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Обсуждаются свойства многообразий и вопросы непрерывости допустимых огра-
ничений M [h, g, u, v], а также соответствующее поведение (f, h, g, u, v) при слабых воз-
мущениях. Формулируются теоремы о многообразиях, непрерывности, универсаль-
ности, устойчивости и структурной устойчивости. Кратко описываются возможные
расширения на случаи неограниченности и недифференцируемости, указываются та-
кие структурные границы, при которых полученные результаты могут трактоваться
в терминах задач оптимального управления для обыкновенных дифференциальных
уравнений.

1. Introduction

Under suitable assumptions, the following fields of problems from science, engineering and
control lead to generalized semi-infinite (GSI) optimization: ◦ optimizing the layout of a
special assembly line, ◦ maneuverability of a robot, ◦ time minimal heating or cooling of a ball
of some homogeneous material, ◦ approximation of a thermo-couple characteristic in chemical
engineering, ◦ structure and stability in optimal control of ordinary differential equations. For
motivations and references see, e.g., [59, 60]. In future, GSI applications may also be expected
in optimal experimental design ([9]). The GSI problems under consideration have the form

PGSI(f, h, g, u, v)





Minimize f(x) on MGSI [h, g], where

MGSI [h, g] := {x ∈ IRn | hi(x) = 0 (i ∈ I),
g(x, y) ≥ 0 (y ∈ Y (x)) }.

The semi-infinite character comes from the perhaps infinite number of elements of Y (=
Y (x)) [10, 45], while the generalized character comes from the x-dependence of Y (·). We
suppose these index sets to be finitely constrained (F):

Y (x) = MF [u(x, ·), v(x, ·)] := { y ∈ IRq | uk(x, y) = 0 (k ∈ K), v`(x, y) ≥ 0 (` ∈ L)}(x ∈ IRn).

Let h = (hi)i∈I , u = (uk)k∈K , v = (v`)`∈L, where hi : IRn → IR, i ∈ I := {1, . . . ,m}, uk :
IRn × IRq → IR, k ∈ K := {1, . . . , r}, v` : IRn × IRq → IR, ` ∈ L := {1, . . . , s} (m < n; r < q).
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We assume that f : IRn → IR, g : IRn × IRq → IR, hi (i ∈ I), uk (k ∈ K), v` (` ∈ L) are
once continuously differentiable (C1). By Df(x), DT f(x) we denote the row- (column) vector

of the first-order partial derivatives
∂

∂xκ

f(x), and Dxg(x, y), Dyg(x, y) consist of
∂

∂xκ

g(x, y)

and
∂

∂yσ

g(x, y). Let a given set U0 ⊂ IRn, MGSI [h, g] ∩ U0 6= ∅, be bounded and open.

Assumption AU0 : ∪
x∈U0 Y (x) is bounded (hence, by continuity, compact).

In generalized semi-infinite optimization, the feasible set MGSI [h, g] need not be closed [24].
The following assumption, however, ensures closedness:

Assumption BU0 : For all x ∈ U0, the linear independence constraint qualification (LICQ)
is fulfilled for MF [u(x, ·), v(x, ·)], i.e., linear independence of

Dyuk(x, y), k ∈ K, Dyv`(x, y), ` ∈ L0(x, y)

(considered as a family), where L0(x, y) := { ` ∈ L | v`(x, y) = 0 } consists of active indices.
Using differential topology [17, 20], these assumptions admit local linearization of Y (x) (x ∈

U0) by finitely many C1-diffeomorphisms φj
x : Vj → Sj (j ∈ J) in such a way that the image

sets Zj of indices are x-independent squares (in a linear subspace). Herewith, PGSI(f, h, g, u, v)
becomes locally (in U0) equivalently expressed as an ordinary semi-infinite optimization
problem POSI(f, h, g0, u0, v0), where MOSI [h, g0] ∩ U0 = MGSI [h, g] ∩ U0, f being unaffected
[57, 59].

On the upper stage of variable x, we shall use a constraint qualification, too. This cq
geometrically means the existence of an (at M [h] = h−1({0})) tangential, “inwardly” pointing
direction at x:

Definition. We say that the extended Mangasarian-Fromovitz constraint quali-
fication (EMFCQ) is fulfilled at a given x ∈ MGSI [h, g], if the conditions EMF1, 2 are
satisfied:
EMF1. Dhi(x), i ∈ I, are linearly independent.

EMF2. There exists an “EMF-vector” ζ ∈ IRn such that

Dhi(x) ζ = 0 for all i ∈ I,

Dxg
0
j (x, z) ζ > 0 for all z ∈ IRq, j ∈ J, with (φj

x)
−1(z) ∈ Y0(x),

where Y0(x) := { y ∈ Y (x) | g(x, y) = 0 } consists of active indices. EMFCQ is said to be
fulfilled for MGSI [h, g] on U0, if EMFCQ is fulfilled for all x ∈ MGSI [h, g] ∩ U0.

For further information and versions of EMFCQ see [15, 20, 24, 26, 40], but also [7, 18].
Let a local minimum x̂ of PGSI(f, h, g, u, v) be given and EMFCQ be fulfilled there. Then,

we can state the existence of Lagrange multipliers λi, µκ such that the conditions

Df(x̂) =
∑

i∈I

λiDhi(x̂) +
∑

κ∈{1,...,κ̂}

µκDxg
0
jκ(x̂, zκ),

µκ ≥ 0 (κ ∈ {1, . . . , κ̂})

are satisfied, referring to ordinary semi-infinite (OSI) data [15, 57, 59]. Now, we call x̂ a G-O
Kuhn-Tucker point. Here, the points zκ ∈ Zjκ

are suitable active indices. Referring to all the
given GSI data now, a further evaluation yields the following Kuhn-Tucker conditions
with corresponding Lagrange multipliers λi, µκ, ακ,k, βκ,` [57, 59]:
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KT1. Df(x̂) =
∑
i∈I

λiDhi(x̂) +
∑

κ∈{1,...,κ̂}

µκDxg(x̂, yκ)−

−
∑

k∈K

ακ,kDuk(x̂, yκ) −
∑

`∈L0(x̂,yκ)
κ∈{1,...,κ̂}

βκ,`Dxv`(x̂, yκ),

KT2. µκ, βκ,` ≥ 0 (` ∈ L0(x̂, yκ), κ ∈ {1, . . . , κ̂}).
Again, the yκ ∈ Y0(x̂) are active. Now, we call x̂ a G Kuhn-Tucker point. Under general

assumptions, the necessary optimality condition KT1, 2 was for the first time proved
by Jongen, Rückmann and Stein [24]. Note, that the linear combination KT1 contains the
derivatives of all the defining functions. The foregoing conditions can also be stated as growth
(angular) conditions over tangent cones [32, 57, 59]. These growth conditions estimate scalar
products against 0; they give rise to deduce first-order sufficient optimality conditions. In fact,
let LICQ be satisfied at a given point x̂ as an element of M [h], and M [h]∩U0 be star-shaped
with star point x̂. Moreover, let the functions g0

j (·, z) (z ∈ Zj, j ∈ J) be quasi-concave and f

be pseudo-convex on M [h] ∩ U0. This means the following implications for all x ∈ M [h] ∩ U0

[16, 32]:

g0
j (x, z) ≥ g0

j (x̂, z) =⇒ Dxg
0
j (x̂, z) (x − x̂) ≥ 0,

Df(x̂) (x − x̂) ≥ 0 =⇒ f(x) ≥ f(x̂) .

Then, x̂ turns out to be a local minimizer of PGSI(f, h, g, u, v) [57, 59]; cf. [29]. Concerning
structural frontiers in (F) nonconvex optimization see [28]. Before we introduce the second-
order condition of strong stability we state under our basic Assumptions AU0 , BU0 :

Lemma [59]. Let x̂ ∈ MGSI [h, g] ∩ U0 be given, and EMFCQ be fulfilled at x̂. Then, x̂

is a G-O Kuhn-Tucker point for PGSI(f, h, g, u, v), if and only if the extended Mangasarian-

Fromovitz constraint qualification on MGSI [h, (g,−f + f(x̂))], called ̂EMFCQ, is violated
at x̂.

Proof: This result results from Farkas’ Lemma for infinite systems [15, 53, 59].
We prepare our introduction of strong stability of a stationary point by assuming that

f, h, g, u, v are C2 and putting for any bounded open neighbourhood V ⊆ IRq of
⋃

x∈U0

Y (x)

and any subset M ⊆ IRn :

normGSI [(f, h, g, u, v),M] :=

sup

{
sup
x∈M

max
γ∈{f}∪
{hν |ν∈I}

{
|γ(x)| +

n∑
i=1

| ∂γ

∂xi
(x)| +

n∑
i=1
j=1

| ∂2γ

∂xi∂xj
(x)|

}
,

sup
x∈M
y∈V

max
η∈{g}∪

{uν |ν∈K}∪
{vν |ν∈L}

{
|η(x)| +

n∑
i=1

| ∂η

∂xi
(x, y)| +

q∑
j=1

| ∂η

∂yj
(x, y)| +

n∑
i=1
j=1

| ∂2η

∂xi∂xj
(x)|+

+
n∑

i=1

q∑
j=1

| ∂2η

∂xi∂yj
(x)| +

q∑
i=1
j=1

| ∂2η

∂yi∂yj
(x)|

}}
.

In cases of F or OSI optimization, replacing V by J, Y or disregarding u, v, we denote
by normF [·, ·], normOSI [·, ·]. Because of continuity properties stated in Section 2, the next
condition is well-defined [59].
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Definition. Suppose a feasible point x̂u ∈ MGSI [h, g] ∩ U0 for PGSI(f, h, g, u, v) (of class
C2). Now, POSI(f, h, g0, u0, v0) be locally (in U0) representing PGSI(f, h, g, u, v), and x̂u be a
G-O Kuhn-Tucker point of PGSI(f, h, g, u, v). Then, we say that x̂u is (G-O) strongly stable,
if for some ε > 0 with B(x̂u, ε) ⊆ U0 and for each ε ∈ (0, ε] there is some δ > 0 such that for

each C2-function (f̃ , h̃, g̃0) with normOSI [(f − f̃ , h − h̃, g0 − g̃0), B(x̂u, ε)] ≤ δ the open ball

B(x̂u, ε) contains an ordinary Kuhn-Tucker point x̂d of P∗
OSI(f̃ , h̃, g̃0) := POSI(f̃ , h̃, g̃0, u0, v0),

which is unique in B(x̂u, ε). Referring to a G Kuhn-Tucker point x̂u and to normGSI [(f −
f̃ , h − h̃, g − g̃, u − ũ, v − ṽ), B(x̂u, ε)], we get the condition of (G) strong stability of x̂u.

Here, “u” (and “d”) indicates (un)disturbed. For our preferred (G-O) strong stability
expressed by original GSI data, see [59]. In Section 3, we utilize an algebraical characterization
of strong stability in the tradition of Kojima [30] and Rückmann [48].

2. Stability of the Feasible Set.

The following theorems underline the importance of EMFCQ for concluding that
MGSI [h, g, u, v] := MGSI [h, g] is a topological manifold with boundary, it behaves continuous
and stable under perturbations of our defining C1-functions. With these perturbations we
remain inside of suitable open neighbourhoods of (h, g, u, v) in the sense of the strong or
Whitney topology C1

S that takes into account asymptotic effects (for topologies Ck
S, k ∈

IN ∪ {∞}, cf. [17, 20]). We call a given subset M ⊆ IRn a Lipschitzian manifold (with
boundary) of dimension κ, if for each x ∈ M there are open neighbourhoods W1 ⊆ IRn of
x, W2 ⊆ IRn of 0n, and a bijective “chart” ϕ : W1 → W2, ϕ(x) = 0n, with Lipschitzian
continuity of ϕ, ϕ−1 such that ϕ carries M∩W1 to the relatively open set ({0n−κ}×IRκ)∩W2

or to the set ({0n−κ}×{w ∈ IR |w ≥ 0}×IRκ−1)∩W2 with (relative) boundary. So, Lipschitzian
manifolds can locally be linearized, however, without preserving “angulars” in the boundary.
In F optimization, that preservation is guaranteed by the stronger condition LICQ, using C1-
smooth linearizing charts. In this sense, we find qualified versions of the following topological
results for Y (x), [19, 59].

Manifold Theorem [59]. Let EMFCQ be fulfilled in U0 for MGSI [h, g]. Then, there is an
open neighbourhood W ⊆ IRn of U0 such that MGSI [h, g]∩W is a Lipschitzian manifold (with
boundary) of the dimension n − m. Moreover, then we can represent the (relative) boundary:

(∂MGSI [h, g]) ∩W = {x ∈ W | hi(x) = 0 (i ∈ I), min
y∈Y (x)

g(x, y) = 0 }.

Proof: Assumption BU0 , delivers diffeomorphisms φj
x for all x of some open neighbourhood

W of U0. These transformations guarantee that the insight from [26] on OSI optimization
can be carried over for our GSI problem.

For the properties of upper and lower semi-continuity, continuity (in Hausdorff-
metric), genericity (implying density) and transversality (absense of tangentiality), conside-
red for functions or sets next, we refer to [3, 17, 20, 26, 59].

Continuity Theorem [58, 59]. Let EMFCQ be fulfilled in U0 for MGSI [h, g]. Moreover,
let the closure W ⊆ IRn of some open set W ⊆ U0 be representable as a feasible set from F
optimization which fulfills LICQ, and let the intersection of its boundary ∂W with MGSI [h, g]
be transversal. Then, there is an open C1

S-neighbourhood O ⊆ (C1(IRn, IR))m×C1(IRn+q, IR)×
(C1(IRn+q, IR))r×(C1(IRn+q, IR))s of (h, g, u, v) such that MW : (h̃, g̃, ũ, ṽ) 7→ MGSI [h̃, g̃, ũ, ṽ]∩
W, is upper and lower semi-continuous at all (h̃, g̃, ũ, ṽ) ∈ O. If, moreover, W is bounded,
then O can be chosen so that O is mapped to Pc(IR

n) by MW , and MW is continuous.
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Proof: These assertions are consequences of the continuous dependence of the OSI functio-
nal data g0, u0, v0 on the GSI data g, u, v and, then, of [26], Theorem 2.2. We apply this
theorem on MOSI [h, g0, u0, v0] := MOSI [h, g0]. In the proof of Genericity Theorem below, we
investigate the continuous dependence ΨR : (h̃, g̃, ũ, ṽ) 7→ (h̃, g̃0, ũ0, ṽ0).

In [59], also a global version and a version on (x̃, ũ, ṽ) 7→ Y ũ,ṽ(x̃) are presented for the
previous theorem. The following result refers to the straightforward generalization ELICQ of
LICQ that is a stronger condition than EMFCQ [26, 53, 59]. (The double usage of F should
not lead to any confusion. For a global result see [59].)

Genericity Theorem [59].

(a) Let C∞ := (C∞(IRn, IR))m×C∞(IRn×IRq, IR)×(C∞(IRn×IRq, IR))r×(C∞(IRn×IRq, IR))s

be endowed with the C∞
S -topology. Furthermore, let its subspace C∞

loc
of all (h, g, u, v) ∈

C∞ with validity of Assumptions AU0 ,BU0 be endowed with the C∞
S -relative topology.

Then, there exists a generic subset E ⊆ C∞
loc

such that ELICQ is satisfied for each
(h, g, u, v) ∈ E .

(b) Let C1 := (C1(IRn, IR))m×C1(IRn×IRq, IR)×(C1(IRn×IRq, IR))r×(C1(IRn×IRq, IR))s be
endowed with the C1

S-topology. Furthermore, let its subspace C1
loc

of all (h, g, u, v) ∈ C1

with validity of AU0 ,BU0 be endowed with the C1
S-relative topology. Then, there exists an

open and dense subset F ⊆ C1
loc

such that EMFCQ is satisfied for each (h, g, u, v) ∈ F .
The set F can just be defined by the fulfillment of EMFCQ.

Outline of Proof: The first insight on the desired subset E of C∞-functions follows from
the OSI result [26], Theorem 2.4, that applies Multi-Jet Transversality Theorem [17, 20] and
additional reflections. For that theorem our u0, v0 are kept fixed, focussing topological interest
on (h, g0) (h = h0); here, the part of some constant set Y is taken by the union of the sets
Zj (j ∈ J). Without loss of generality, J consists of one single element. Now, we can state that
there is a generic set EO of OSI data functions (h, g0), which (by definition of genericity) is
the intersection of countably many open and dense subsets EO,ν (ν ∈ IN).

However, for the tracing back of the OSI genericity (or, below, openess and density) to
GSI optimization, we utilize that the problem representation is continuous. In fact, by Implicit
Function Theorem in Banach Spaces [20, 37], the inserted local coordinate transformations con-
tinuously depend on (h̃, g̃, ũ, ṽ). Let us regard this continuous dependence (representation) as a
function ΨR locally mapping (h̃, g̃, ũ, ṽ) ∈ C∞ into the space of all C∞-functions (h̃, g̃0, ũ0, ṽ0).
With respect to h̃, the mapping ΨR is constant. Using ΨR we find E as the intersection of
the countably many open sets Eν := Ψ−1

R (EO,ν) (ν ∈ IN).
Now, let us consider an element (h, g, u, v) ∈ C∞

loc
. After sufficiently small perturbations it

still remains in C∞
loc

. Let also some ν ∈ IN be given. In the OSI problem, however, we consider

separate (de-coupled) perturbations g0
j → g̃0

j (j ∈ J) (before we really turn to one single
inequality j). Therefore, the “problem representation” ΨR is not surjective. Actually, as for

some x ∈ U0 and two (or more) different j1, j2 ∈ J the sets (φj1

x )−1(Zj2

0 (x)), (φj2

x )−1(Zj2

0 (x))
might have a nonempty intersection, these perturbations cannot always be traced back to a
perturbation g → g̃ of the given GSI problem. The following perturbation technique, however,
will be helpful to get rid with such a difficulty, and it will finally guide us to the asserted density.

By definition of φj
x (j ∈ J) (linearization) the implicitly disturbed sets Z̃j can be chosen

as Zj. Moreover, because of the locally finite covering structure underlying ΨR, no difficulty
arises. In view of that locally “fix” u0, v0 and of the constant property of ΨR with respect
to h̃, we delete u0, v0, h̃ in the definition of ΨR. So, we get a mapping called Ψ∗

R. First of
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all, we add to g one j-independent, arbitrarily C∞
S -small positive function g in an arbitrarily

small neighbourhood of the compact set
⋃

x∈MGSI [h,g]∩U0

(φj1

x )−1(Zj1

0 (x))∩(φj2

x )−1(Zj2

0 (x)), making

active indices y inactive there. Then, g∗ := g + g is a globally defined C∞-function. Now, for

each ν ∈ IN we find a (componentwise) arbitrarily C∞
S -close approximation (h̃ν , g̃ν0, ũν0, ṽν0) ∈

EO,ν of (h0, g0, u0, v0), where the approximation g̃ν0 coincides with g∗0 := Ψ∗
R(g∗, u, v) in

∪j∈JZj. Here, we may choose the C1-function (ũν0, ṽν0) := (u0, v0). Hence, that perturbed

function g̃ν0 can continuously be traced back under Ψ∗
R
−1 to one C∞-function g̃ν , i.e.,

{(g̃ν , u, v)} = Ψ∗
R
−1({g̃ν0}). So we are in a position to state, that (h, g, u, v) can arbitrarily

well be C∞
S -approximated by (h̃, g̃, ũ, ṽ) := (h̃ν , g̃ν , u, v) ∈ Eν . This means that Eν is dense,

too. Altogether, we have shown that E is generic.

Preparation: This (relative) genericity implies (relative) density [20], because of the “C∞
S -

openess” of both LICQ and (y-) boundedness. Now, we use the fact that EMFCQ follows from
ELICQ, and the C1

S-density of C∞(IRk, IR) in C1(IRk, IR) (k ∈ IN). Moreover, we take account
of our preparation and of the perturbational “C1

S-openess” of EMFCQ.

We underline “F ” or “GSI open” properties: LICQ and EMFCQ remain preserved under
sufficiently slight data perturbation.

Next, we refer to the same underlying dimensions n, q in x- or y-space, and numbers
r, s of functions uk, v`. Two feasible sets MGSI [h

1, g1, u1, v1], MGSI [h
2, g2, u2, v2] are called

(topologically) equivalent, notation: MGSI [h
1, g1, u1, v1] ∼M MGSI [h

2, g2,

u2, v2], if there is a homeomorphism ϕM (= ϕMGSI
) : IRn → IRn such that

ϕM(MGSI [h
1, g1, u1, v1]) = MGSI [h

2, g2, u2, v2].

The given feasible set MGSI [h, g] (= MGSI [h, g, u, v]) is called (topologically) stable, if
there is an open C1

S-neighbourhood O of (h, g, u, v) such that for each (h̃, g̃, ũ, ṽ) ∈ O we
have MGSI [h, g, u, v] ∼M MGSI [h̃, g̃, ũ, ṽ] (see [12, 26, 53, 59]. Let us make the boundedness
(hence, compactness) assumption that MGSI [h, g] lies in U0.

Stability Theorem [58, 59]. The feasible set MGSI [h, g] ⊂ U0 is topologically stable, if
and only if EMFCQ is fulfilled for MGSI [h, g].

Proof: We trace back to the OSI situation again, given by [26], Theorem 2.3, now. As
being the case in the proof of Genericity Theorem, technicalities arise. Moreover, in [26] the
equality constraint functions h are assumed to be C2. All these difficulties can be governed:
In Section 3 we prove Characterization Theorem on the lower level sets of the whole GSI
optimization problem; that theorem implies our Stability Theorem. We note that under our
overall boundedness assumptions, MGSI [h, g] is a lower level set of PGSI(f, h, g, u, v) for a
sufficiently high f -level. Already to point out the essential ideas for the sufficiency part,
“⇐=”, proved in a constructive way, and for the necessity part, “=⇒”, proved in an indirect
way, we look at Figures 1, 2, respectively. For both parts differential topology and Morse
theory are helpful. While for the necessity part some algebraic topology [19, 51] is essential
to evaluate unstable situations, for the sufficiency part flows [1] are important. To construct
a homeomorphism ϕM , we first of all C1-transform (in U) the sets M [h],M [h̃] to some
manifold M [ĥ]. Here ĥ is of class C2 (or C∞ ) [47, 53]. Now, we may suppose I = ∅. Finally,
we homeomorphically map the feasible set MGSI [g] onto the feasible set MGSI [g̃] by steering
the boundary ∂MGSI [g] onto ∂MGSI [g̃] along an EMF-vector field.
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Fig. 1. Proof of sufficiency part, Stability Theorem

Fig. 2. Proof of necessity part, Stability Theorem

3. Structural Stability and its Characterization.

3.1. Structural Stability of the Problem.

Under Assumptions AU0 , BU0 , we still refer to the bounded set MGSI [h, g], but additionally
take f into consideration. We establish the structure of the entire problem PGSI(f, h, g, u, v)
by all its lower level sets

Lτ
GSI(f, h, g, u, v) := {x ∈ IRn | x ∈ MGSI [h, g, u, v], f(x) ≤ τ } (τ ∈ IR).

In the tradition of Guddat, Jongen, Rückmann and Weber, we observe this structure under
data perturbation and define structural stability. Here, descent has to be preserved, if the level
varies. Let us still assume that the defining functions are C2. Then, this global stability can
essentially be characterized by EMFCQ of MGSI [h, g] and by strong stability of all considered
stationary points.

Two problems PGSI(f
1, h1, g1, u1, v1), PGSI(f

2, h2, g2, u2, v2) (with defining C2-functions)
are called structurally equivalent:

PGSI(f
1, h1, g1, u1, v1) ∼P PGSI(f

2, h2, g2, u2, v2)

if there are continuous functions ϕP (= ϕPGSI
) : IR × IRn → IRn and ψ (= ψGSI) : IR → IR

with the three properties EGSI 1, 2, 3 (Fig. 3):
EGSI 1. ϕP,τ : IRn → IRn is a homeomorphism, where ϕP,τ (x) := ϕP(τ, x), for every τ ∈ IR.

EGSI 2. ψ : IR → IR is a monotonically increasing homeomorphism.
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Fig. 3. Structural equivalence (bird’s-eye view below)

EGSI 3. ϕP,τ (L
τ
GSI(f

1, h1, g1, u1, v1)) = L
ψ(τ)
GSI (f 2, h2, g2, u2, v2) for all τ ∈ IR.

Considering the first problem as undisturbed and the second one as slightly disturbed, we
arrive at structural stability [11, 23, 27, 53, 59]; cf. also [1, 4, 20, 50]: PGSI(f, h, g, u, v) (with
defining C2-functions) is called structurally stable, if there exists a C2

S-neighbourhood O
of (f, h, g, u, v) such that for each (f̃ , h̃, g̃, ũ, ṽ) ∈ O

PGSI(f, h, g, u, v) ∼P PGSI(f̃ , h̃, g̃, ũ, ṽ)

.

3.2. Characterization Theorem.

Under Assumptions AU0 and BU0 we state:
Characterization Theorem (or Structural Stability Theorem; [59]).
Let MGSI [h, g] ⊂ U0 hold for problem PGSI(f, h, g, u, v) (with defining C2-functions).
Then, PGSI(f, h, g, u, v) is structurally stable, if and only if the three conditions CGSI 1, 2, 3

are fulfilled:
CGSI 1. EMFCQ holds for MGSI [h, g].

CGSI 2. All the G-O Kuhn-Tucker points x of PGSI(f, h, g, u, v) are (G-O) strongly stable.

CGSI 3. For each two different G-O Kuhn-Tucker points x1 6= x2 of PGSI(f, h, g, u, v) the
corresponding critical values are different (separate), too: f(x1) 6= f(x2).

In this main result, we could also make a further assumption, excluding certain inequality
constraints z from the relative boundary ∂Zj (j ∈ J). Then we could identify the G-O
Kuhn-Tucker points by some G Kuhn-Tucker points. However, for validity of Characterization
Theorem, such an assumption is not necessary [59].

3.3. Proof of Characterization Theorem.

Preparations. For preparation, let us recall the proof of Genericity Theorem, taking into
account the parametrical dependences on the defining data (g̃, ũ, ṽ) (by construction, h̃ may
be disregarded). Now, we make again applications of Implicit Function Theorem in Banach
spaces, such that, in particular, we state a continuous dependence of (g̃0, ũ0, ṽ0) on (g̃, ũ, ṽ).
Consequently, small perturbations on the data of PGSI(f, h, g, u, v) cause slight perturbations
on the data of POSI(f, h, g0, u0, v0). The reverse question arises: Can small perturbations of
the OSI data be reconstructed under the problem representation from slight perturbations of
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the given GSI problem ? We give a conditionally positive answer. However, this answer will
be fitting for the perturbational argumentations on Characterization Theorem:

Item 1. For representing OSI problem(s), ũ0, ṽ0 are of special linearly affine form and,
under sufficiently small perturbations of the GSI problem, we may treat them as fixed. Hence,
besides the perturbations (f, h) → (f̃ , h̃), for POSI(f, h, g0, u0, v0) we are concerned with g0 →

g̃0 only. We therefore introduce the simplifying notation P∗
OSI(f, h, g0) := POSI(f, h, g0, u0, v0).

Item 2. Subsequently, we mainly perform local perturbations for P∗
OSI(f, h, g0). Here-

by, we treat the finitely many functions g0
j (j ∈ J) separately in small disjoint open sets

V∗
j (j ∈ J) such that their perturbations g0

j → g̃0
j can be reconstructed by one single C2-

function g̃ (given below). Therefore, we would need the perturbationally stable
Assumption F ∗: For all j1, j2 ∈ J, j1 6= j2, we have

⋃

x∈MGSI [h,g]∩U0

(
(φj1

x )−1(Zj1

0 (x)) ∩ (φj2

x )−1(Zj2

0 (x))

)
= ∅.

We are going to exploit the condition from Assumption F∗ after perturbations. However, if
we may suitably choose our perturbed functions g̃0, then Assumption F∗ is naturally fulfilled
(after perturbation), and we need not make it in the unperturbed situation. Now, under problem

representation and joined by u, v, this function g̃ generates g̃0
j locally in V∗

j (j ∈ J). Then,
for each j ∈ J , small perturbational (global) effects outside of V∗

j (j ∈ J) have no influence.
They can be ignored. The announced function is

g̃(x, y) :=





g̃0
j (x, φj

x(y)), if y ∈ (φj
x)

−1(Zj) and (x, φj
x(y)) ∈ V∗

j , j ∈ J

g(x, y), else.

Item 3. Below we must consider a certain global perturbation of P∗
OSI(f, h, g0) to receive

C∞-data or, finally, some (global) “open and dense” property. Therefore, we apply on the one
hand the perturbation technique from the proof of Genericity Theorem. On the other hand,
whenever it is possible to turn from the GSI problem to an OSI (or F) one, then we are
back in the situation of Item 2 in order to perform local perturbations.

For our proof of Characterization Theorem, the algebraical characterization of (G-O) strong
stability of a G-O Kuhn-Tucker point x is important. It was given by Rückmann [48] for
OSI optimization and extended in [59] for our GSI one. Here, we assume EMFCQ at x.
That sophisticated characterization refers to (restricted) Hessians of Lagrange functions, and
it bases on a case study referring to the reduction ansatz. This RA demands strong stability
in the sense of F optimization [30] for the local minimizers of the problem from the lower
(y-) stage. Herewith, RA admits local representation of PGSI(f, h, g, u, v) around x̂ by Implicit
Function Theorem [48, 59]; see [14, 61]. These cases are:
I ELICQ and RA are fulfilled at x̂.

II EMFCQ – but not ELICQ – and GRA are fulfilled at x̂.

III EMFCQ – but not GRA – is fulfilled at x̂.
In any case, we can also classify the type of the strongly stable stationary point x: While in

case I a saddle point, a local minimizer or local maximizer is detected by the “stationary index”
of x̂ (a topological invariant), in cases II, III we have a strict local minimizer throughout [59];
cf. [31, 48, 53].
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Sufficiency Part. Let CGSI1,2,3 be satisfied. We equivalently represent PGSI(f, h, g, u, v)
by PGSI(f, h,

g0, u0, v0), and straightforwardly interpret CGSI 1,2,3 as OSI conditions COSI 1,2,3. These condi-
tions are the (OSI) constraint qualification EMFCQ, strong stability of all Kuhn-Tucker points
in the sense of OSI optimization, and separateness of the values of these OSI stationary points.
Under slight perturbations of the GSI data, u0, v0 do not (and need not) vary. Now, we are
prepared for OSI explanations and, finally, F constructions from [23, 27, 53] in our GSI
context. We briefly repeat main ideas of construction. In [27, 53], detailed information on the
techniques can be found together with illustrations.

An easy counterexample shows that the separateness condition CGSI 3 is not generally
avoidable for establishing structural stability (see [20, 53]). Here, two connected sets, say:
(arcwise) components, would have to be mapped onto one connected component, contradicting
homeomorphy. A similar reasoning made for another counterexample shows that, in general,
the τ - (level-) dependence of the intended homeomorphisms also cannot be avoided. Moreover,
each G-O Kuhn-Tucker point x̂u has to be mapped to the corresponding stationary point x̂d

of the slightly perturbed problem PGSI(f̃ , h̃, g̃, ũ, ṽ). Finally, we conclude from the overall
boundedness assumption, from EMFCQ and strong stability, that the number of G-O Kuhn-
Tucker points is finite: x̂u

σ (σ ∈ {1, . . . , σ0}) [27, 53, 59].

We start the construction by transforming the C2-manifold M [h] to the C2-manifold
M [h̃] in a suitable bounded, open neighbourhood of MGSI [h, g]. Therefore, first we make
a local construction by a graph (or implicit function) argumentation. Locally around the
stationary points, the transformation is C2. Then, we complete the whole transformation by
means of a global construction. Here, we use the Morse theoretical technique of walking along
trajectories of a vector field in IRn+1. Outside of (local) neighbourhoods of the stationary points,
the transformation is C1. There, this means a (by 1) diminished order of differentiability,
which does not cause any difficulty. From now on, we may assume that there are no inequalities,
i.e., I = ∅. Next, we dynamically construct the level shift ψ. In fact, we integrate a C∞-vector
field such that each critical value f(x̂u

σ) gets shifted in IR to the corresponding critical value
f̃(x̂d

σ) (σ ∈ {1, . . . , σ0}). Now, we may think ψ = IdIR, referring to f ◦ψ otherwise. There are
disjoint open neighbourhoods B(x̂u

σ, ε) (balls) around x̂u
σ such that the smaller neighbourhoods

B(x̂u
σ,

ε

2
) contain x̂d

σ (σ ∈ {1, . . . , σ0}). We assume that the unperturbed and the perturbed

lower level sets coincide in all the sets B(x̂u
σ, ε) \ B(x̂u

σ,
ε

2
) (σ ∈ {1, . . . , σ0}). This assumption

will not restrict generality.

Based on the foregoing reductions of I, ψ and the previous assumption, we go on constructing
ϕP,τ (τ ∈ IRn) in a local-global way. Firstly, we realize which undisturbed sets have to
be homeomorphically mapped onto which corresponding sets from the disturbed situation
(mapping task). We distinguish three situations given by levels τ < τ, τ = τ , or τ > τ .
Herewith, we learn that some area from outside of the feasible set possibly has to be “carried in”.
Moreover, outside of the stationary points, the intersections of the level sets with the boundaries
are transversal. Our further construction will be raised on these intersections (fundamental
domains).

Outside of B(x̂u
σ, ε) (σ ∈ {1, . . . , σ0}), we use EMF-technique indicated in the sufficiency

part on Stability Theorem. Here, we use our Lemma from Section 1, and apply this dynamical

ÊMF-technique on Lτ
OSI(f, g0) (= Lτ

GSI(f, g, u, v)) and on Lτ
OSI(f̃ , g̃0) (see Figure 4(II)). By

differential geometry, this global construction is glued together in ∪σ0

σ=1(B(x̂u
σ, ε) \ B(x̂u

σ,
ε

2
))
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with the local construction sketched next. We may refer to one unperturbed stationary
point x̂u(= x̂u

σ) ∈ {x̂u
1 , . . . , x̂

u
σ0} and corresponding perturbed point x̂d. Now, we are inside of

B(x̂u, ε). We restrict to n ∈ {2, 3}, because higher dimensions can be reduced to those small
dimensions by successive hyperplane intersection.

Case 1. x̂u is lying in the interior MOSI [g
0](= MGSI [g, u, v]) :

Then, x̂d, being sufficiently slightly perturbed, lies in the interior of MOSI [g̃
0]. Both stationary

points are nondegenerate [19], and for each τ we transform the τ -levels around x̂u onto the
local τ -levels at x̂d. In fact, this local construction can be made by a C1-diffeomorphism using
Morse theory [27, 53].

Case 2. x̂u is placed on the boundary of MOSI [g
0] :

Then, x̂d may lie on the boundary or in the interior of MOSI [g̃
0]. Without loss of generality

we assume the second (boundary) case. Actually, using an implantation of a suitable level
structure we turn from stationary points at the boundary to fictive stationary points in the
interior. This level structure is locally given by fictive objective functions f̂u and f̂d. (In case 1,
those fictive points naturally exist.) For performing this implantation of f̂u, f̂d we need precise
knowledge of the configurations around the boundary points x̂u, x̂d. These configurations are
characterizable by the position (relative to the boundary) of cones or balls, together with the
growth behaviours of f, f̃ there. We have two conical types and one radial type, governed
by strong stability (under EMFCQ; [27, 53, 59]. See, e.g., Figure 4(I). We arrive back in case
1 (interior position) by means of fictive interior problems, extrapolating the “characteristic”
of x̂u, x̂d and implanting fictive stationary points x̂u

fic, x̂d
fic with their local level structures.

Herewith, for all τ ∈ IR the mapping task is fulfilled in case 2, too.

The delicate dynamical and topological techniques (and substeps) exhibited in Fig. 4(I) are
due to the local construction in case 2. They can be elaborated, e.g., in terms of boundary
displacement, positioning, sharpening or tapering flows [27, 53].

Necessity Part: Let PGSI(f, h, g, u, v) be structurally stable. Our proof of CGSI 1,2,3 is
indirect. Assuming one of the first two regularity conditions or the third technical condition to
be violated always contradicts structural stability (see Figure 5). Based on our assumptions,
we carry over the proof the OSI necessity part from [23] into our GSI setting. Many details
of argumentations are Morse theoretical [11, 26, 27, 53, 59]. To avoid loss of differentiability,
we assume that all data are C∞ [11]. This smoothness can be achieved by fine perturbations
of all OSI data and, by tracing them back, of all GSI ones.

Here, we make the inequalities of different indices z%1
6= z%2

independent from each other
(by small shifts).

CGSI 1. As MGSI [h, g] is compact, there exists the finite number τmax := max{f(x)|
x ∈ MGSI [h, g]}. Herewith, MGSI [h, g] = Lτ

GSI(f, h, g, u, v) (τ ∈ [τmax,∞)). Moreover, we

can choose perturbations slight enough such that MGSI [h̃, g̃] remains compact. Let τ̃max for
each sufficiently slight perturbation (f̃ , h̃, g̃, ũ, ṽ) denote the maximal (feasible) value of f̃ .
Taking τ ∗ := max{τmax, ψ−1(τ̃max)}, the homeomorphism ϕP,τ∗ gives topological equivalence

between MGSI [h, g, u, v] = Lτ∗

GSI(f, h, g, u, v) and MGSI [h̃, g̃, ũ, ṽ] = L
ψ(τ∗)
GSI (f̃ , h̃, g̃, ũ, ṽ). By

Stability Theorem, topological stability implies EMFCQ. In fact, by suitable perturbations any

violation of EMFCQ at a feasible point leads to compact sets MGSI [h̃, g̃], MGSI [
˜̃
h, ˜̃g], satisfying

ELICQ but being not of the same homotopy type [12, 26, 53, 59]. When, e.g., the two sets have
a different finite number of connected components, this must contradict topological equivalence
[19].

CGSI 2. Suppose EMFCQ, but CGSI 2 not fulfilled: some G-O point x̂u be not (G-O) strongly
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stable.
I, a

reduction
↓

b

raising
↓

c

mapping task fulfilled
↓
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d

back in case 1
↓

II

Fig. 4. Proof of sufficiency part, Characterization Theorem

Perturbation Lemma [59]. Let a G-O Kuhn-Tucker point x̂u of PGSI(f, h, g, u, v) be
given, where EMFCQ is fulfilled, but (G-O) strong stability violated. Then, for each open C2-

neighbourhood O′ of (f, h, g, u, v) there are (f̃ , h̃, g̃, ũ, ṽ), ( ˜̃
f,

˜̃
h, ˜̃g, ˜̃u, ˜̃v) ∈ O′ and a k′ ∈ IN

such that:

(i) PGSI(f̃ , h̃, g̃, ũ, ṽ) has k′ G-O Kuhn-Tucker points, all being (G-O) strongly stable,
except one (namely, x̂).

(ii) PGSI(
˜̃
f,

˜̃
h, ˜̃g, ˜̃u, ˜̃v) has at least k′ +1 G-O Kuhn-Tucker points, all being (G-O) strongly

stable.

(iii) In both PGSI(f̃ , h̃, g̃, ũ, ṽ) and PGSI(
˜̃
f,

˜̃
h, ˜̃g, ˜̃u, ˜̃v), EMFCQ is satisfied everywhere, and

different G-O Kuhn-Tucker points have different critical (f̃ - or ˜̃
f-) values.

In F or OSI necessity parts of [11, 53] (cf. also [23]), these perturbations are realized by
three steps. Step 1 yields local isolatedness of x̂u as a stationary point where, additionally,
(E)LICQ is guaranteed but unstability preserved. In step 2, outside of the local situation,
(E)MFCQ and strong stability of all (other) stationary points are established. Finally, in
step 3, the unstable Kuhn-Tucker point x̂u “splits”: By this bi- (or tri-) furcation we locally
get two new stationary points; they have strongly stability. In this GSI situation, we use
the algebraical characterization from our preparations. Now, we introduce a topological idea:

For Lτ
GSI(f̃ , h̃, g̃, ũ, ṽ), Lτ

GSI(
˜̃
f,

˜̃
h, ˜̃g, ˜̃u, ˜̃v) we have to take into account each change of the

homeomorphy type of a lower level set, when τ traverses (−∞,∞). Based on the perturbations

from above, we apply the following items on PGSI(f̃ , h̃, g̃, ũ, ṽ), and PGSI(
˜̃
f,

˜̃
h, ˜̃g, ˜̃u, ˜̃v). We
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look at a C2-problem PGSI(f̂ , ĥ, ĝ, û, v̂) having a compact feasible set and fulfilling EMFCQ,
and we put Lb

GSI a(f̂ , ĥ, ĝ, û, v̂) := {x ∈ MGSI [ĥ, ĝ]| a ≤ f̂(x) ≤ b} for some a, b ∈ IR, a < b.

Item 1. If Lb
GSI a(f̂ , ĥ, ĝ, û, v̂) does not contain a stationary point, then La

GSI(f̂ , ĥ, ĝ,

û, v̂) and Lb
GSI(f̂ , ĥ, ĝ, û, v̂) are homeomorphic.

Item 2. Let Lb
GSI a(f̂ , ĥ, ĝ, û, v̂) contain exactly one stationary point x̂′. Moreover, let

a < f(x̂′) < b and x̂′ be (G-O) strongly stable. Then, La
GSI(f̂ , ĥ, ĝ, û, v̂) and Lb

GSI(f̂ , ĥ, ĝ, û, v̂)
are not homeomorphic.

These two items immediately result from corresponding facts on POSI(f̃ , h̃, g̃0, ũ0, ṽ0),

POSI(
˜̃
f,

˜̃
h, ˜̃g0, ˜̃u0, ˜̃v0) stated in [48]. Here, Item 2 can be expressed with attaching κ-cells (κ =

stationary index at x̂′; [59]). By Manifold Theorem and Lemma (Sections 1–2) we conclude
for all noncritical levels τ : Lτ

GSI(f̂ , ĥ, ĝ, û, v̂) = MGSI [ĥ, (ĝ,−f̂ + τ)] is a compact topological
manifold (with boundary). So, their homology spaces (over IR) are of different finite dimensions
[51]. As these spaces are topological invariants, the two considered lower level sets cannot be
homeomorphic [19].

Now, we can make the following “discrete” statement on numbers of topological changes for

the lower level sets: The homeomorphy type of Lτ
GSI(

˜̃
f,

˜̃
h, ˜̃g, ˜̃u, ˜̃v) changes (at least) at k′ + 1

times, while the homeomorphy type of Lτ
GSI(f̃ , h̃, g̃, ũ, ṽ) changes (at least) at k′ − 1 times,

but at most at k′ times. This difference contradicts structural stability of PGSI(f, h, g, u, v)
(cf. [59], or see Fig. 5).

CGSI 3: Let CGSI 3 be violated, but the former two properties on EMFCQ and strong
stability be satisfied. By local addition of arbitrarily small constant functions on f , we get a
problem PGSI(f

∗, h, g, u, v) satisfying CGSI 3. Let k∗ stand for the number of critical points
of PGSI(f

∗, h, g, u, v). Then the homeomorphy type of Lτ
GSI(f

∗, h, g, u, v) changes k∗ times,
while the number of changes of the homeomorphy type of Lτ

GSI(f, h, g, u, v) is less than k∗.
Hence, we are faced again with a situation which is incompatible with structural stability of
PGSI(f, h, g, u, v) (Figure 5).

Fig. 5. Proof of necessity part, Characterization Theorem

4. Generalizations, Optimal Control and Conclusion.

4.1. Generalizations.

There are two lines for generalizing our topological results:

(i) MGSI [h, g] is unbounded (noncompactness),
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(ii) f is of the nondifferentiable GSI maximum-type f(x) = maxγ∈Υ(x) w(x, γ).

On (i): We overcome noncompactness by turning to the entity of excised subsets of MGSI [h, g].
Roughly speaking, the effect of intersection is performed by subtracting lower semi-continuous
functions from hi (i ∈ I) and g [49, 53, 59]. Herewith, we can express cuts, e.g., by cylinders
or balls, by IRn itself or by bizarre sets. Referring to all excised sets, we get the condition of
excisional topological stability which can actually be characterized by the overall validity
of EMFCQ in the unbounded set MGSI [h, g]. For that (Excisional) Stability Theorem see [59].

On (ii): Nonsmoothness is overcome by expressing PGSI(f, h, g, u, v) as minimization of
xn+1 over the epigraph EGSI(f) := {(x, xn+1)|x ∈ MGSI [h, g], f(x) ≤ xn+1}. From this
problem in IRn+1 we obtain our stationary points of PGSI(f, h, g, u, v) and the appropriate
condition of strong stability [53, 54, 59]. Now, (max-) structural stability of our nondifferentiable
problem can be characterized by EMFCQ, strong stability and the technical separateness
condition again. This Characterization Theorem and the one for the case combination of (i)
and (ii) are demonstrated in [59].

4.2. Optimal Control of Ordinary Differential Equations.

We turn to infinite dimensions by studying the following minimization problem in (x, u) [13,
36, 44]:

P(`, L, F,H,G)





Min I(x, u) := `(x(a), x(b)) +
b∫

a

L(t, x(t), u(t)) dt

( x ∈ (C0
pw 2 ([a, b], IR))n, u ∈ (Fpw 2 ([a, b], IR))q ),

such that
ẋ(t) = F (t, x(t), u(t)) (for almost every t ∈ [a, b]),
(x(a), x(b)) ∈ M [H],
x(t) ∈ MF [G(t, ·, u(t))] (for almost every t ∈ [a, b]),

where (L, F,G), (`,H) are C3- and C2-functions (vector notation), respectively. Instead of
referring to the larger classes of Sobolev or Lebesgue spaces, we concentrate on spaces of
continuous and piecewise C2 states x, and piecewise C2 controls, called C0

pw 2 and Fpw 2 .
For these spaces, strong topologies in Whitney’s sense can be generally introduced [59].

Assumption (BOUND). M [H] ⊆ IRn × IRn and MF [G] ⊆ [a, b]× IRn × IRq, defined by
the equality and inequality contraints, are bounded.

Assumption (LB). There exist positive functions α0, β0 ∈ C(IRq+1, IR) such that (under
|| · ||∞ = maximum norm) we have linear boundedness of F :

||F (t,x,u)||∞ ≤ α0(t,u)||x||∞ + β0(t,u) ((t,x,u) ∈ IRn+q+1).

We briefly present two approaches to global structure and stability of P(`, L, F,H,G) (cf.
[59], where a third one can also be found). While our main Approach II is refined, Approach I
is given for a better understanding.

Approach I: Particular Structure. Let u be considered as C2 and a parameter.
Then, for each fixed u = u∗ the optimal control problem P(`, L, F,H,G) becomes a problem
Pu∗

(`, L, F,H,G) from calculus of variations. The corresponding system of differential equations
(on x) generates a flow (in IRn+1; [1, 20]). Under this flow, we trace back the equality and
inequality constraints, and the objective functional as well (cf. [55, 56, 59]). So we obtain an
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OSI problem Pu∗

OSI(f
∗, h∗, g∗) (where Y j = [a, b]). Then, referring to the family of all u and

to perturbations of (f ∗, h∗, g∗), we get the condition of (particular) structural stability
with its Characterization Theorem again (cf. Section 3; [56, 59]). The C2-property and
parametrical treatment of u, however, are not sufficient for optimal control. That is why we
turn to the

Approach II: Composite Structure. We evaluate the necessary optimality condition
Pontryagin’s minimum principle [13, 44] in the way of “Kuhn-Tucker” for almost every t ∈
[a, b]. Here, we have suitable multiplier vectors, (adjoint) variables, and H(t,x,u, λ, µ) :=
L(t,x,u) − λT F (t,x,u) − µT G(t,x,u). Then, our evaluation, called minimum principle
here [6, 38, 39, 41], reads

DT
u
H(t, x0(t), u0(t), λ0(t), µ0(t)) = 0q,

µ0
j(t) ≥ 0 (j ∈ J) and µ0T

(t) G(t, x0(t), u0(t)) = 0,

λ0(a) = −DT
x1

(` − ρ0T
H)(x0(a), x0(b)),

λ0(b) = DT
x2

(` − ρ0T
H)(x0(a), x0(b)),

λ̇0(t) = −DT
x
H(t, x0(t), u0(t), λ0(t), µ0(t)).

For our causal (composite) structure we need a condition like strong stability [59]:
Assumption (CONT). All the (C0

pw 2 × Fpw 2-) solution components (x0, u0) of the
minimum principle depend continuously on C3

S × C2
S -perturbations ((L, F,G), (`,H)) →

((L̃, F̃ , G̃), (˜̀, H̃)).
We interpret the first four lines of the minimum principle as Kuhn—Tucker conditions of two

families of optimization problems: (∗) P t,x,w
F (L, F − w, G) and (∗ ∗) PF(λ0(a), λ0(b), `,H),

an index set Mη0
pr [F,G] of (t,x,w) being appropriately chosen in view of P(`, L, F,H,G).

For each of these problems we introduce (composite) structural stability and characterize it
essentially by (E)MFCQ and strong stability (see Section 3). Analyzing (∗) so, we locally
get implicit C2-control functions u∨(t,x,w), which are Kuhn-Tucker point-valued and fulfill
u0(t) = u∨(t, x0(t), ẋ(t)). Substituting w := ẋ(t) for any trajectory x of some auxiliary flow,
adapted to our system of differential equations, we locally receive core functions u0

∨(t,x).
The choices of these auxiliary or test flows etablish a structural frontier of our theory [59]. In
order to globalize a core such that its domain covers [a, b], we admit jumps in IRn+1 (see
Figure 6). These jumps shall be compatible with the jumps of our variables u0. Again we say
that the globalized core functions (♥) u0

∨ are of class Fpw 2 . Let B, B be (“boundary”) sets
where the jumps may or really do happen, respectively. When these sets exist as Lipschitzian
manifolds of dimension q, and if they define (by decomposition) piecewise structures before or
after jumps, which quantitatively remain preserved under small perturbation of (`, L, F,H,G),
then the core (♥) is called (composite) structurally stable [59]. A further regularity condition,
called structural transversality, in short: ST, analytically determines the boundary sets (up
to a finite number of choices) and guarantees this (composite) structural stability of a core.
(See also [21, 39, 41].) The refined condition ST essentially means transversal intersection of
u0
∨(·, x(·)) (along trajectories x) at the boundary of the corresponding feasible set in IRq. This

implies transversality of x at the manifolds B, B.
Now, inserting u(t) = u0

∨(t, x(t)) in P(`, L, F,H,G) delivers again a problem Pu0
∨(`, L,

F,H,G) from calculus of variations, which we also trace back under its flow. In this way we get
an optimization problem with a complex underlying piecewise structure. Up to the structural
frontiers given by combinatorially more complicate index sets Y (x) and objective functions f

of continuous selection type [22], we arrive at a GSI problem (∗∗∗) PGSI(f, h, g, v) with f of
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Fig. 6. Piecewise structure and jumps of cores

maximum-type (cf. Subsection 4.1). Then, we introduce this optimization problem’s condition
of (composite) structural stability referring to perturbations of the original data (`, L, F,H,G).

In that sense, we call P(`, L, F,H,G) composite structurally stable if all the structural
elements (∗), (∗ ∗), (∗∗∗), (♥) are (composite) structurally stable. Under our basic Assumptions
(BOUND), (LB) and up to those more complex problems we state (with simplified presentation):

Characterization Theorem on Composite Structural Stability [59].
The problem P(`, L, F,H,G) is composite structurally stable, if and only if the conditions
C1, 2, 3, 4 are satisfied:

C1. (E)MFCQ holds for all the feasible sets underlying (∗), (∗ ∗), (∗ ∗ ∗), (♥).

C2. All the Kuhn-Tucker points u, x of the problems represented in (∗), (∗ ∗), (∗ ∗ ∗)
are strongly stable (in F or G-O sense).

C3. For all optimization problems represented in (∗), (∗ ∗), (∗ ∗ ∗) each two different
Kuhn-Tucker points have different (separate) critical values.

C4. For all core functions (♥) ST is fulfilled.

Sketch of Proof: The main lines are the same as in Subsection 3.3. The new item, given
in the necessity part, “=⇒ C4,” concerns the undisturbed or disturbed piecewise structures,
and it is illustrated in Figure 7.

For controllability, i.e., to come from time a to time b under given constraints of P(`, L, F,

H,G), discrete mathematics [5] often turns out to be a tool of investigation as follows.
(For underlying finiteness and genericity considerations see [59].) Our control problem asks
for a domain of the core u0

∨ (compatible with u0) that is sufficiently large, say: tending to
maximality. Provided a careful choice of the set of jumps, this maximal domain problem can
be represented as a maximal matching problem in a partite graph (see, e.g., Figure 8). In a
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subset of arcs called matching, different elements are disjoint. Here, each partition stands for a
locally defined continuous core, the directedness of the ars reflects orientation by time t. This
matching problem can be solved by Edmond’s algorithm [25].

Inserting the global cores, arriving at an x-depending problem, we may, for example, consider
the objective function as the arc length of our piecewise structured solutions x = x0 ∈ C0

pw 2

of minimum principle. Therefore, we take into account arcs between neighbouring vertices
(manifolds B1, B2) of the same former partition such that the partite character gets lost (see,
e.g, Figure 9, periodic constraint x0(a)− x0(b) = 0 implied). The corresponding minimization
problem can be regarded as a shortest path problem, solvable by Dijkstra’s algorithm [25].

Fig. 7. Proof of necessity part (composite structural stability)

Fig. 8. Tripartite directed graph featuring controllability problem

Fig. 9. Directed graph featuring minimization of arc length
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4.3. Conclusion.

Besides the “discrete” (stationary) index, piecewise structures and optimization problems men-
tioned above, there is a variety of further theoretical and methodical connections between GSI
optimization, optimal control and discrete mathematics. Concerning discrete Morse theory,
topology and systems analysis we mention [2, 8] and [42]; many other examples can be found
in [35, 59, 60]. We noted that structural frontiers can often be understood in a combinatorial
manner. Just the same is true with respect to solution algorithms for a given GSI problem.
The more complex the problem is, the more important becomes discrete intrinsic information
of the problem for transparency, convergence and stability (cf. [52], see also [34] on time-
minimal control). Here, we refer to the research [43, 58, 59] that is based on our optimality
conditions, analytical techniques and stability results. Often, there is little knowledge about
the geometry and topology of the feasible GSI set. As a “manifold” and stability condition,
our version of EMFCQ, that bases on Assumption BU0 of LICQ, was of central importance
for a rigorous study of optimization and control. In future, there may be both a weakening
in the theoretical field of assumptions (e.g., in the way of [24]) and a systematic look for
combinatorial and geometrical treatments from reverse engineering, discrete tomography with
its inverse problems, or randomization [59].
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encouragement, Prof. Dr. B. Lemaire for encouraging submission of a related survey article,
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