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CHANNEL FLOWS AND STEADY VARIATIONAL
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Wccnenyercs cramuoHapHoe TeUeHNe BSI3KOM HeCXKUMaeMOoi JKUJIKOCTH B KAHAJIE C yCJI0-
BUSIMU Ha BBIXOJE, OTJMYHBIMU OT yciaoBuii Jdupuxie. st Toro 94mob6bl KOHTPOJIUPOBATD
KHHETHIECKYIO SHEPIHUIO YKUJKOCTH B KaHAJIE, [TPEIITIOJIAraeTCsl, YTO BO3MOXKHBIE 00OpaTHBIE
TedeHUsI Ha BBIXOJE B HEKOTOPOM CMBIC/IE OFpaHUYEHbl. TedeHusI, yA0BIeTBOPAIOIINE 3TO-
MY YCJIOBUIO, 3AIIOJHSAIOT BBIMTYKJIOE MTOAMHOXKECTBO ITPOCTPAHCTBA, OIPEJIETeHHBIX (DYHK-
nnii. Ha 9TOM BBIIYK/IOM MHOXKECTBe (POPMYJIMPYETCS BapUalliOHHOE HEPaBEHCTBO THUIIA
Haspe — CToKca u J10Ka3bIBaeTCsl CyIeCTBOBaHME C1aboro permrenust. 11peanonokenue, uc-
[TOJTb3yeMOe JIJIsi OIPEJIeJIEHNS BBITYKJIONO IIOJMHOXKECTBa, 0ojiee OrpaHuduTe/bHO, YeM
upesnosioxkenue, u3 paborst [3|. C aApyroii CTOPOHBI, yCJIOBHE B TeOpeMe CyIIeCTBOBAHMS
MeHee cTporo, ueM yciosue u3 [3|. Kpome Toro, msydaercst BOpoc 0 TOM, B KAKOM CMBICJIE
ciaaboe peleHne yIoBjaeTBopsierT ypasuennsaM Hasbe — CToOKca U CMEIAHHBIM I'PAHTIHBIM
YCJIOBUSIM, €CJIA 9TO PEIIeHHe IJIaIKoe.

Introduction

Let © be a simply connected bounded domain with a Lipschitz boundary 92 in IR3. © can be
considered as a channel filled up by a moving fluid, I'; will denote the part of the boundary
where the fluid is flowing into the channel or where the channel has fixed boundaries and I'y
will denote the part of the boundary where the fluid is supposed to leave the channel. Precisely,
we will suppose that I'y, 'y are open disjoint subsets of 9 such that 9Q = I'; UT, and the
0 — I'y — I'y consists of a finite number of closed simple smooth curves whose each point
belongs to 'y N Oy (O, respectively Oy, denotes Iy — Ty, respectively T'y — I'y). We will also

suppose that I'y is a union of a finite number of disjoint simple smooth surfaces Sy, ..., S,.
Let us denote their boundaries by C, ..., C,. It follows from the previous assumptions that
C1, ..., C, are closed simple smooth curves.

The motion of a viscous incompressible fluid in €2, generally non-stationary, can be described
by the Navier — Stokes equation

g—ltl—l—uVu—f—Vp—l—l/Au (1)

and the equation of continuity
diva = 0, (2)
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where u = (uy, ug, u3) is the velocity, p is the pressure, f = (f1, fo, f3) is an external body force
and v is the kinematic coefficient of viscosity. v is a positive constant.

It is natural to prescribe a Dirichlet boundary condition for the velocity of the fluid on T';.
However, since the situation on the output of the channel depends on the behaviour of the
fluid inside the channel and it is not known in advance, it is not reasonable to use a boundary
condition of the same type on I's. It is a matter of discussion which boundary condition should
be used on I's. One of the possibilities is the condition

0
—pn + ua—; - F (3)

where n = (ny, ng, n3) is an outer normal vector on I'y and F = (F}, Fy, F3) is a prescribed vector
function on T's. It can be shown that a weak problem for equations (1), (2) with no condition
on I's involves condition (3) implicitly. It means that if its solution is “smooth enough” then
except for equations (1), (2), it must also satisfy condition (3). This is why condition (3) is
often called the “do nothing condition”.

Existence or uniqueness of solutions of system (1), (2) with condition (3) on the part of
0f) is known either locally in time (see e.g. P. Kucera, Z. Skaldk [4]) or for “small data’
(i.e. “small” initial velocity, “small” external force and “small” function F' in condition (3) —
see e.g. P. Kucera [5, 7]). The problem with condition (3) is difficult mainly because solutions
of (1), (2), (3) need not satisfy an energy inequality. This is due to the fact that boundary
condition (3) on I's does not exclude backward flows on I'y, bringing into §2 an uncontrollable
amount of kinetic energy. The kinetic energy in {2 can be estimated by an additional condition
on I'y; which estimates the backward flows. For example if ¢y > 0 then the following condition
can be used:

/ [dist(u(z). Ko(2)] a8, < e (4)

'y

where K, () denotes the cone of vectors in IR® whose angle with n(x) is less than or equal to
a, o€ <O, g) , and dist(u(z), K,(z)) means the distance between u(z) and K,(x). However,

condition (4) has the consequence: if we use it then we are searching for a solution not in a
whole function space (which will be exactly specified later) but in its convex subset. This is
why we do not use the Navier — Stokes equation (1) and instead of it, we describe the flow by
means of a certain variational inequality which arises from equation (1). We have already used
this approach in paper [2] where we studied the non-stationary case and we have proved the
global in time existence of a weak solution without any restriction on the size of the input data.

In this paper, we study a steady motion of a viscous incompressible fluid in channel €2 with
the Dirichlet boundary condition

u = ux (5)

on I'; and with conditions (3) and (4) on I'y. Analogously as in [2], we formulate a variational
inequality of the Navier — Stokes type, which is now steady, and we prove its weak solvability
without any requirement on the size of the input data f, F and ux. We also show that if the
solution is smooth enough then it satisfies the Navier — Stokes equation and moreover, if it in
some sense finds itself in the interior of the convex set which is defined by means of condition
(4) then it also satisfies condition (3) on I's.
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1. Formulation of the problem and some properties
of its solution

Let ¢y be a positive real number and a € (2,4). Since 2a/(a — 1) < 4, there exists a continuous

operator of traces from V into L2*/©@=1(9Q). Let K,(z) = {y eR3: yn(x) > cos a} , a €

_ Y]
(O, 5) , T € FQ.

|.|l» will denote the L"-norm on domain Q, |.|,r, the L™-norm on I's and ||.|,, will
denote the W"™*-norm on Q. The W"*-norm on dN) will be denoted by || .||, s@0)- In order not
to complicate the notation, we will denote traces on 02 of functions which are defined a.e. in
2 by the same letters as the functions themselves.

Suppose that function ux in boundary condition (5) is such that it can be extended from
I'; onto the whole boundary 0f2 so that the extended function (it will be also denoted by ux)

belongs to W1/%2(98)3,
/u* ndS=0

o0N

and on each simple smooth surface Sj, which is a component of T'5, ux = 0 in a certain
neighbourhood S}, of the boundary Cj and ux(z) = k(z)n (for some k(x) > 0) in all other
points x € Sj.

Lemma 1. There exists a function V. € WH2(Q)3 with the following properties:

1. divV =0 a.e in(Q,

2.V =ux a.e only,

3. / dist(V(x), Ka(2)) "4s, =0,

1)
4. /(V1VV2)V dr < (/2) Vv 2 |VV32  for all v, v? € W12(Q)3 whose traces are
0

zero on I'y.

Proof: The proof is in many steps similar to the proof of Lemma VIII.4.2 in [1] or Lemma
I1.1.8 in [9]. The main differences between our situation and the situation treated in [1] and
in [9] are that we require V to be equal to ux only on the part I'; of 99, our v!, v have the
traces equal to zero only on I'y and we require function V to satisfy the equality in item 3 of
the lemma. We will show the construction of function V and we will especially pay attention
to the equality in item 3. We follow the arguments given in [3]:

There exists a function w! € W22(Q)3 such that uyx = curl w! in the sense of traces on 9.
Moreover,

W2z < erflusllijzaee). (6)
where ¢; = ¢1(Q2). (See Lemma VIII.4.1 in [1].) It follows from the Stokes theorem that the line
integral of w' on each closed simple curve C’ in S} (where k € {1; ...; r}) whose interior is

a subset of S} is equal to zero. (By interior we mean interior on surface S — i.e. that one of
the two components of the set S, — C” which has a positive distance from the boundary C}, of
surface Sy.) Furthermore, the line integral of w' on each closed simple curve C” in S} whose
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interior contains Sy —.S), and which is positively oriented when observed from the outer part of
Sk is equal to a certain nonnegative number (3, — the flux of ux through surface Sj;. Suppose
for simplicity that g, > 0 for all k € {1; ...; r}.

If z € Q then we define §(x) as the infimum of lengths of all possible curves in Q whose
initial point is x and their terminal point is on I';. (I.e. 6(x) is a distance of z from I'y, measured
only on trajectories never leaving Q.)

Using the same approach as in the proof of Lemma I11.6.2 and in the proof of Lemma III.6.3
in [1], it can be shown that there exists ¢3 > 0 such that

[u/dllz < eslull,s (7)

for all u € W'2(Q)? whose trace on I’y is zero.
Let € be a positive parameter. We define the function

1 if A\ <e?/e
EN) =<K —T—eln )\ ife? < A<e Ve
0 if e=l/e <\,

1
Let R, be the mollifier with the kernel whose support has the diameter 3 e~ %<, We define

Then .
i) |Ye(x)] <1 forall x € Q,

1
i) ¢e(z) = 1 if 6(x) < S e,
1 1
iif) 0 < e(2) <1 if o™ <d(w) < e ot S
1
iV) ¢e<x) =0 if (S(LL’) > e~ 1/€ + 5 e—2/e’

1
V) V()| < €/6(x) if 6(z) < e Ve 3 e /e,
It can be shown that if € is sufficiently small (what we will further assume) then the following

assertions hold for each k € {1; ...; r}:

— The set S, = {z € Si; Vibe(r) # 0} is a subset of S;, and Sy . can be expressed as a
union of mutually disjoint closed simple smooth curves C}/ _ (for y € (0,1)), each of whose
is an equipotential line of function ¢ C} . = {x € Sy; ¥c(z) = y}.

— Each of the curves C}/ _ contains the set Sy — S} in its interior.

— The vector n x Vi), is tangent to each of the curves C,‘Z’E. Let us further assume that this
vector defines the orientation of C,‘”jyg.

— The system S of curves in S whose tangent vector is Vi) — (Vi)en)n (the tangent to
Sy component of Vi),) is perpendicular to the system of curves C} . and these curves also
cover the whole set Sy .

Suppose further that P(t); ¢ € [0, 5] is a parametrization of one of the curves C} . — let it
be e.g. the curve C,if. Due to the smoothness of the curve C,i/f, the parametrization can be
chosen so that P, (0) = P_(B). Let us denote by +C}. (for t € [0, Bx)) that one of the curves

from system S defined above, whose intersection with curve C,i/f is the point P(t).
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Let us now define a real function ¢; on Sy, in this way: ¢;(z) =t in all points z € ~CJ. _.
Put w® = V¢, in S} .. In fact, since function ¢y has a discontinuity on curve ~C} _, V¢, is
not defined on LC,S,E. However, it follows from the introduction of function ¢; that V¢, can be
continuously extended to LC,g,E. Thus, we understand by V¢, the value of this extension on
+C} .. Function w? has obviously these properties:

— The line integral of w? on each closed simple curve C” in S} whose interior is a subset
of S} is equal to zero and the line integral of w? on each closed simple curve C” in Sy
whose interior contains Sy, — S}, and which is positively oriented when observed from the
outer part of Sy is equal to (.

— w? is tangent to the curves C’}j’e and so it has the same direction as n x V1), in all points
of Sy ..

Thus, the line integral of w! —w? does not depend on the path in Sy .- Hence we can define

a scalar function ¢, on Sy so that we choose a fixed point z¢ € S}, and we put ¢»(r) equal to
the value of the line integral of w' —w? on any curve in S}, which starts in z¢ and terminates

in . Function ¢, can be extended from the union of all S (k € {1;...;r}) to a smooth
function in € such that its gradient is in W>*(Q)* and Von = 0 on S/ (k € {1; ...; r}).

Then the function w = w' — V¢, coincides with w? on S, and curl w is identical with curl w'.
It also follows from (6) that for some ¢y > 0

[Wll22 < e [Juslij2.2000) + co (8)

It follows from the smoothness of curves C} that ¢y can be chosen so that it is independent of €.

We put V. = curl (¢ w). Then V, = ¢ curl w+ V), x w. It follows from our choice of € that
Ye(z) = 0 in all points = € Sy where curl w(z) # 0. Thus, Ven = (Vb x w)n = (n x Vi) )w.
This is obviously positive in all points of S}/, and equal to zero in all points of S, — S}, (for
each k € {1; ...; r}). Moreover, it follows from the smoothness of Sy that fo sufficiently small
¢ the angle between Vi and n(z) on Sy _is from [7/2 — a/2,7/2 + a/2]. Hence, the angle
between V. = Vi x w and n is from [0, «/2], and function V. satisfies condition in item 3
of the lemma.

It remains to verify that if € is small enough and we put V = V., then the inequality in item
4 is satisfied. However, the proof can be done in the same way as the proof of estimate (4.38)
in [1], p. 32, and so we do not show it here. [ |

We will further search for the velocity u in the form u = V+v where V is the function given
by Lemma 1 and v € W?(Q)? is a new unknown function such that v|r, = 0. Let V be a set
of infinitely differentiable divergence-free vector functions in € which have a compact support
in QU Ts. Let K be a subset of V which contains only functions h satisfying the condition

/ [dist(V(m) +h(z), Ka(a:))]adSz < . 9)

Denote by H (respectively V') the closure of V in L?(Q2)? (respectively in the norm ||V .]|2)
and denote by K the closure of I in V. The dual space to V will be denoted by V' and the
duality between elements of V' and V' will be denoted by (., .).

It follows from the existence of a continuous operator of traces from V into L%(T'y)? that

K=<{heV: / [dist(V(x) + h(x), K,(x)) ade < ¢

s
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If we also use item 3 of Lemma 1, we can show that there exists €; > 0 so that K contains the
e1-neighbourhood of zero in V. Moreover, K is a convex set in V'; This can be proved by means
of the Minkowski inequality.

Let us formally derive the Navier — Stokes variational inequality now. (See e.g. [2] or [§]
for similar approaches.) We use the steady Navier — Stokes equation in the form

uVu — f + Vp — vAu = 0, (10)

we multiply the left hand side by q—v (where q is a test function from K ), we integrate over
() and we require the result to be greater or equal to zero. We obtain:

/[uVu—f+Vp—uAu](q—v) dx > 0.
Q

If we express u in the form V+v | integrate by parts, use boundary condition (3) and write the
duality (f, g — v) instead of the scalar product of f and q — v in H, we obtain the inequality

/[<v+v>v<v+v>1<q—v> dr + V/v<v+v>v<q_v> dz

—(f,q—v) —/F(q—v)dS > 0. (11)

I

We will solve the following problem:

Problem 1. Let f € V' and F € L*(T'y)3. We are looking for function v € K such that
inequality (11) holds for all functions q € K.

The next two theorems show that if a solution of Problem 1 is aposteriori smooth enough
then it satisfies the Navier — Stokes equation (10) and the inequality holds only on I'y (Theorem 1)
or the solution satisfies boundary condition (3) on I'y (Theorem 2).

Theorem 1. Let f € L*(Q)?, let function ux can be extended from T'y to O so that except
for already mentioned properties, the extended function belongs to W3/22(0Q)3 and let v be
a solution of Problem 1 such that v.€ W*2(Q)3. Then there exists p € WH(Q) such that
u =V + v and p satisfy the steady Navier — Stokes equation (10) in Q in a strong sense and

/[V%—pn—F (d—=v)dS > 0 (12)

forallq € K.

Proof: Since function ux has a higher regularity than it was assumed in Lemma 1, function
V given by Lemma 1 can also be found so that it has a higher regularity, namely that it belongs
to W2(Q)>%. Let @' € W?2(Q)> N K at first and 6 € (0,1). There exists a sequence {q"} in K
such that " — 0q' + (1 — 0)v in W22(Q)3. If we use q = q" in inequality (11) and assume
that n — +o00, we obtain

QQ/[(V+V)V(V—|—V)](q'—V) iz + VQQ/V(VJrV)V(q’—v) dz —

—Q/f(q’—v)dx - H/F(q’—v)dS > 0.

Q T2
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If we divide this inequality by #, assume that § — 0+ and write u instead of w + v, we get

/[uVu — fl(q' —v)de + I//VuV(q’—V) dr — /F(q’—v) ds > 0,

Q I

/[uVu —vAu — fl(q —v)dr + /[Vg—z —F](q’—v) ds > 0. (13)

Q o

Let ¢ be any function from W22(Q)* N W,*(Q)? such that divg = 0. If we successively use
d=v+¢ and ' =v — ¢ in (13), we obtain

/[uVu —vAu — flpdx = 0.
Q

This implies the existence of p € W2(Q) such that ||pll2 < ¢3(Q)||Vpl2 and
uVu — vAu — f = —Vp (14)

a.e. in Q (see [1]). Let us now return to inequality (13). If we use (14), apply the integration by
parts and use the fact that functions ' and v are divergence-free, we obtain (12). The validity
of (12) for all ¢’ € K follows from the density of W??(Q2)> N K in K. |

Theorem 2. Let the assumptions of Theorem 1 be fulfilled and moreover, let there exist a
neighbourhood U of zero in' V' so that v+h € K for allh € U. Thenu =V +v and p (given
by Theorem 1) satisfy boundary condition (3) a.e. on T's.

Proof: Let h € U. The functions q! = v+h and q?> = v —h belong to K. If we successively
use them in (12) instead of q’, we obtain:

/[Va—u—pn—F hdS = 0.
on

Iy

Since this holds for all h € U, u and p satisfy condition (3) a.e. on I's. [ |

2. Approximations and their estimates

We will prove that if ¢y is an arbitrary positive constant then Problem 1 has at least one
solution in Section 4. In Section 3, we will construct a sequence of approximations and derive
some estimates. We will use the Galerkin method combined with the method of penalisation.
Let P be the projector of V' onto K which assigns to each element of V' the nearest element
in K and put ¥(h) = h — Ph for h € V. It follows from the convexity of K that U is a
monotone operator in V. It will be used as a penalisation in the following. Let us prove that

(¥(h), h)y > [[¥(h)[[y,, and (¥(h),h)y >e|Ph)|y (15)

(for all h € V) at first. (We remind that K contains the €;-neighbourhood of zero in V'.) The
first inequality in (15) is obvious:

(U(h),h)y = (h — Ph,h)y = (h— Ph,h — Ph)y + (h — Ph, Ph — 0)y,
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nd so we obtain the desired

and since 0 € K and K is convex, (h — Ph,Ph — 0)y > 0 a
€ K. Thus, let h ¢ K. Put p =

inequality. The second inequality is clearly satisfied if h
¢1(h — Ph)/||h — Phl|y. Then p € K and

(¢(h),h)y = (h— Phh)y = (h—Ph,h—p)y + (h— Ph,p)y =
— (h— Ph,h — Ph)y + (h — Ph, Ph — p)y + €;(h — Ph,h — Ph)y/||h — Phl|, >
> e1flh = Phlly = e [[¥(h)]lv .

Put V2 =Vn VV2 2(2)3. Then V? is a Hilbert space with the same scalar product as W2(£2)3.
Let functions e* (k=1,2,...) form a basis of VV? which is orthonormal in H. It follows from
the density of V2 in V and in H and from the continuity of imbeddings of V% into V and into
H that { ¢! .} is also a basis in V and in H. Functions e* (k=1,2,...) can be chosen
so that they all belong to V. Let n € IN be given. We are looking for 6 € IR (k =1, n) so

that the function
=) o e (16)
k=1

satisfies for k =1, ..., n the equations

/[(PVR-FV)V(V”—FV)] ¥ dr + V/V(v”+V)V eF dr —
Q@ 0

CF, o) — /Fek as + o (14 IvIE) (wem), o) =0, (17)

1)

where ¢ € (1,4) will be chosen later. Substituting here from (16), we get a system of algebraic
equations for unknowns 6;:

(S0 ) (S e ) [o(Emerv) e

Q m=1 Q

q n
—/Fede—l—n 1+ / el <\I/(ZGZLem), ek)V:O (18)
=1 m=1

I

Q|

for k=1, ..., n. Let us denote by 6™ the n-tuple [0}, ..., 07'], by Gr(0") the left-hand side of
equation (18) and by G(6") the n-tuple [G1(0"), ..., G,(6™)]. Then system (18) is equivalent to
the equation

g@e") = o, (19)

where 0" is the zero element in IR". G is a continuous mapping from IR" to R™.
We will show that there exists R > 0 (independent of n) such that

G(OMe" > 0 (20)

for all ™ € IR"™ such that |0"| = R
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Multiplying G(6™) by 6}, summing over k from 1 to n, using (16), and using item 4 of
Lemma 1 we obtain

Zn:gk(en)eg = GO0 = /[(Pv”+V)V(V"+V)}V” dz + I//V(Vn—i-V)VV" dr —
—(f,v") — /FV”dS +n (1 + ||V”||qr2) <\IJ(V”),V”>V

I'y

/ Pv +V) ("+V)}(v"+V)dx—/[(Pv"+V)V(v"+V)]de+

(f,v") — /Fv”dS tn ( n ||v"||qr2) (\p(v”),VN)V

+1//VV +V)Vv'dr —
Q I'>

/[(Pv”—l—V)n] %|V”+V|2d8 n /(Vn) %|V|2dS — /[PV”VV”]de—
I's I Q
—/[PV”VV}de - /[VV(V"JFV)}de—k

Q Q
>

+v || Vv"5 + V/VVVV"d:E —(f,v") — /FV"dS +n <1+ ||V”||qF2> <\I/(V"),V”>V
s

I'

Q
1 1
—/((PV”+V)n>|V"—I—V|2dS + /(u*n) 5 lug[*dS — §I/||VPV”||2 INAA P

Ly
— e[Vl = s + vV 0 (T IV ) (R0

where T'y is the part of I'y with (Pv™*+ V)n < 0.

1
The term / Pv™ 4+ V)n| |[v" + V[*dS can be estimated by using Hélder’s inequality

Iy
r(e) > 4aec/(2a — 4 + ae)), such that

There exists € € (0,2/3), r € [1,a], and ¢ € (1,4) (r =

%/[(Pv"+V) n| |v" + V|*ds >

Iy
(2—¢)

=

Q=

v

/ v+ V[ dS

/ v+ V|dS

2

/ (Pv" + V) nl|*dS

2

2

> ~c e |[v" VI v+ Vg >

3
> —cges v+ VIZE (V" = PVl + 1PV + Vi) 2

> —cjes [V + VIES (V" = PYlgs + PV + Vi) >
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IV

1 - n c . n a
> e |V VIEE [0l + | /mmmv+vm@ds

2

(because, if wn < 0 then |[w| < (1/cos «)dist (w, K,))

1\ €
: . o
> ~cfes v+ VIEE (19 0ligs + (2o ) | 2

> =0y (V12 +1) [(Ie )l +Ca) |-

Constants C,Cs depend on €2, I'y, I's, u,, V, a, a, ¢y, €, and ¢. Using now the estimate

1
of the term 5 / [(Pv™ + V) n] |v" + V|*dS for evaluation of (G#"0") we get

Ly
G >

{1997l (199757 (5 199"l = Crea (14 C)) —a| = e} +

v

(V2 + 1) (@) vy, 8 ), S 1,

q,I'2

v n n n n n
IV (5 199" = ) —es+ (n=no) (V"I p, +1) (2 (v") vy o 1€ ()], 2 1.

q,I'2

where ng is such that nge; > C1(1+Cs)cg, with €; from relation (15). ¢y, ..., cg are appropriate
constants which depend only on 2, I'y, I'y, u,, V, a, «a, ¢y, €, and gq.
Let us define constant Ry with the following property:

Vv, > Ry = G(6")6" > 0. (21)
It follows from (21) that Ry can be taken e.g.

2 € L 2
Ry = max ;01(02+1)09+1 ,(04+1)1—6,08+1,;(C4+1)

Suppose that
0" = [[v"[l2 = R > Rocyy (22)

where ¢y is the constant from the inequality |[Vv™||2 > ¢10]|v"||2. Then
Ry < cioR = ciol V"2 < [[Vv2,

and so from (21) we have

Ge)e" > 0.
Hence equation (19) has a solution 6" in the ball Bg(0") in IR (see [9], Lemma II.1.4). The
radius R of this ball does not depend on n.

The fact that solution 6™ of equation (19) satisfies |0"| < R means that function v" given
by (16) satisfies the estimate |v"|2 < R. However, we will also need estimates of ||Vv"||2
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and the penalisation term. If we assume a solution 0" of equation (19) and its corresponding
v" we get from (21) ||Vv"|| < Ry because G(6™)6™ = 0.

Taking into account these two facts together with estimate (21) we get an estimate of the
penalisation term. So we have

q,I'2

IV < Roo (= mo) (IV120, +1) ( (v, v"),, < ey (23)
for n > ng and a positive constant ¢;; which does not depend on n.

3. The limit procedure for n — 400

It follows from (23) that there exists a function v € V' and a subsequence of {v"} (which will
be also denoted by {v"} in order to keep a simple notation) such that

v"' — v weakly in V. (24)
The operator of traces from V into L(99Q)3 is compact for ¢ € (1,4). This implies that
v® — v strongly in L(0Q)? (25)
for g € (1,4). It follows from (15) and (23) that
U(v") — 0 strongly in V. (26)
Due to the monotonicity of operator W, we also have

<\I/(V") —W(z), V" —z)v > 0 (27)

for all n € IN and z € V. Thus, using the boundedness of the sequence {v" — z} in V and
(26), we get hrf <\II(V”), v — z) = 0. Condition (24) implies that lim <\If(z), V") =
n—-+00 1% 14

n—-+00
(¥(z), v)y . If we pass to the limit for n — 400 in (27), we obtain — (\I/(z), V—Z> > 0. Put
v
z = v — e U(v) where € > 0. Dividing the inequality by e and passing to the limit for ¢ — 0+,
we get: —(\II(V), \I/(V)) > (0 which means that ¥(v) = 0. Hence v € K and Pv = v.
1%

Let M be a set of functions from X which are linear combinations of a finite number of
functions e', €2, ...

Let us assume that q € M at first. Then there exists m € IN (depending on q) and real
numbers 3, (k =1, ..., m) such that q = > B e*. Let us choose n € IN so that n > m.
k=1
Let us multiply (17) by (=0} + Bx) if & < m and by (—0}) if m < k < n. Let us sum for

k=1, ..., n the obtained equations. We get
V/V(V"—{—V)V(q—v”) das—/F(q—v”)dS+n <HV"||5,F2 + 1) <\IJ(V”),q—v”>V =0. (28)
Q I

It follows from the monotonicity of operator ¥ and from the fact that q € K (which means
that U(q) = 0) that the last term on the left hand side of (28) is nonpositive. If we omit this
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term, we get

/[(Pv”+V)V(v”+V)}(q—v")dI C(f q—v) +
Q

—i—l//V(V”—l-V)V(q—V") dx — /F(q—v") dsS > 0. (29)

We are going to pass to the limit for n — +oo in (29) now. We will use all convergences
(24) - (26). Since some steps are standard, we do not show all the details here. Let us deal for
example with the two nonlinear terms:

a) ngrfoo inf —V/VV”VV" de | < —V/VVVV dz,
b) / (P(v) +V)V(V”+V;]2 (q—v")dz = / {(Pw? LIV + V)| (V + q) de —
Q Q
—%/(Vn) IV[2dS — %/[(PV”+V)n] V" + V|2 dS.

Due to (25), we have

/[(PV"—{—V)H} v+ V[2dS — /[(v+V)n] v+ V|2 dS.

If we use (26), the strong convergence of v to v in L*(Q)? (following from (24)) and the
decomposition Pv" — v = (Pv" — v") + (v —v) = —=U(v") + (v" — v), we obtain that
Pv" — v in L*(Q)3). Hence

lim [(P(v”) FV)V(V V)] (V+q)de = /[(v FV)V(v+ V)} (V + q) da.
Thus, we hagxz/e ’
dim [ [P VIV V) (@ v = / (v + V)V V) (- v) d.

Using this all in (29), we get (11).

We need to show that (11) is satisfied not only for all @ € M but for all g € K now. In
order to do that, it is sufficient to show that M is dense in K in the norm of V. Let € > 0 and
q € K be such that

/ [dist(V(:U) +q(z), Ku(z)) ade <cg—€
)
at first. There exists & > 0 so that if q; € V, ||[q1 — q||ly < £ then q; € K. Let ™ be the
orthogonal (in V') projection of q onto the subspace of V' which is generated by the functions
el, ..., €™ Then ||q™ — q||v — 0 if m — +o00. This means that q™ € K for m large enough.
Thus, ™ € M for m large enough and hence q can be approximated with an arbitrary accuracy
(in the norm of V) by a function from M. We can get the same result for all q € K if we let
€ — 0+.
We have proved the following theorem:
Theorem 3. There exists a solution of Problem 1.
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