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1. Introduction

The operator &% can be factorized in the following form
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j=p+1 j=p+1 j=p+1
p 82 2 p+q 62 2
where i = +/—1 and p + ¢ = n. The operator — — — has first been
v Pt P 202) ~\ 2 a2

introduced by A. Kananthai [4] and is named the Diamond operator which is denoted by

3 p 82 2 p+q 62 2 F
=\ Xam) \ 2] | 2
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Let us denote the operators

p 82 p+q 82 k

i=1 j=p+1

*The authors are responsible for possible misprints and the quality of translation.
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and
P p+q
0? 0?
k .
=12 g 2 g2 - (1.4)
i=1 ¢ j=p+1 J

Thus the operator @©F, iterated k-times defined by (1.1) can be written in the form
oF = OFLFLE. (1.5)

In this work, we obtain the Green function of the operator ®*, i.e. ®*G(z) = & where ¢ is the
Dirac-delta distribution and G(z) is the Green function and x € R".
Moreover, we find the weak solution of the equation

®FK(x) = f(z) (1.6)

where f is a given generalized function and K(z) is an unknown and x € R".

2. Preliminary

Definition 2.1. Let x = (21, z9, ...,x,) € R"
Let us denote by

P ptq
u:Zaf?— Z x? (2.1)
i=1 j=p+1

the nondegenerated quadratic form, whereas p + q = n is the dimension of R".
LetT, ={z € R": 2, >0 and u > 0} and T'; denotes its closure.
For any complex number o, we define the function

(a—=m)

u
Ry (u) = Ku(a) jor €L, (2.2)
0 for x ¢y,

where the constant K,(«) is given by the formula

er 24+a—n r 11—« I(a)
2 2
K,(a) = Sy — .
r Pir (222
2 2
The function RY is called The Ultra-Hyperbolic Kernel of Marcel Riesz and was introduced by
Y. Nozaki (see [3], p. 72).
It is well known that R is an ordinary function if Re(a) > n and is a distribution of « if

Re(a) < n. Let us supp RZ(u) denote the support of R (u). Assume RZ(u) C T.
Definition 2.2. Let x = (x1, 9, ..., T,,) be a point of the Euclidean space R™ and

v = Zn:xf (2.3)
i=1
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Define the function

a—n

Ri(v) = & Ho(a)

(2.4)

where « is any complex number and the constant H,(«) is given by the formula

n(ox
2T (3)
_ \2/
H,(« 2.5
5 n_a) (2.5)
2
Now the function RS(v) is called the Elliptic Kernel of Marcel Riesz.
Definition 2.3. Let x = (x1, z3, ..., x,) be a point of the C™ and let

w:x%+x%+...—|—x§—i(xiﬂ—i—x?)”—k...—l—miﬂ), (2.6)

where i = v/—1 and p 4+ g = n is the dimension of R".
Define the function

a—n

w2

Sy (w) = ——— 2.7
)= Fr 1)

where a is any complex number and H,(«) is defined as the formula (2.5).

Definition 2.4. Define the function
P
T.(2) = , 2.8
0= (2.9
where

p=a] 25+ b @ i(Tp e e e T T (2.9)

and i = /=1, p+q=n and H,(«) is defined as (2.5).

Lemma 2.1. The convolution R (u)*(—1)*RS,(v) is an elementary solution of the operator
remove off OF where OF is defined by (1.2) and RE (u) and RS, (v) are defined by (2.2) and
(2.4) respectively with o = 2k.

Proof. The elementary solution of {* is the solution of the equation {* K (x) = § where §
is the Dirac-delta distribution, K (x) is an unknown and = € R". Now we need to prove that

K () = Ry (u) * (=1)* R, (0v).

To prove this , see ([4], p. 33).

Lemma 2.2. (i) The function K(x) = Say(w) is the solution of the equation LK (x) = 0
where Ly is defined by (1.3) and Ss(w) is defined by (2.7) with o = 2.

(i1) The function K(z) = (=1)*(—i)2 Sy (w) is an elementary solution of the operator LY,
where LY is the operator iterated k times defined by (1.8) and Sop(w) is defined by (2.7) with
a = 2k.

Proof. (i) Now L; = Z
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0? wE a-—n a-n—4
- _ 2 5 2
o2 w(w) = (a—n) Ho (o) + (o) (¢ —n—2)w T
Thus
& 325( ) a—n a—n—2+a_n< 2) and e
—Sa(w) =p w2 a—n—2w 2 x:
— Oz} H,(a) H,(a) —
Similarly
pte pta
, 0? gla—n) an2 a—n o« n4 )
Z,Z @Sa(w) = T@w 2 —an(a)(oz—n—Z)w 2 Z 5.
j=p+1 J Jj=p+1
Thus
(p+9q) anz  (@—n)a—n—2) e [ e
Ly S, (w) = o) (a—n)w =z + () w2 fo —4 Z x? -
=1 Jj=p+1
nla—mn) an-z2 (a—n)(a—n—2) a-n-2 W
= R = = (a—2)(a— 2.10
Hilo) + H, () w (@ =2)(a—mn) () (2.10)

For a = 2, we have LSy = 0. That is K(z) = Sy(w) is a solution of the homogeneous
equation Ly K(x) = 0.

(i1) To show that K(z) = (—1)F(—i)2Sor(w) is an elelmentary solution of L¥, that is
LE(—=1)%(=i)2 Sy (w) = §. At first we need to show that L¥(—1)*S,(w) = Sa_ox(w) and
Soap(w) = (~1F(i)Lks.

Now, from (2.10) and (2.5)

g&@g:@—mm—nﬁ%&y:@_mﬁ;@fQ
T

By direct calculation with the property of Gamma function we obtain

wa—;L—Q wa—g—Q
LiSa(w) = — - =8, o(w).
T2 2072 n—(a—2)
M(—=5—)

By keeping on operating the operator L; k-times to the function S, (w), we obtain

LA (w) = (—1)* Sasuw)

or
LY (=1 Sy (w) = Sa_or(w). (2.11)
Then we show that S_g, = (—1)%(4)20.
Now
w'z i, [wa%n] - n—a
Soar(w) = Hm, Sa(w) = Tim, [Hnm)] T am T3] P ( 2 ) |
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Now consider lim [w"z ]. We have w = x{+a3+...42,—i(x),  +22, 5+...4+25, ). By changing
yp+l o
ﬁaxp-ﬂ = \/——_i’ o Tptg = =

a——2k
, Tp = Yp and Tpyq =

the variables, let z1 = y1, 9 = yo,
Thus w =y +y5 + ... +y; +Ypu1 + - + Yy Where y;(i = 1,2, n) is real and p+q = n.
Let 1> = w = y? + y2 + ... + y> and consider the distribution w?*, where X is a complex

parameter. Since < w*, @ >= [w*Q(x)dz, where Q(z) is the element of the space D of the
Q

- Qdyrdys...dy,

infinitely differentiable functions with compact supports and x € R", drv = dxidxs...dx,. Thus

rQ/\a(xl,arg,...,xn)

A
<w™,Q >:/
a(yl,yQ,--.,yn)
Rn
1
<r? Q> .

= — /T”Qdyldyz---dyn = —
()} )
Rn
Now, by Gelfand and Shilov (see [1], p. 271), < w*,Q > hase simple poles at A\ = — — k
_ IS
and for k = 0 the residue of r** at \ = 5 is given by res r** = F?n)é(:c)
=" b)
Thus n
1 272
res <wt,Q>=——7 res <1r* Q >= —— W; < (), Q >
=2 (=i)f =3 (=2 T (5)
or .
1 27z
A
res w 7 =7~ 0(7) (2.13)
A= (—0): T (3)
Now we find res w?” for k is nonnegative integer by, Gelfand and Shilov (see [1], p. 272) we
A=k
have
A 1 k, Ak
wh = — — ~ - Liw™™".
PA+FDA+2)A+E) A+ 5)A+5+1)..(A+5+E—1)
Thus
res w'= res Liw 1
A==2—k A==2 A+ AFE)A+5) A+ 5+Ek—1) N
by (2.12) we have
1 212
A k
= LYo 2.14
S S T R o) (2.14)
Thus
lim w2 |= lim w’
a——2k )\_,—T"_k
Now from (2.12), we have
Im (o +2k)w™2 n res w2
P (D k) = AT (2 k)
2 res (%) 2
a=-—2k

)

a——2

"~ lim (o + 2k)T

a——2

N[

S_gk(w)
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Now

Thus by (2.14), we obtain

1NNk T S RI4RT (2
Qq% 72 k4T (2 +k)L,f5(x):
(—i)2  2-4FKID (2 + k)

S_%(w) =

- E‘l))g LEo(x) = (~1)*()F LE3(a)
Thus
So(w) = (i)26(x). (2.15)

From (2.11) and (2.15), we obtain

LY(=1)"Sap(w) = Sa—an(w) = So(w) = (i)25(x)
or
LE(—=1)*(—i)2 Sor(w) = 6.
It follows that K ( ) = (—1)F(—4)3 Sor(w) is an elementary solution of the operator L%. Similary

(=
K(x) = (—1)*(i) 2Ty (2) is an elementary solution of the operator L where z is defined by (2.9)
and Ty, is defined by (2.8) with a = 2k.

3. Main results

Theorem 3.1. Given the equation
'K (x) =6 (3.1)

where ®F is the operator iterated k-times defined by (1.1), 6 is the Dirac-delta distribution,
x = (r1,%2,...,x,) € R" and k is a nonnegative integer. Then the convolution

K (x) = Rjj,(u) * (=1)*Rg;,(v) * (1) (=) 2 Sor(w) * (1) (1) Ton(2) (3.2)

is an elementary solution or the Green function of the equation (3.1) where RE (u), RS, (v), Sar(w)
and Tor(2) are defined by (2.2), (2.4), (2.7) and (2.8) respectively with oo = 2k.
Proof. By (1.5) the equation (3.1) can be written as

®FK () = OFLELEK (1) = 6. (3.3)

Since the function R (u), RS, (v), Sox(w) and Thy(2) are tempered distributions (see [5],
p. 34, Lemma 2.1) and the convolution of functions in (3.2) exists and is a tempered distribution
(see [5], p. 35, Lemma 2.2 and [2], pp. 156-159). Now convolving both sides of (3.3) by R (u) x

(—1)* RS, (v) * (—1)*(—i)2 Sar(w) * (—=1)*(3) 2 Toy(2) we obtain
O Rk (w) % (—1)* Ry (0)] % LE[(—1)* (=) Sop(w)] * LE[(=1)*(6) 2 Ton(2)] * K () =

= [Rai(u) * (=1)*Rg(0) % (=1)* (1) Sau(w) * (=1)"(6) 2 Tow(2)] * .
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By Lemma 2.1 and Lemma 2.2 (i7), we obtain (3.2) as required, we call the solution K (z)
in (3.2) the Green function of the operator &* we denote the Green function

G(w) = Rhj(w) % (=1)" Rgy (v) % (=1)"(=i)2 Sap(w)  (=1)*(0) 2 Ton(2). (3.4)
Theorem 3.2. Given the equation
'K (2) = f() (3.5)

where & is defined by (1.1) and f(z) is a generalized function, then K(x) = G(x) * f(z) is a
weak solution for (3.5) where G(x) is a Green function of ®F defined by (3.4).
Proof. Convolving both sides of (3.5) by G(z) defined by (3.4) we obtain

G(z) * ®"K(x) = G(x) * f(x)

or

OFG(7) * K(x) = G(z) * f(x).

By Theorem 3.1, we have
dx K(z) =G(z) * f(x)

or

as required.
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