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В данной статье представлен уточненный анализ нового метода внутренних точек
для линейной оптимизации, использующий некоторые новые математические инстру-
менты, в частности, разработанные в [11], где рассмотрено семейство аналогичных
методов.

1. Introduction

Interior-point methods (IPMs) are among the most effective methods for solving wide classes of
Linear Optimization (LO) problems. Since the seminal work of Karmarkar [5], many researchers
have proposed and analyzed various IPMs for LO and a large amount of results have been
reported. For a survey we refer to recent books on the subject [14, 16, 17, 19]. An interesting
fact is that almost all known polynomial-time variants of IPMs use the so-called central path
[15] as a guideline to the optimal set, and some variant of Newton’s method is used to follow
the central path approximately. Therefore, analyzing the behavior of Newton’s method has a
prominent role in the theoretical investigation of IPMs.

1.1. Notation

We use the following notational conventions. Throughout the paper, ‖·‖ denotes the 2-norm
of a vector, whereas ‖·‖∞ denotes the infinity norm. For any x = (x1, x2, . . . , xn)T ∈ IRn, xmin

denotes the smallest and xmax the largest value of the components of x. If also s ∈ IRn, then xs
denotes the coordinatewise product of the vectors x and s. Furthermore, e denotes the all-one
vector of length n. Finally, if z ∈ IRn

+ and f : IR+ → IR+, then f (z) denotes the vector in IRn
+

whose i-th component is f (zi), with 1 ≤ i ≤ n.
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1.2. The gap between theory and practice

At present there is still a gap between the practical behavior of the algorithms and the
theoretical performance results, in favor of the practical behavior. This is especially true for
so-called primal-dual large-update methods, which are the most efficient methods in practice
(see, e.g. Andersen et al. [1]). The aim of this paper is to present a new analysis of the primal-
dual Newton algorithm proposed in [10]. The new iteration bound further improves the bound
in [10], and almost closes the above gap, at least from a theoretical point of view. The method
of [10] belongs to a wider family of methods, introduced and thoroughly studied in [11]. By
applying some of the new analysis tools developed in [11] to the method of [10], a relatively
simple analysis leads to the presently best possible iteration bound for large-update methods.

To be more concrete we need to go into more detail at this stage. We deal with the following
LO-problem:

(P ) min{cT x : Ax = b, x ≥ 0},
where A ∈ IRm×n, b ∈ IRm, c ∈ IRn, and its dual problem

(D) max{bT y : AT y + s = c, s ≥ 0}.

We assume that both (P ) and (D) satisfy the interior-point condition (IPC), i. e., there
exists (x0, s0, y0) such that

Ax0 = b, x0 > 0, AT y0 + s0 = c, s0 > 0.

It is well known that the IPC can be assumed without loss of generality. In fact we may, and
will assume that x0 = s0 = e. For this and some other properties mentioned below, see, e.g.,
[14]. Finding an optimal solution of (P ) and (D) is equivalent to solving the following system

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,

xs = 0. (1)

The basic idea of primal-dual IPMs is to replace the third equation in (1), the so-called
complementarity condition for (P ) and (D), by the parametrized equation xs = µe, where e
denotes the all-one vector and µ > 0. Thus we consider the system

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,

xs = µe. (2)

If rank(A) = m and the IPC holds, then for each µ > 0, the parameterized system (2) has
a unique solution. This solution is denoted as (x(µ), y(µ), s(µ)) and we call x(µ) the µ-center
of (P ) and (y(µ), s(µ)) the µ-center of (D). The set of µ-centers (with µ running through all
positive real numbers) gives a homotopy path, which is called the central path of (P ) and
(D). The relevance of the central path for LO was recognized first by Sonnevend [15] and
Megiddo [6]. If µ → 0 then the limit of the central path exists and since the limit points satisfy
the complementarity condition, the limit yields optimal solutions for (P ) and (D).

IPMs follow the central path approximately. Let us briefly indicate how this goes. Without
loss of generality we assume that (x(µ), y(µ), s(µ)) is known for some positive µ. For example,



A NEW AND EFFICIENT LARGE-UPDATE INTERIOR-POINT METHOD 63

due to the above assumption we may assume this for µ = 1, with x(1) = s(1) = e. We then
decrease µ to µ+ = (1 − θ)µ, for some θ ∈ (0, 1) and we solve the following Newton system

A∆x = 0,

AT ∆y + ∆s = 0,

s∆x + x∆s = µ+e − xs. (3)

This system defines a search direction (∆x, ∆s, ∆y). By taking a step along the search
direction, with the step size defined by some line search rules, one constructs a new triple
(x, y, s). If necessary, we repeat the procedure until we find iterates that are ‘close’ to (x(µ+), y(µ+), s(µ+)).
Then µ := µ+ is again reduced by the factor 1− θ and we apply Newton’s method targeting at
the new µ-centers, and so on. This process is repeated until µ is small enough, say until nµ ≤ ε;
at this stage we have found an ε-solution of the problems (P ) and (D).

The “closeness” of some iterates (x, y, s) to the µ-center will be quantified by using a
proximity measure δ(xs, µ) that will be defined later on. More formally, the algorithm can
now be described as follows.

Primal-Dual Newton Algorithm for LO

Input:
A proximity parameter τ ;
an accuracy parameter ε > 0;
a fixed barrier update parameter θ, 0 < θ < 1;

begin
x := e; s := e; µ := 1;
while nµ ≥ ε do
begin

µ := (1 − θ)µ;
while δ(xs; µ) ≥ τ do
begin

x := x + α∆x;
s := s + α∆s;
y := y + α∆y

end
end

end

As said before, we take x = s = e and µ = 1 to initialize the algorithm. The parameter α
(0 < α ≤ 1) is the so called step size (or damping factor) and will be specified later on. If the
proximity measure δ(xs; µ) exceeds some threshold value τ then we use one or more damped
Newton steps to recenter; otherwise µ is reduced by the factor 1 − θ. This is repeated until
nµ < ε. The step size (or damping factor) α has to be taken such that the proximity measure
function δ decreases by a sufficient amount. In the theoretical analysis the step size α is usually
given some default value.
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Let us mention that most practical algorithms use the ε-solution to construct a basic
solution and then produce an optimal basic solution by crossing-over to the Simplex method.
An alternative way is to apply a rounding procedure as described by Ye [18] (see also Mehrotra
and Ye [7], and Roos et al. [14]).

The choice of the parameter θ plays an important role both in theory and practice of IPMs.
Usually, if θ is a constant independent of the dimension order n of the problem, for instance

θ =
1

2
, then we call the algorithm a large-update (or long-step) method. If θ depends on the

problem, such as θ =
1√
n

, then the algorithm is named a small-update (or short-step) method.

It is now well known that small-update methods have the best iteration bound; they require

O
(√

n log
n

ε

)

iterations to produce an ε-solution. On the other hand, large-update methods,

in practice much more efficient than small-update methods [1], have a worse iteration bound,

namely O
(

n log
n

ε

)

[14, 17, 19]. This phenomenon is what we called “the gap between theory

and practice”.

1.3. Aim of this paper

Several authors have suggested to use the so called higher-order methods to improve the
complexity of large-update IPMs [3, 4, 8, 20, 21]. In these methods, in each iteration one
solves some additional equations based on the higher-order approximations to the system (2).

In this paper, as in [10] and [11], we propose a different way to narrow the gap between
theory and practice for large-update IPMs. In the next section we briefly discuss how the above
mentioned iteration bounds are obtained. Then we indicate some inconsistency that occurs in
the analysis and which suggests how to improve the iteration bound by slightly changing the
search direction. The new search direction is defined in Section 2.4 and the rest of the paper

is devoted to the analysis of this new direction. The result is an O
(√

n log n log
n

ε

)

iteration

bound. Clearly, this bound almost closes the gap between the iteration bounds for small-update
and large-update methods.

The result of this paper improves the result in [10], where the same authors used the same

search direction as in this paper but could obtain only a O
(

n
2

3 log
n

ε

)

iteration bound. The

improvement in this paper is due to the use of some new analytical tools, that were developed in
[11]. In fact, in [11] a whole class of IPMs is considered, based on so called self-regular proximity
functions, and for some IPMs in this class complexity results are derived that are the same as
the result of this paper. The aim of this paper is to concentrate on one member of this class,
thus showing that the currently best possible complexity result for large-update methods can
be obtained with a relatively simple analysis. In addition, we devote an extra section to explain
which ideas have led to the new approach. This will be done in Section 2.

2. Preliminaries

2.1. The classical approach

As noted before, for the analysis of the Newton process we need to measure the “distance”
from a primal-dual pair (x, s) to the µ-center (x(µ), s(µ)). The most popular tool for this is



A NEW AND EFFICIENT LARGE-UPDATE INTERIOR-POINT METHOD 65

the so-called primal-dual logarithmic barrier function. This function is, up to the “constant”
−n + n log µ, given by

Φc(xs, µ) =
xT s

µ
−

n
∑

i=1

log xisi − n + n log µ. (4)

Its usefulness can easily be understood by introducing the vector

v :=

√

xs

µ
. (5)

Note that the pair (x, s) coincides with the µ-center (x(µ), s(µ)) if and only if v = e. Now
defining

ψc(t) := t2 − 1 − 2 log t, t > 0,

one may easily verify that Φc(xs, µ) can be expressed in terms of the vector v as follows

Φc(xs, µ) = Ψc(v) :=
n

∑

i=1

ψc (vi) . (6)

Since ψc(t) is strictly convex, and attains its minimal value at t = 1, with ψc(1) = 0, it follows
that Φc(xs, µ) is nonnegative and vanishes if and only if v = e, i. e., if and only if xs = µe.

Below we need a second proximity measure, a so-called norm-based measure, namely

δ(xs, µ) :=
1

2

∥

∥v − v−1
∥

∥ =
1

2

∥

∥

∥

∥

√

xs

µ
−

√

µe

xs

∥

∥

∥

∥

. (7)

Note that
δ(xs, µ) = 0 ⇔ Φc(xs, µ) = 0 ⇔ v = e ⇔ xs = µe,

and otherwise δ(xs, µ) > 0 and Φc(xs, µ) > 0.
The classical analysis of large-update methods depends on the following two results. The

first result estimates the increase in Φc(xs, µ) if, at the start of an outer iteration, µ is multiplied
by the factor 1 − θ.

Proposition 2.1 (Lemma II.72 in [14]). Let (x, y, s) be strictly feasible and µ > 0. If µ+ =
(1 − θ)µ then

Φc(xs, µ+) ≤ Φc(xs, µ) +
2δρ(δ)θ

√
n

1 − θ
+ nψc

(

√

θ

1 − θ

)

,

where δ = δ(xs, µ) and ρ(δ) = δ +
√

1 + δ2 = O(δ).

The second result estimates the decrease in Φc(xs, µ) during a damped Newton step, with an
appropriate damping factor α.

Proposition 2.2 (Section 7.8.2 in [14]). If δ = δ(xs, µ) ≥ 1 there exists a step size α such
that

Φc(x+s+, µ) ≤ Φc(xs, µ) − ψc

(
√

2δ

ρ(δ)

)

= Φc(xs, µ) − Θ(1).
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With these two results we can derive an iteration bound for a large-update method. Taking
τ = 1 in the algorithm, at the start of each outer iteration one has δ = δ(xs, µ) ≤ 1. From

this it follows that then Φc(xs, µ) = O(1), and also ρ(δ) = O(1). Taking θ =
1

2
, or some other

fixed constant in the interval (0, 1), it follows from Proposition 2.1 that after the update of µ
we have

Φc(xs, µ) ≤ O(1) + O
(√

n
)

+ O(n) = O(n).

As long as δ ≥ 1, each inner iteration decreases the barrier function with at least a constant,
by Proposition 2.2. As a consequence, no more than O(n) inner iterations are necessary to reach
the situation where δ(xs, µ) ≤ 1. This proves that each outer iteration requires no more that
O(n) inner iterations. The number of outer iterations is bounded by (cf. Lemma II.17 in [14])

1

θ
log

n

ε
. (8)

Multiplication of this number by the number of inner iterations per outer iteration yields a
bound for the total number of iterations. If θ = Θ(1), the iteration bound becomes

O
(

n log
n

ε

)

. (9)

This is the currently best bound for large-update methods, derived in the past in many ways
and by many authors.

2.2. An alternative approach

To make clear what is the underlying idea of this paper, we proceed with a second derivation
of the iteration bound (9). In this derivation we do not use the logarithmic barrier funtion, but
we only use the norm-based proximity measure δ(xs, µ). The analysis was carried out first in
[9], and is based on the following two results.

Proposition 2.3 (Lemma IV.36 in [14]). Using the above notation, we have

δ(xs, µ+) ≤ 2δ(xs, µ) + θ
√

n

2
√

1 − θ
.

Proposition 2.4 (Theorem 3.6 in [9]). If δ = δ(xs, µ) ≥ 1 and α =
1

2δ2
then

δ(x+s+, µ)2 ≤ δ2 − 5

12
= δ2 − Θ(1).

Just as in the previous section, with these two results the iteration bound easily follows. If

τ = 1, at the start of an outer iteration we have δ = δ(xs, µ) ≤ 1. With θ =
1

2
, or some other

fixed constant in the interval (0, 1), Proposition 2.3 implies that after the update of µ we have

δ(xs, µ)2 ≤
(

O(1) + O
(√

n
))2

= O(n).

By Proposition 2.4, as long as δ ≥ 1, each inner iteration decreases the squared proximity
with at least a constant. As a consequence, no more than O(n) inner iterations are necessary to
reach the situation where δ(xs, µ) ≤ 1. Hence, each outer iteration requires no more that O(n)
inner iterations. Using (8) again, we obtain (9) as a bound for the total number of iterations.
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2.3. Two observations

2.3.1. First observation

In [9] we found another interesting result that suggests a direction where a better complexity
bound for the algorithm might be obtained.

Proposition 2.5 (Corollary 4.4 in [9]). Let δ = δ(xs, µ) ≥ 1 and vmin ≥ 1. Then the step

size α =
1

1 + δ
gives

δ(x+s+, µ)2 ≤ δ2 − 3δ2

4 (1 + δ)
≤ δ2 − 3

8
δ.

If we could prove the inequality in Proposition 2.5 without the assumption vmin ≥ 1, this would
give the desired iteration bound

O
(√

n log
n

ε

)

(10)

for large-update methods, as we will show below. We need two simple technical results for this
purpose; for completeness’ sake we include their (short) proofs.

Lemma 2.6 (Lemma 2.1 in [10]). If α ∈ [0, 1], then

(1 − t)α ≤ 1 − αt, ∀ t ∈ [0, 1]. (11)

Proof: For any fixed α ≤ 1 the function (1 − t)α − 1 + αt is decreasing for t ∈ [0, 1] and zero
if t = 0. This implies (11).

Lemma 2.7 (Proposition 2.2 in [10]). Let t0, t1, . . . , tK be a sequence of positive numbers
such that

tk+1 ≤ tk − κt1−γ
k , k = 0, 1, . . . , K − 1, (12)

where κ > 0 and 0 < γ ≤ 1. Then K ≤
⌊

tγ0
κγ

⌋

.

Proof: Using (12), we have

0 < tγk+1
≤

(

tk − κt1−γ
k

)γ
= tγk

(

1 − κt−γ
k

)γ ≤ tγk
(

1 − κγt−γ
k

)

= tγk − κγ,

where the second inequality follows from (11). Hence, for each k, tγk ≤ tγ0 − kγκ. Taking k = K
we obtain 0 < tγ0 − Kγκ, which implies the lemma. 2

By taking in γ =
1

2
, κ =

3

8
, and tk = δ(xksk, µk)2, where xk, sk, and µk denote the values

of x, s, and µ at the k-th iteration, Lemma 2.7 yields the iteration bound (10).

Comparison of the results in Proposition 2.4 and Proposition 2.5 indicates that a larger
decrease of the proximity occurs when the smallest coordinate of the vector v is large. Hence,
the question becomes how to keep vmin large during the course of the algorithm. In
the next section we make another observation that points in the same direction.
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2.3.2. Second observation

In the sequel we will frequently use scaled versions of the displacements ∆x and ∆s. These are
defined as follows:

dx :=
v∆x

x
, ds :=

v∆s

s
. (13)

Now the system (3) defining the Newton search directions can be rewritten as

Ādx = 0,

ĀT ∆y + ds = 0,

dx + ds = v−1 − v,

where Ā = AV −1X, with V = diag (v), X = diag (x). The last equation in the above system is
called the scaled Newton equation. Yet we observe that this equation can be written as

dx + ds = v−1 − v = −1

2
∇Ψc(v),

with Ψc(v) denoting the ‘scaled’ logarithmic barrier function, as defined in (6). This shows that
the scaled search directions depend on the steepest descent direction of the scaled logarithmic
barrier function. This seems to be natural when dealing with the analysis of Section 2.1.
However, when dealing with the analysis of Section 2.2, we are trying to minimize the squared
proximity, i. e., ‖v−1 − v‖2

, and then it seems to be more attractive to relate the search direction
to its gradient, as follows:

dx + ds = −1

2
∇v

∥

∥v−1 − v
∥

∥

2
= v−3 − v. (14)

Changing the definition of the search directions in this way, the authors could obtain a better
iteration bound for large-update methods in [10], namely

O
(

n
2

3 log
n

ε

)

.

The analysis in [10] used as a proximity measure, albeit implicitly, ‖v−3 − v‖. Note that small
coordinates (smaller than 1) in v may blow up this measure. Hence, this measure is in favour of
large values of vmin. This strengthens our conclusion of the previous section, namely that the
theoretical complexity may improve if we keep vmin large during the course of the
algorithm.

We conclude this section by considering the direction (14) in the original space. One has

s∆x + x∆s = µv (dx + ds) = µ
(

v−2 − v2
)

,

or, equivalently,

s∆x + x∆s = µ
µe

xs
− xs.

Thus the new direction is the Newton direction targeting at µ
µe

xs
instead of µe.
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2.4. A class of new directions

Inspired by the result discussed in the previous section, we modify the Newton equation in this
paper as follows:

dx + ds = −∇Ψ(v) = v−q − v, (15)

with q > 1, and where the functions ψ and Ψ are defined according to

Ψ(v) :=
n

∑

i=1

ψ(vi), ψ(vi) :=

(

v2
i − 1

2
+

v1−q
i − 1

q − 1

)

. (16)

Note that since q > 1, the function Ψ(v) has the barrier property, i. e., the property that it
goes to infinity if the vector v approaches the boundary of the feasible region, i.e., if one of the
coordinates of v goes to zero. We call it a polynomial barrier function. Only in the limit, when
q approaches 1, the barrier function becomes logarithmic:

lim
q↓1

Ψ(v) =
1

2

n
∑

i=1

(

v2

i − 1 − log v2

i

)

=
1

2

(

xT s

µ
−

n
∑

i=1

xisi + n log µ − n

)

.

This is, up to the factor
1

2
, precisely the logarithmic barrier function (4).

In the analysis of the algorithm with the modified Newton direction, we also use a norm-
based proximity measure σ(v), naturally related to our new barrier function, according to

σ(v) := ‖∇Ψ(v)‖ = ‖dx + ds‖ =
∥

∥v−q − v
∥

∥ . (17)

Letting ∆x, ∆y, ∆s denote the displacements in the original space, the result of a damped
Newton step with damping factor α is denoted as

x+ = x + α∆x, y+ = y + α∆y, s+ = s + α∆s. (18)

The rest of the paper is devoted to the complexity analysis of the large-update algorithm with
the modified Newton direction (15). Let us mention that basically the same algorithm, with the
same search direction, was proposed and analyzed in [10]. In that paper a parameter ρ occurs
in the definition of the search direction (cf. [10, page 4]); by taking ρ = q − 1, the definition
coincides with (15). By using some new tools in the analysis we obtain in this paper a better
complexity result. This is due to the fact that in [10] we had to restrict ourselves to the case
ρ ≤ 2, which corresponds to q ≤ 3, whereas we can now deal also with larger values of q in the
analysis.

The rest of the paper is organized as follows. In the next section we derive bounds for the
coordinates of the vector v in terms of σ(v) and we derive a lower bound for the maximum
value of a feasible step size. In Section 4 we estimate the decrease of the barrier function during
a damped step, and in Section 5 the increase due to the update of the barrier parameter µ.
When having these results, the announced iteration bound easily follows, in Section 6.

3. Bounds for v and the step size

Our first lemma in this section provides a lower and an upper bound for the coordinates of v
in terms of σ(v).
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Lemma 3.1. Let σ := σ(v), as defined by (17). Then

vmin ≥ (1 + σ)−
1

q , vmax ≤ 1 + σ.

Proof: The lemma is trivial if vmin ≥ 1 and vmax ≤ 1. Consider the case that vmin < 1. From
(17) we derive

σ =
∥

∥v − v−q
∥

∥ ≥
∣

∣v−q
i − vi

∣

∣ , 1 ≤ i ≤ n,

which implies

σ ≥ 1

vq
min

− vmin ≥ 1

vq
min

− 1.

On the other hand, if vmax > 1 then we find

σ ≥ vmax −
1

vq
max

≥ vmax − 1.

The lemma follows directly from the above inequalities. 2

Note that if q goes to infinity, then the lower bound for vmin approaches 1, for all values
of σ.

In the sequel we use the following notations:

∆x =
∆x

x
=

dx

v
, ∆s =

∆s

s
=

ds

v
. (19)

We then may write
x+ = x (e + α∆x) , s+ = s (e + α∆s) . (20)

Hence the maximum step size is determined by the vector (∆x, ∆s): the step size α is feasible
if and only if e + α∆x ≥ 0 and e + α∆s ≥ 0, and this will certainly hold if

1 − α ‖(∆x, ∆s)‖ ≥ 0. (21)

Since the displacements ∆x and ∆s are orthogonal, the scaled displacements dx and ds are
orthogonal as well, i. e., dT

x ds = 0. This enables us, using (17), to write

σ(v) = ‖dx + ds‖ = ‖(dx, ds)‖ . (22)

Now we are ready to state our next result.

Lemma 3.2. One has
‖(∆x, ∆s)‖ ≤ σ(1 + σ)

1

q .

Consequently, the maximal feasible step size, αmax, satisfies

αmax ≥ 1

σ (1 + σ)
1

q

.

Proof: Using Lemma 3.1 and (22), we may write

‖(∆x, ∆s)‖ =

∥

∥

∥

∥

(

dx

v
,
ds

v

)∥

∥

∥

∥

≤ ‖(dx, ds)‖
vmin

=
σ

vmin

≤ σ(1 + σ)
1

q .

From (21) we derive that

αmax ≥ 1

‖(∆x, ∆s)‖
.

Hence the lemma follows. 2

In the next section it will become clear that the default step size in our analysis is only a
small fraction of the maximal step size in Lemma 3.2.
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4. Estimate of the decrease of the barrier function

Our aim in this section is to estimate the decrease of the new barrier function

Φ(xs, µ) := Ψ(v) =
n

∑

i=1

ψ(vi) (23)

during one modified Newton step, for a suitable (feasible) step size α. It will be convenient to
introduce

Ψb(v) :=
n

∑

i=1

ψb(vi), ψb(vi) :=
v1−q

i − 1

q − 1
. (24)

Then we may write

Φ(xs, µ) =
n

∑

i=1

(

v2
i − 1

2
+

v1−q
i − 1

q − 1

)

=
eT v2 − n

2
+ Ψb(v).

Hence, the value of the barrier function after one step is given by

Φ(x+s+, µ) =
eT v2

+ − n

2
+ Ψb(v+), v+ =

√

x+s+

µ
. (25)

We proceed by deriving a simple expression for v+. Using (20) and (19) we find

v2

+ =
x+s+

µ
=

xs (e + α∆x) (e + α∆s)

µ
= v2 (e + α∆x) (e + α∆s) = (v + αdx) (v + αds) .

Hence, using the orthogonality of dx and ds we obtain

eT v2

+ = eT
(

v2 + αv (dx + ds) + α2dxds

)

= eT v2 + αvT
(

v−q − v
)

.

Furthermore,

Ψb(v+) = Ψb

(

√

(v + αdx) (v + αds)
)

.

At this stage we need a simple, but important lemma. As we will see later, it provides a new
and convenient tool in the analysis of our large-update method.

Lemma 4.1 (cf. Lemma 2.2 in [11]). Let t1 > 0 and t2 > 0. Then

ψb

(√
t1t2

)

≤ 1

2
(ψb (t1) + ψb (t2)) . (26)

Proof: One may easily verify that the property in the lemma holds if and only if the function
ψb (ez) is convex in z, and this holds if and only if ψb

′(t) + tψb
′′(t) ≥ 0, whenever t > 0. Since

ψb
′(t) = −t−q, ψb

′′(t) = qt−q−1,

one has ψb
′(t) + tψb

′′(t) = (q − 1)t−q > 0. Hence, the lemma follows. 2
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The above proof makes clear that the property (26) is equivalent to convexity (with respect
to ξ) of the composed function ψb

(

eξ
)

. We therefore say that ψb is right exponentially convex,
or shortly, right e-convex.1

Due to the definition of the function Ψb, the property in Lemma 4.1 extends to Ψb, and
hence we have2

Ψb(v+) = Ψb

(

√

(v + αdx) (v + αds)
)

≤ 1

2

n
∑

i=1

(ψb (vi + αdxi) + ψb (vi + αdsi)) .

Substitution of the above results in (25) gives

Φ(x+s+, µ) ≤ eT v2 + αvT (v−q − v) − n

2
+

1

2

n
∑

i=1

(ψb (vi + αdxi) + ψb (vi + αdsi)) . (27)

Let us denote the change in Φ during the step as f(α). Then

f(α) = Φ(x+s+, µ) − Φ(xs, µ)) ≤ f1(α),

where

f1(α) := −Φ(xs, µ) +
eT v2 + αvT (v−q − v) − n

2
+

1

2

n
∑

i=1

(ψb (vi + αdxi) + ψb (vi + αdsi)) .

Note that f(0) = f1(0) = 0. We next consider the first and second derivative of f1(α) to α.

f ′
1(α) =

1

2
vT

(

v−q − v
)

+
1

2

n
∑

i=1

(ψb
′ (vi + αdxi) dxi + ψb

′ (vi + αdsi) dsi) .

One easily verifies, using (15) and (17), that

f ′
1(0) = −1

2
σ2. (28)

Furthermore, using that ψb
′′(t) = qt−q−1 is monotonically decreasing,

f ′′
1 (α) =

1

2

n
∑

i=1

(

ψb
′′ (vi + αdxi) dx

2

i + ψb
′′ (vi + αdsi) ds

2

i

)

=

=
1

2

n
∑

i=1

((

q (vi + αdxi)
−q−1

)

dx
2

i +
(

q (vi + αdsi)
−q−1

)

ds
2

i

)

≤ q

2

n
∑

i=1

(vmin − ασ)−q−1
(

dx
2

i + ds
2

i

)

.

The last inequality is due to

vi + αdxi ≥ vmin − α ‖dx‖ ≥ vmin − ασ,

vi + αdsi ≥ vmin − α ‖ds‖ ≥ vmin − ασ.

1Recall that f : IR → (0,∞) is called logarithmically convex (or log-convex) if the composite function log ◦f
is convex [2]. A natural way to extend this well known notion would be to define a function f to be left g-
convex (or shortly g-convex) if g ◦ f is convex; in case f ◦ g is convex we use the adjective ‘right’ to refer to
the reversed order of the factors, and call the function f right g-convex. This terminology is consistent with the
above definition of right e-convexity: f is right e-convex if and only if f ◦ exp is convex.

2It may be noted that in [11] it is assumed that the barrier function Ψ itself is right e-convex, whereas in
this paper we use right e-convexity of its ‘barrier part’ Ψb.
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Thus, using also (22), we obtain

f ′′
1 (α) ≤ h(α) :=

1

2
qσ2 (vmin − ασ)−q−1 . (29)

By integration, this implies, for any α such that vmin − ασ ≥ 0,

f ′
1(α) = f ′

1(0) +

∫ α

0

f ′′
1 (ξ) dξ ≤ f ′

1(0) +

∫ α

0

h(ξ) dξ.

Since f(α) ≤ f1(α), by integrating once more we get, using f1(0) = 0,

f(α) ≤ f1(α) =

∫ α

0

f ′
1(ζ) dζ ≤ f2(α) := f ′

1(0)α +

∫ α

0

∫ ζ

0

h(ξ) dξ dζ.

Obviously, f ′′
2 (α) = h(α) > 0. Hence f2(α) is convex in α, and twice differentiable. Since

f2(0) = 0, f ′
2(0) = f ′

1(0) < 0, and f ′′
2 (α) = h(α) goes to infinity if α approaches vmin/σ, the

function f2(α) attains its minimal value at some positive value α̃ of α, and α̃ is the stationary
point of f2(α). Hence α̃ is the solution of the equation

f ′
2(α) = f ′

1(0) +

∫ α

0

h(ξ) dξ = 0.

Using (29), this equation is equivalent to

f ′
1(0) + 1

2
qσ2

∫ α

0

(vmin − ξσ)−q−1 dξ = 0.

Also using (28), and by evaluting the integral, we find that the stationary point α̃ satisfies

−σ2

2
+

σ

2

(

(vmin − ασ)−q − v−q
min

)

= 0.

By solving ᾱ from this equation, we find

ᾱ =
vmin

σ

(

1 − (1 + σvq
min

)−
1

q

)

. (30)

By Lemma 3.1,

vq
min

≥ 1

σ + 1
.

Substitution in (30) gives

ᾱ ≥ vmin

σ

(

1 −
(

1 +
σ

σ + 1

)− 1

q

)

.

Using (11), in Lemma 2.6, we derive that

(

1 +
σ

σ + 1

)− 1

q

=

(

1 − σ

2σ + 1

)
1

q

≤ 1 − σ

q (2σ + 1)
,

and hence we obtain, using Lemma 3.1 once more,

ᾱ ≥ vmin

σ

σ

q (2σ + 1)
=

vmin

q (2σ + 1)
≥ 1

q (2σ + 1) (σ + 1)
1

q

. (31)
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In the sequel we assume σ ≥ 1, and we use the step size

α∗ =
1

3qσ (σ + 1)
1

q

. (32)

Note that α∗ ≤ ᾱ. To get an estimate for the value of f2(α
∗) we use another useful lemma from

[11]. For completeness’ sake we include its elementary proof.

Lemma 4.2 (Lemma 3.12 in [11]). Let h(t) be a twice differentiable convex function with
h(0) = 0, h′(0) < 0 and let h(t) attain its (global) minimum at t∗ > 0. If h′′(t) is increasing
for t ∈ [0, t∗] then

h(t) ≤ th′(0)

2
, 0 ≤ t ≤ t∗.

Proof: Using the hypothesis of the lemma we may write

h(t) =

∫ t

0

h′(ξ)dξ = h′(0)t +

∫ t

0

∫ ξ

0

h′′(ζ)dζdξ ≤ h′(0)t +

∫ t

0

ξh′′(ξ)dξ =

= h′(0)t +

∫ t

0

ξdh′(ξ) = h′(0)t + (ξh′(ξ))|t
0
−

∫ t

0

h′(ξ)dξ ≤ h′(0)t −
∫ t

0

dh′(ξ) = h′(0)t − h(t).

This implies the lemma. 2

We apply this lemma with h = f2 and t = α. First we verify that the hypotheses of the
lemma are satisfied: we have f2(0) = 0 and f ′

2(0) < 0. Furthermore, f ′′
2 (α) = h(α) > 0, and

f ′′′
2 (α) = h′(α) =

q(q + 1)σ3

2
(vmin − ασ)−q−2 > 0.

Hence the lemma applies, and using also (28) we obtain

f(α∗) ≤ f2(α
∗) ≤ α∗f ′

2(0)

2
=

α∗f ′
1(0)

2
= −α∗σ2

4
.

Finally, by substitution of (32) and using σ ≥ 1, we get

f(α∗) ≤ −σ

12q (σ + 1)
1

q

≤ −σ

12q (2σ)
1

q

≤ −σ
q−1

q

24q
. (33)

Remark 4.3. If vmin ≥ 1 then one may easily verify that the same chain of arguments leads
to

f(α∗) ≤ −σ2

4q(σ + 1)
≤ −σ

8q
,

with

α∗ =
1

q(σ + 1)
.
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5. Effect of updating the barrier parameter

We start this section with some technical results. As before, we write

ψ(t) =
t2 − 1

2
+ ψb(t), ψb(t) =

t1−q − 1

q − 1
, q > 1. (34)

Since
ψ′(t) = t − t−q, ψ′′(t) = 1 + qt−q−1,

we have ψ′′(t) ≥ 1 for all t. This will be used in the proof of the next lemma.

Lemma 5.1. One has
1

2
(t − 1)2 ≤ ψ(t) ≤ 1

2
ψ′(t)2, t > 0.

Proof: Using that ψ(1) = ψ′(1) = 0, we may write

ψ(t) =

∫ t

1

∫ ξ

1

ψ′′(ζ) dζ dξ ≥
∫ t

1

∫ ξ

1

dζ dξ =
1

2
(t − 1)2 ,

which proves the first inequality. The second inequality is obtained as follows:

ψ(t)=

∫ t

1

∫ ξ

1

ψ′′(ζ)dζdξ ≤
∫ t

1

∫ ξ

1

ψ′′(ξ)ψ′′(ζ)dζdξ=

∫ t

1

ψ′′(ξ)ψ′(ξ)dξ=

∫ t

1

ψ′(ξ)dψ′(ξ)=
1

2
ψ′(t)2.

This completes the proof.

Corollary 5.2. One has ‖v‖ ≤ √
n +

√

2Ψ(v).

Proof: Using the first inequality in Lemma 5.1 and the inequality of Cauchy — Schwarz we
find

2Ψ(v) = 2
n

∑

i=1

ψ(vi) ≥
n

∑

i=1

(vi − 1)2 = ‖v‖2−2eT v+n ≥ ‖v‖2−2 ‖e‖ ‖v‖+‖e‖2 = (‖v‖ − ‖e‖)2 .

This implies
‖v‖ ≤ ‖e‖ +

√

2Ψ(v) =
√

n +
√

2Ψ(v),

proving the corollary.

Corollary 5.3. One has Ψ(v) ≤ 1

2
σ(v)2.

Proof: Using the second inequality in Lemma 5.1 and (17) we may write

Ψ(v) =
n

∑

i=1

ψ (vi) ≤
1

2

n
∑

i=1

ψ′ (vi)
2 =

1

2
‖∇Ψ(v)‖2 = dtfrac12σ(v)2.

Hence the proof is complete. 2

We proceed by estimating the increase of ψ(t) when t increases to βt, with β ≥ 1.
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Lemma 5.4. Let β ≥ 1. Then

ψ(βt) ≤ ψ(t) +
1

2

(

β2 − 1
)

t2.

Proof: Using the notation of (34), we may write

ψ(βt) =
β2t2 − 1

2
+ ψb(βt) = ψ(t) +

1

2

(

β2t2 − t2
)

+ ψb(βt) − ψb(t).

Since ψb(t) is monotonically decreasing, ψb(βt) − ψb(t) ≤ 0. Therefore, the lemma follows. 2

With the last lemma we are able to estimate the effect of an update of the barrier parameter
to the value of the barrier function.

Lemma 5.5. Let θ ∈ (0, 1) and µ+ = (1 − θ)µ. Then

Φ(xs, µ+) ≤ Φ(xs, µ) +
θ

2 (1 − θ)

(

2Ψ(v) +
√

2nΨ(v) + n
)

.

Proof: Recall that Φ(xs, µ) := Ψ(v). When changing µ to µ+, the vector v becomes v+ = βv,
with β = 1/

√
1 − θ. Using Lemma 5.4 with this β, we write

Ψ(βv) =
n

∑

i=1

ψ(βvi) ≤
n

∑

i=1

(

ψ(vi) +
1

2

(

β2 − 1
)

v2

i

)

= Ψ(v) +
θ ‖v‖2

2 (1 − θ)
.

This implies, by Corollary 5.2,

Ψ(βv) ≤ Ψ(v) +
θ
(√

n +
√

2Ψ(v)
)2

2 (1 − θ)
= Ψ(v) +

θ

2 (1 − θ)

(

2Ψ(v) +
√

2nΨ(v) + n
)

.

The proof is completed.

6. New algorithm and its complexity analysis

The algorithm we analyse in this section is a slight modification of the ‘classical’ primal-dual
algorithm considered in Section 1. In the new algorithm we monitor the progress of inner
iterations by the new barrier function Φ(xs, µ), as defined in (23). Thus the algorithm goes as
follows.
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New Primal-Dual Newton Algorithm for LO

Input:
A threshold parameter τ ≥ 1;
an accuracy parameter ε > 0;
a fixed barrier update parameter θ, 0 < θ < 1;

begin
x := e; s := e; µ := 1;
while nµ ≥ ε do
begin

µ := (1 − θ)µ;
while Φ(xs, µ) ≥ τ do
begin

x := x + α∆x;
s := s + α∆s;
y := y + α∆y

end
end

end

At he start of an outer iteration, just before the update of the barrier parameter, we have
Φ(xs, µ) ≤ τ . By Lemma 5.5, after the update of the barrier parameter,

Φ(xs, µ+) ≤ τ +
θ

2 (1 − θ)

(

2τ +
√

2nτ + n
)

.

Using the default step size α∗, as given by (32), each inner iteration decreases the barrier
function with at least

−σ
q−1

q

24q
, (35)

where σ = σ(v), by (33). Recall that this result is only valid if σ ≥ 1. This certainly holds if
τ ≥ 1, because then, at the start of each inner iteration one has Φ(xs, µ) ≥ 1. By Corollary 5.3
this implies σ ≥ 1. As a consequence of (35) and Corollary 5.3 we find that each inner iteration
decreases the barrier function value with at least

−Φ
q−1

2q

24q
,

where Φ denotes the barrier function value before the inner iteration. This brings us in a

situation where we can apply Lemma 2.7. With κ =
1

24q
and γ =

q + 1

2q
we then obtain that

at most














48q2

(

τ +
θ

2 (1 − θ)

(

2τ +
√

2nτ + n
)

)
q+1

2q

q + 1















(36)
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inner iterations are needed to recenter. We are now ready for the main complexity result of
this paper.

Theorem 6.1. The total number of iterations is at most















48q2

(

τ +
θ

2 (1 − θ)

(

2τ +
√

2nτ + n
)

)
q+1

2q

q + 1















⌈

1

θ
log

n

ε

⌉

.

Proof: According to (8) the number of outer iterations is at most

⌈

1

θ
log

n

ε

⌉

.

Multiplying this number by the bound (36) for the number of inner iterations per outer iteration
we obtain the theorem. 2

Removing the integer brackets the iteration bound of Theorem 6.1 becomes

48q2

(

τ +
θ

2 (1 − θ)

(

2τ +
√

2nτ + n
)

)
q+1

2q

q + 1

1

θ
log

n

ε
.

Thus, if θ =
2

3
and τ = n the bound becomes

72q2
(

4n + n
√

2
)

q+1

2q

q + 1
log

n

ε
≤ 72

(

4 +
√

2
) q2n

q+1

2q

q + 1
log

n

ε
≤ 390 q n

q+1

2q log
n

ε
.

Fixing q > 1, this bound improves the best bound known for large-update methods, which
is O

(

n log n
ε

)

. Note that the order of magnitude does not change if we take τ = 1, or τ = O (n).

Another interesting choice is q =
1

2
log n, which minimizes the iteration bound. Then the

iteration bound becomes
O

(√
n log n log

n

ε

)

,

which is quite close to the currently best iteration bound known for interior-point methods,

namely O
(√

n log
n

ε

)

.

7. Concluding remarks

We have shown that by slightly modifying the classical primal-dual Newton search direction,
the complexity of large-update methods can be improved. From a theoretical point of view, the
existing gap between small-update and large-update methods has thus been almost closed.

It has become clear that the obtained complexity result highly depends on the choice of a
suitable barrier function Φ(xs, µ). As we have shown the gradient of the scaled version Ψ(v)
of Φ(xs, µ) naturally induces both a search direction and a norm-based proximity measure.
The barrier function used in this paper is a member of a wider class of barrier functions, each
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of which can be used to derive the same complexity bound as obtained in this paper. This
is the subject of the recent paper [11], where we introduced the class of self-regular barrier
functions. It should be no surprise that the analysis in this paper is much simpler than in
[11], since when dealing with one specific barrier function one can explore all nice properties of
this function that are not necessarily common to all self-regular barrier functions. It might be
mentioned that we extended the theory of IPMs based on self-regular barrier functions in [11]
to Semidefinite Optimization, in [12] to Smooth Nonlinear Complementarity problems and in
[13] also to optimization over the Second Order Cone.

Finally, let us discuss briefly how the ideas presented in this paper can be incorporated into
practical implementations of IPMs. So far only very limited computational tests have been done.
Based on these experiments we intend to believe that it might be a good idea to use a dynamic
scheme such that when vmin is relatively large, then the classic Newton direction is used, while
if it goes too close to zero, then we use our new search direction, with an appropriate value of
the parameter q. It requires further investigation to work out the details of such a strategy.
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