Fourier transform of the distributional kernel Kα,β,γ,ν(x) is given by the
formula

=Kα,β,γ,ν(x) =















(π)2n(i)q2α+β+γ+νΓ
(α

2

)

Γ

(

β

2

)

Γ
(γ

2

)

Γ
(ν

2

)

(√

p
∑

r=1

ξ2
r −

p+q
∑

j=p+1

ξ2
j

)−α

Kn(α)Hn(β)Hn(γ)Hn(ν)















×
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×















(√

n
∑

r=1

ξ2
r

)

−β
(√

p
∑

r=1

ξ2
r + i

p+q
∑

j=p+1

ξ2
j

)−γ (√

p
∑

r=1

ξ2
r − i

p+q
∑

j=p+1

ξ2
j

)−ν

Γ

(

n − α

2

)

Γ

(

n − β

2

)

Γ

(

n − γ

2

)

Γ

(

n − ν

2

)















. (3.1)

In particular, if α = β = γ = ν = 2k then (3.1) becomes

=Kα,β,γ,ν(x) =
(−1)k

[

(

ξ2
1 + ξ2

2 + ... + ξ2
p

)4 −
(

ξ2
p+1 + ξ2

p+2 + ... + ξ2
p+q

)4
]k

. (3.2)

Moreover (−1)kK2k,2k,2k,2k(x) is an elementary solution of the operator ⊕k defined by (1.1).
Proof. Now Kα,β,γ,ν(x) = RH

α (u) ∗ R`
β(v) ∗ Sγ(w) ∗ Tν(z) by (1.6). Since RH

α , R`
β, Sγ(w)

and Tν(z) are all tempered distributions by Lemma 2.1, thus =Kα,β,γ,ν(x) = =(RH
α (u) ∗

R`
β(v))=(Sγ(w) ∗ Tν(z)). By (2.11) and (2.17), we obtained (3.1) as required. For the case

α = β = γ = ν = 2k, by (2.12) and (2.19) we obtain (3.2) as required.
For (−1)kK2k,2k,2k,2k(x) is an elementary solution of the operator ⊕k see [4, p. 66].
Theorem 3.2. The Fourier transform of the convolution Kα,β,γ,ν(x)∗Kα′,β′,γ′,ν′(x) is given

by the formula

= (Kα,β,γ,ν(x) ∗ Kα′,β′,γ′,ν′(x)) = =Kα,β,γ,ν(x)=Kα′,β′,γ′,ν′(x), (3.3)

where Kα,β,γ,ν(x) is defined by (1.6), α, β, γ, ν, α′, β′, γ′ and ν ′ are complex numbers.
Proof. Now Kα,β,γ,ν(x) = RH

α (u) ∗ R`
β(v) ∗ Sγ(w) ∗ Tν(z) by (1.6). Since Kα,β,γ,ν(x) is the

convolutions of all tempered distributions, thus Kα,β,γ,ν(x) is also a tempered distribution and
the convolution Kα,β,γ,ν(x) ∗ Kα′,β′,γ′,ν′(x) exists.

Since Kα,β,γ,ν(x) is a tempered distribution, then the Fourier transform

= (Kα,β,γ,ν(x) ∗ Kα′,β′,γ′,ν′(x)) = (=Kα,β,γ,ν(x)) (=Kα′,β′,γ′,ν′(x)) ,

where =(Kα,β,γ,ν(x)) is given by (3.1).
Corollary 3.1. (The alternative proof of Theorem 3.1). The Fourier transform

=K2k,2k,2k,2k(x) =
(−1)k





(

p
∑

i=1

ξ2
i

)4

−
(

p+q
∑

j=p+1

ξ2
j

)4




k
,

where k is a nonnegative integer and Kα,β,γ,ν(x) is defined by (1.6).
Proof. From Theorem 3.1 with the particular case α = β = γ = ν = 2k, we can find

=K2k,2k,2k,2k(x) directly from the elementary solution of the operator ⊕k defined by (1.1). Since
(−1)kK2k,2k,2k,2k(x) is an elementary solution of the operator ⊕k.

Thus ⊕k(−1)kK2k,2k,2k,2k(x) = δ or (⊕k(−1)kδ) ∗ K2k,2k,2k,2k(x) = δ.
By taking the Fourier transform both sides, we obtain

=(⊕k(−1)kδ) ∗ =K2k,2k,2k,2k(x) = =δ = 1. (3.4)

Now consider =(⊕k(−1)kδ). Since δ is tempered distribution with compact support. Thus
=(⊕k(−1)kδ) =< ⊕k(−1)kδ, e−i(ξ,x) >= < ♦kLk

1L
k
2(−1)kδ, e−i(ξ,x) > by (2.10) where ⊕k =

♦kLk
1L

k
2 by (1.5). Thus

< ♦kLk
1L

k
2(−1)kδ, e−i(ξ,x) >=< ♦kL1δ, (−1)kLk

2e
−i(ξ,x) >=
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=<♦kL1δ, (−1)k(−1)k

(

p
∑

r=1

ξ2
r − i

p+q
∑

j=p+1

ξ2
j

)k

e−i(ξ,x) >=<♦kδ,

(

p
∑

r=1

ξ2
r − i

p+q
∑

j=p+1

ξ2
j

)k

L1e
−i(ξ,x) >=

=< ♦kδ,

(

p
∑

r=1

ξ2
r − i

p+q
∑

j=p+1

ξ2
j

)k (

p
∑

r=1

ξ2
r + i

p+q
∑

j=p+1

ξ2
j

)k

(−1)ke−i(ξ,x) >=

=< δ, (−1)k





(

p
∑

r=1

ξ2
r

)2

+

(

p+q
∑

j=p+1

ξ2
j

)2




k

♦ke−i(ξ,x) >=

=< δ, (−1)k





(

p
∑

r=1

ξ2
r

)2

+

(

p+q
∑

j=p+1

ξ2
j

)2




k

v ×





(

p
∑

r=1

ξ2
r

)2

−
(

p+q
∑

j=p+1

ξ2
j

)2




k

e−i(ξ,x) >

=< δ, (−1)k





(

p
∑

r=1

ξ2
r

)4

−
(

p+q
∑

j=p+1

ξ2
j

)4




k

e−i(ξ,x) >= (−1)k





(

p
∑

r=1

ξ2
r

)4

−
(

p+q
∑

j=p+1

ξ2
j

)4




k

.

Thus =(⊕k(−1)kδ) = (−1)k





(

p
∑

r=1

ξ2
r

)4

−
(

p+q
∑

j=p+1

ξ2
j

)4




k

.

Thus by (3.4) we obtain

=K2k,2k,2k,2k(x) =
(−1)k





(

p
∑

i=1

ξ2
i

)4

−
(

p+q
∑

j=p+1

ξ2
j

)4




k
.
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