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O6¢cy)matoTcst CBOWCTBA MHOTOOOPAa3mii W BOITPOCHI HEMTPEPBIBOCTHU JIOMYCTUMBIX OT'Da-
auuenuit M [h, g, u, v], a Takzxke coorBercrByoiree nosejgerue (f, h, g, u,v) npu caabbix Bo3-
mymienusax. QopMyIupyOTCS TeOpPeMbl O MHOTOODPA3UAX, HEIPEPLIBHOCTH, YHUBEPCAIb-
HOCTH, YCTOMYMBOCTH U CTPYKTYPHOH ycToitunBocTu. KpaTKo OMUCHIBAIOTCA BO3MOYKHBIE
pacIIupeHust Ha CJIydad HeOrPAHUYIEHHOCTH U HeTu(pOEePEeHIINPYEMOCTH, YKA3bIBAIOTCS Ta-
KHe CTPYKTYPHBIE I'PAHUIIBI, IIPU KOTOPBIX IIOJyYEHHBIE PE3YyJIbTAThl MOTYT TPAKTOBATHCA
B TepMHUHAX 3a/1a9 ONTUMAJBLHOIO yIIPABJICHUS IJisi OOBIKHOBEHHBIX T (PEepEeHITHATBHBIX
YPaBHEHU.

1. Introduction

Under suitable assumptions, the following fields of problems from science, engineering and
control lead to generalized semi-infinite (GSZ) optimization: o optimizing the layout of a
special assembly line, o maneuverability of a robot, o time minimal heating or cooling of a ball
of some homogeneous material, o approximation of a thermo-couple characteristic in chemical
engineering, o structure and stability in optimal control of ordinary differential equations. For
motivations and references see, e.g., [59, 60]. In future, GSZ applications may also be expected
in optimal experimental design (|9]). The GSZ problems under consideration have the form

Minimize f(x) on Mgsz[h,g], where

P ? h? ? 7 n -
szl b g% 0) Mgslh.g] == {z € R'| hiz)=0 (i€ 1),
9(z,y) 20 (y € Y(x)) }.
The semi-infinite character comes from the perhaps infinite number of elements of Y (=

Y (z)) [10, 45|, while the generalized character comes from the z-dependence of Y (:). We
suppose these index sets to be finitely constrained (F):

0
0

Y(z) = Mglu(z,-),v(z,")] :={y € R| up(z,y) =0 (k € K), v(x,y) >0 (L € L)} (x € IR").

Let h = (h)ier, u = (u)rer, v = (V¢)eer, where h; : R" — IR, i € [ :={1,...,m}, uy:
R'xR!'— R, ke K:={1,...,r}, vy: R"x R"— IR, EEL—{l L8t (m<nyr<q).
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We assume that f: R" — IR, g: R" xR — IR, h;(i € I), ux(k € K), v,({ € L) are
once continuously differentiable (C1). By Df(x), DT f(z) we denote the row- (column) vector

0 : 0
T f(x)a and Dacg(may): Dyg(xvy) consist of ox

K K

of the first-order partial derivatives g(x,y)

and 8ig(x,y). Let a given set U C R", Mgszlh, 9] NU° # B, be bounded and open.
Yo

Assumption Ayo: U, 5 Y (z) is bounded (hence, by continuity, compact).

In generalized semi-infinite optimization, the feasible set Mgsz[h, g] need not be closed [24].
The following assumption, however, ensures closedness:

Assumption Bypo: Forall z € U, the linear independence constraint qualification (LICQ)
is fulfilled for Mg[u(z,-),v(x,")], i.e., linear independence of

Dyuk(fay)a k € Ka Dyvﬁ(f>y)a f € LO<T7y)

(considered as a family), where Lo(T,y) :={{ € L | v/(Z,y) = 0} consists of active indices.

Using differential topology [17, 20], these assumptions admit local linearization of Y'(x) (x €
UO) by finitely many C'-diffeomorphisms ¢/ : V7 — S7 (j € .J) in such a way that the image
sets Z7 of indices are x-independent squares (in a linear subspace). Herewith, Pgsz(f, h, g, u, v)
becomes locally (in m) equivalently expressed as an ordinary semi-infinite optimization
problem Posz(f, h, g°,u’,v°), where Mosz[h, g°] NUY = Mgsz[h, 9] NU°, f being unaffected

[57, 59].
On the upper stage of variable z, we shall use a constraint qualification, too. This cq
geometrically means the existence of an (at M[h] = h=1({0})) tangential, “inwardly” pointing

direction at x:

Definition. We say that the extended Mangasarian-Fromovitz constraint quali-
fication (EMFCQ) is fulfilled at a given T € Mgsz|h, g], if the conditions EMF; o are
satisfied:

EMF,. Dh;(T), i € I, are linearly independent.

EMF,. There exists an “ EMF-vector” ¢ € IR" such that
Dh;i(z)( =0 foralliel,

D,g)(®,z)¢ > 0 forall z€ R, j e J, with (¢1)71(2) € Yo(T),

where Yy(7) = {y € Y(Z) | g(T,y) = 0} consists of active indices. EMFCQ is said to be
fulfilled for Mgsz[h,g] on U°, if EMFCQ is fulfilled for all € Mgsz[h, g] N UO.
For further information and versions of EMFCQ see [15, 20, 24, 26, 40|, but also [7, 18|.
Let a local minimum & of Pgsz(f, h,g,u,v) be given and EMFCQ be fulfilled there. Then,
we can state the existence of Lagrange multipliers X\;, p.. such that the conditions

= " NDhi() + Z un 2 n (T, 2%),

i€l ke{l,...,

e >0 (ke {l,... i}

are satisfied, referring to ordinary semi-infinite (OSZ) data [15, 57, 59]. Now, we call z a G-O
Kuhn-Tucker point. Here, the points 2" € Z7" are suitable active indices. Referring to all the
given GS7Z data now, a further evaluation yields the following Kuhn-Tucker conditions
with corresponding Lagrange multipliers \;, pig, Ok, Bre |57, 59):
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KT,. Df(z) = >, \i\Dh;i(z) + > pDeg(Z,y") —
i€l ke{l,...,k}
- E : Oén,kDuk(‘%ayﬁ) - z : BH,ZDmvﬁ(i‘7y’i>7

keK teLo(2,y")
re{l,..., R}

KTQ. M, 6&5 >0 (E S Lo(.@,yﬂ), S {1, ceey I%})

Again, the y* € Y,(Z) are active. Now, we call & a G Kuhn-Tucker point. Under general
assumptions, the necessary optimality condition KT;, was for the first time proved
by Jongen, Riickmann and Stein [24]. Note, that the linear combination KT, contains the
derivatives of all the defining functions. The foregoing conditions can also be stated as growth
(angular) conditions over tangent cones [32, 57, 59|. These growth conditions estimate scalar
products against 0; they give rise to deduce first-order sufficient optimality conditions. In fact,
let LICQ be satisfied at a given point # as an element of M[h], and M[h]NU° be star-shaped
with star point . Moreover, let the functions ¢9(-,2) (z € Z7, j € J) be quasi-concave and f
be pseudo-convex on M[h] NUO. This means the following implications for all 2 € M[h] NU°
[16, 32|

gi(x,2) > g}(2,2) = D.g)(T,2)(x—2) >0,
Df(i)(x—2) >0 = f(z) > f(2).

Then, Z turns out to be a local minimizer of Pgsz(f,h,g,u,v) [57, 59]; cf. [29]. Concerning
structural frontiers in (F) nonconver optimization see [28]. Before we introduce the second-
order condition of strong stability we state under our basic Assumptions Az, Bypo:

Lemma [59]. Let & € Mgsz[h,g] NU° be given, and EMFCQ be fulfilled at . Then, &
is a G-O Kuhn-Tucker point for Pgsz(f,h,g,u,v), if and only if the extended Mangasarian-
Fromovitz constraint qualification on Mgsz|h, (9, —f + f(&))], called EMFCQ), is violated
at .

Proof: This result results from Farkas’” Lemma for infinite systems [15, 53, 59]. B

We prepare our introduction of strong stability of a stationary point by assuming that
f,h,g,u,v are C? and putting for any bounded open neighbourhood V C IR? of |J Y(x)

zell®
and any subset M C IR":
Dormgsz[(ﬁ hagau7v)>M] =
9 92
supq sup max ¢ |[y(z)| + X [5E ()] + X g (@) ¢,
zeM eI i=1 = !
0 Lo 92

sup  max < [n(z)| + XI5k (xy)| + XI5t @y + 2 a0 (@) +

zeM ne{g}u i=1 j=1 J i=1 J

In cases of F or OSZT optimization, replacing V by J, Y or disregarding u,v, we denote
by normgl-, -], normesz[-,]. Because of continuity properties stated in Section 2, the next
condition is well-defined [59].
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Definition. Suppose a feasible point 2 € Mgsz[h, g] NU° for Pgsz(f,h,g,u,v) (of class
C?). Now, Posz(f,h,g°,u’,v°) belocally (in U°) representing Pgsz(f,h,g,u,v), and " be a
G-O Kuhn-Tucker point of Pgsz(f,h,g,u,v). Then, we say that " is (G-O) strongly stable,
if for some € > 0 with B(2%,€) CU° and for each € € (0,€| there is some § > 0 such that for
each C2-function (f,h,¢%) with normesz[(f — f,h — h,¢° — g0), B(2",€)] < § the open ball
B(i*, €) contains an ordinary Kuhn-Tucker point &% of Phe;(f, h, 50) = Posz(f, h, g~0, u®,00),
which is unique in B(Z",€). Referring to a G Kuhn-Tucker point z* and to normgsz[(f —
foh—h,g—g,u—ia,v— 0), B(z", €)], we get the condition of (G) strong stability of z*.

Here, “u” (and “d”) indicates (un)disturbed. For our preferred (G-O) strong stability
expressed by original GS7 data, see [59]. In Section 3, we utilize an algebraical characterization
of strong stability in the tradition of Kojima [30] and Riickmann [48].

2. Stability of the Feasible Set.

The following theorems underline the importance of EMFCQ for concluding that
Mgsz|h, g, u,v] := Mgsz|h, g] is a topological manifold with boundary, it behaves continuous
and stable under perturbations of our defining C!-functions. With these perturbations we
remain inside of suitable open neighbourhoods of (h,g,u,v) in the sense of the strong or
Whitney topology C& that takes into account asymptotic effects (for topologies C%, k €
IN U {oo}, cf. [17, 20]). We call a given subset M C IR" a Lipschitzian manifold (with
boundary) of dimension &, if for each T € M there are open neighbourhoods W' C IR" of
T, W? C IR" of 0,, and a bijective “chart” ¢ : W' — W? o(x) = 0,, with Lipschitzian
continuity of ¢, ¢! such that ¢ carries MNW?! to the relatively open set ({0,_,} x IR*)NW?
or to the set ({0, .} x{w € R|w > 0}x R")NW? with (relative) boundary. So, Lipschitzian
manifolds can locally be linearized, however, without preserving “angulars” in the boundary.
In F optimization, that preservation is guaranteed by the stronger condition LICQ, using C*-
smooth linearizing charts. In this sense, we find qualified versions of the following topological
results for Y (x), [19, 59].

Manifold Theorem [59]. Let EMFCQ be fulfilled in U° for Mgsz[h,g]. Then, there is an
open neighbourhood W C IR™ of U° such that Mgsz[h, g)N\W is a Lipschitzian manifold (with
boundary) of the dimension n —m. Moreover, then we can represent the (relative) boundary:

(OMgszlh, g]) "W = {z € W| hi(z) =0 (i € I), ylergg)g(x,y) =0}

Proof: Assumption By, delivers diffeomorphisms ¢’ for all = of some open neighbourhood
W of UY. These transformations guarantee that the insight from [26] on OSZT optimization
can be carried over for our GSZ problem.

For the properties of upper and lower semi-continuity, continuity (in Hausdorff-
metric), genericity (implying density) and transversality (absense of tangentiality), conside-
red for functions or sets next, we refer to [3, 17, 20, 26, 59].

Continuity Theorem [58, 59|. Let EMFCQ be fulfilled in U° for Mgsz[h, g]. Moreover,
let the closure W C IR™ of some open set W C U be representable as a feasible set from F
optimization which fulfills LICQ), and let the intersection of its boundary OW with Mgsz|h, g]
be transversal. Then, there is an open Ck-neighbourhood O C (C'Y(IR",R))™xC*(IR"*?, IR)x
(CY (R, R))" x (C*(IR", R))* of (h,g,u,v) such that MY : (h,§,,v) — Mgsz|h, §, 1, 9]0
W, is upper and lower semi-continuous at all (ﬁ,g,ﬂ,f}) e O. If, moreover, W 1is bounded,
then O can be chosen so that O is mapped to P.(IR™) by MW, and MY is continuous.
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Proof: These assertions are consequences of the continuous dependence of the OST functio-
nal data ¢° u®v° on the GST data g,u,v and, then, of [26], Theorem 2.2. We apply this
theorem on Mosz|h, ¢°, u®,v°] := Mosz[h, ¢°]. In the proof of Genericity Theorem below, we
investigate the continuous dependence WUy : (fL, g,0,0) — (ﬁ, g%, u° v%).

In [59], also a global version and a version on (Z,4,v) — Y%Y(Z) are presented for the
previous theorem. The following result refers to the straightforward generalization ELICQ of
LICQ that is a stronger condition than EMFCQ [26, 53, 59|. (The double usage of F should
not lead to any confusion. For a global result see [59].)

Genericity Theorem [59].

(a) Let C* = (C®(R",R))"xC>®(IR"x IR, R)x(C>*(IR"x R, IR))"x (C>*(IR"xIR?, R))*
be endowed with the Cg-topology. Furthermore, let its subspace Cy . of all (h, g, u,v) €
C>™ with validity of Assumptions Ayo, Byo be endowed with the CZ-relative topology.
Then, there exists a generic subset € C Cp_ such that ELICQ 1is satisfied for each
(h,g,u,v) € E.

(b) Let C' := (CYIR", R))™x CY(IR"x IRY, IR) x (C*(IR" x IRY, IR))" x (C*(IR" x IR, IR))* be
endowed with the Ck-topology. Furthermore, let its subspace C|10c of all (h,g,u,v) € C!
with validity of Ayo, Byo be endowed with the Cl-relative topology. Then, there exists an
open and dense subset F C C|10C such that EMFCQ is satisfied for each (h,g,u,v) € F.
The set F can just be defined by the fulfillment of EMFCQ.

x
loc

Outline of Proof: The first insight on the desired subset £ of C'*°-functions follows from
the OST result [26], Theorem 2.4, that applies Multi-Jet Transversality Theorem [17, 20| and
additional reflections. For that theorem our u°, v° are kept fized, focussing topological interest
on (h,g%) (h = h%); here, the part of some constant set ) is taken by the union of the sets
Z7 (3 € J). Without loss of generality, J consists of one single element. Now, we can state that
there is a generic set £° of OST data functions (h, ¢°), which (by definition of genericity) is
the intersection of countably many open and dense subsets £°% (v € IN).

However, for the tracing back of the OSZ genericity (or, below, openess and density) to
GST optimization, we utilize that the problem representation is continuous. In fact, by Implicit
Function Theorem in Banach Spaces |20, 37|, the inserted local coordinate transformations con-
tinuously depend on (h, §, @, ¥). Let us regard this continuous dependence (representation) as a
function Wy locally mapping (h, §,,7) € C* into the space of all C**-functions (h, §°, @, 1°).
With respect to ;L, the mapping Vg is constant. Using Wi we find £ as the intersection of
the countably many open sets £ := W' (E9") (v € IV).

Now, let us consider an element (h,g,u,v) € Cj5. After sufficiently small perturbations it
still remains in C|5_. Let also some v € IN be given. In the OSZ problem, however, we consider

separate (de-coupled) perturbations ¢? — g9 (j € J) (before we really turn to one single
inequality j). Therefore, the “problem representation” Wpg is not surjective. Actually, as for
some x € YO and two (or more) different j',j2 € J the sets (gzﬁf)*l(ZgQ(m)), (qﬁf)*l(Zgz (x))
might have a nonempty intersection, these perturbations cannot always be traced back to a
perturbation g — g of the given GSZ problem. The following perturbation technique, however,
will be helpful to get rid with such a difficulty, and it will finally guide us to the asserted density.

By definition of ¢’ (j € J) (linearization) the implicitly disturbed sets Z7 can be chosen
as Z7. Moreover, because of the locally finite covering structure underlying g, no difficulty
arises. In view of that locally “fix” u" v and of the constant property of Wy with respect
to h, we delete u°,v°,h in the definition of Wp. So, we get a mapping called U%. First of
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all, we add to g one j-independent, arbitrarily Cg°-small positive function g in an arbitrarily
small neighbourhood of the compact set U ()12 (2))N(¢7)"1(ZL (x)), making
mEMgSI[h glnu®
active indices y inactive there. Then, g* := g + g is a globally defined C**°-function. Now, for
each v € IN we find a (componentwise) arbltrarlly CS -close appr0x1mat10n (h” ”0, u”o, v”o) €
EOV of (h g% u® %), where the approximation gl’o coincides with ¢*° := U%(g* u,v) in
UjesZ?. Here, we may choose the C'-function (W, v70) == (u,0). Hence, that perturbed
function g”o can continuously be traced back under W¥%™' to one C*®-function §”, i.e.,
{(g",u,v)} = \D}‘%_l({ﬁ}). So we are in a position to state, that (h,g,u,v) can arbitrarily
well be C-approximated by (h, §,@,7) == (f;’,g”,u,v) € &Y. This means that £” is dense,
too. Altogether, we have shown that £ is generic.

Preparation: This (relative) genericity implies (relative) density [20], because of the “Cg°-
openess’ of both LICQ and (y-) boundedness. Now, we use the fact that EMFCQ follows from
ELICQ, and the C&-density of C®(IR*, IR) in C'(IR*, R) (k € IN). Moreover, we take account
of our preparation and of the perturbational “C}-openess” of EMFCQ.

We underline “F” or “GSZ open” properties: LICQ and EMFCQ remain preserved under
sufficiently slight data perturbation.

Next, we refer to the same underlying dimensions n, ¢ in z- or y-space, and numbers
r, s of functions wy, ve. Two feasible sets Mgsz[h', g', ut, vl], Mgsz[h?, g% u?,v*] are called
(topologically) equivalent, notation: Mgsz[h!, g', ul, vl ~y Mgsz[h?, g2,
u?,v?], if there is a homeomorphism ¢y (= ¢gs,) © IR™ — IR" such that

M(MQSI[hla gla Ul, Ul]) = MQSI[h27 927 U2, 1)2]'

The given feasible set Mgsz|h, 9] (= Mgszlh, g,u,v]) is called (topologically) stable, if
there is an open C-neighbourhood O of (h,g,u,v) such that for each (iz,g,ﬁ,@) € O we
have Mgszlh, g,u,v] ~y Mgszlh, §, 0, 0] (see [12, 26, 53, 59]. Let us make the boundedness
(hence, compactness) assumption that Mgsz|h, g| lies in U°.

Stability Theorem [58, 59|. The feasible set Mgsz|h,g] C U° is topologically stable, if
and only if EMFCQ is fulfilled for Mgsz[h, g].

Proof: We trace back to the OSZ situation again, given by [26|, Theorem 2.3, now. As
being the case in the proof of Genericity Theorem, technicalities arise. Moreover, in [26] the
equality constraint functions h are assumed to be C?. All these difficulties can be governed:
In Section 3 we prove Characterization Theorem on the lower level sets of the whole GS7
optimization problem; that theorem implies our Stability Theorem. We note that under our
overall boundedness assumptions, Mgsz|h,g] is a lower level set of Pgsz(f,h,g,u,v) for a
sufficiently high f-level. Already to point out the essential ideas for the sufficiency part,
“«=" proved in a constructive way, and for the necessity part, “=—-", proved in an indirect
way, we look at Figures 1, 2, respectively. For both parts differential topology and Morse
theory are helpful. While for the necessity part some algebraic topology [19, 51] is essential
to evaluate unstable situations, for the sufficiency part flows [1] are important. To construct
a homeomorphism ¢, we first of all C'-transform (in ) the sets M[h], M[h] to some
manifold M{[h]. Here h is of class C2 (or C) [47, 53]. Now, we may suppose I = (). Finally,
we homeomorphically map the feasible set Mgsz[g] onto the feasible set Mgsz[g] by steering
the boundary 0Mgsz[g] onto 0Mgsz|g] along an EMF-vector field.
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MQSI[_(} [l' D]

Fig. 1. Proof of sufficiency part, Stability Theorem

Fig. 2. Proof of necessity part, Stability Theorem

3. Structural Stability and its Characterization.

3.1. Structural Stability of the Problem.

Under Assumptions Ay, Byo, we still refer to the bounded set Mgsz[h, g], but additionally
take f into consideration. We establish the structure of the entire problem Pgsz(f,h,g,u,v)
by all its lower level sets

Lgsz(foh,g,u,v) = {w € R"[ x € Mgsz[h,g,u,v], f(x) <7} (7€)

In the tradition of Guddat, Jongen, Riickmann and Weber, we observe this structure under
data perturbation and define structural stability. Here, descent has to be preserved, if the level
varies. Let us still assume that the defining functions are C?. Then, this global stability can
essentially be characterized by EMFCQ of Mgsz[h,g] and by strong stability of all considered
stationary points.

Two problems Pgsr(f1, b, gt ut,vl), Pgsr(f?, h?, g2, u* v?) (with defining C?-functions)
are called structurally equivalent:

PQSI(fla h17 917 ula Ul) ~p Pgsz(f27 h27 927 U2, UQ)

if there are continuous functions ¢p (= ¢p,e,) @ R X R" — IR" and ¢ (= Ygsz) : R — IR
with the three properties sz 1,2,3 (Fig. 3):

Egsz 1. ¢p.: R" — IR" is a homeomorphism, where ¢p - (z) := pp(7, ), for every 7 € IR.

Egsz 2. ¢ : IR — IR is a monotonically increasing homeomorphism.
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Fig. 3. Structural equivalence (bird’s-eye view below)

Egsr 3. opr(Lisz(f1 Y, g' ul,0h)) = Lg‘é;)(f2,h2,92,u2,02) for all 7 € IR.

Considering the first problem as undisturbed and the second one as slightly disturbed, we
arrive at structural stability |11, 23, 27, 53, 59]; cf. also [1, 4, 20, 50|: Pgsz(f, h, g, u,v) (with
defining C*-functions) is called structurally stable, if there exists a C3-neighbourhood O
of (f,h,g,u,v) such that for each (f,h,g,a,7) € O

PQSI(fa hagau7 U) ~p PQSI(.fa ﬁ).&aaﬂ’&)

3.2. Characterization Theorem.

Under Assumptions Az and By we state:
Characterization Theorem (or Structural Stability Theorem; [59]).
Let Mgsz[h,g] CU° hold for problem Pgsz(f,h,g,u,v) (with defining C?-functions).
Then, Pgsz(f,h,g,u,v) is structurally stable, if and only if the three conditions Cgst 12,3
are fulfilled:
Cgsr1-  EMFCQ holds for Mgszlh,g].

Cgsra- All the G-O Kuhn-Tucker points T of Pgsz(f,h,g,u,v) are (G-O) strongly stable.

Cgsrs.  For each two different G-O Kuhn-Tucker points T # 7% of Pgsz(f,h,g, u,v) the
corresponding critical values are different (separate), too: f(Z') # f(T?).

In this main result, we could also make a further assumption, excluding certain inequality
constraints z from the relative boundary 0Z7 (j € J). Then we could identify the G-O
Kuhn-Tucker points by some G Kuhn-Tucker points. However, for validity of Characterization
Theorem, such an assumption is not necessary [59].

3.3. Proof of Characterization Theorem.

Preparations. For preparation, let us recall the proof of Genericity Theorem, taking into
account the parametrical dependences on the defining data (g, @,v) (by construction, h may
be disregarded). Now, we make again applications of Implicit Function Theorem in Banach
spaces, such that, in particular, we state a continuous dependence of (g°,u°,o%) on (g, u,d).
Consequently, small perturbations on the data of Pgsz(f,h,g,u,v) cause slight perturbations
on the data of Posz(f,h, g% u’,v°). The reverse question arises: Can small perturbations of
the OSZ data be reconstructed under the problem representation from slight perturbations of
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the given GSZ problem ? We give a conditionally positive answer. However, this answer will
be fitting for the perturbational argumentations on Characterization Theorem:

Item 1. For representing OSZ problem(s), u° @° are of special linearly affine form and,
under sufficiently small perturbations of the GSZ problem, we may treat them as fized. Hence,
besides the perturbations (f,h) — (f,h), for Posz(f,h,¢° u°,v°) we are concerned with ¢° —
50 only. We therefore introduce the simplifying notation P}s7(f, 1, ¢°) := Posz(f,h,g",u’,v°).

Item 2. Subsequently, we mainly perform local perturbations for Pk (f,h,g°). Here-
by, we treat the finitely many functions g? (j € J) separately in small disjoint open sets

Vi ( € J) such that their perturbations g? — g? can be reconstructed by one single C2-
function § (given below). Therefore, we would need the perturbationally stable
Assumption F*: For all j!,5% € J, j' # j%, we have

U ((cb;l)—l(Zé‘l(x)) N <¢;2>-1<232<x>>) -y

x€Mgsz|h,g] N U

We are going to exploit the condition from Assumption F* after perturbations. However, if
we may suitably choose our perturbed functions ¢°, then Assumption F* is naturally fulfilled
(after perturbation), and we need not make it in the unperturbed situation. Now, under problem

representation and joined by w, v, this function § generates g? locally in V¥ (j € J). Then,
for each j € J, small perturbational (global) effects outside of V} (j € J) have no influence.
They can be ignored. The announced function is

) B, 4h(y)). if y € (¢1)71(27) and (z,¢(y) €V}, jE€J

g(x,y) =
g(x,y), else.

Item 3. Below we must consider a certain global perturbation of Phs7(f,h, g°) to receive
C*°-data or, finally, some (global) “open and dense” property. Therefore, we apply on the one
hand the perturbation technique from the proof of Genericity Theorem. On the other hand,
whenever it is possible to turn from the GSZ problem to an OSZ (or F) one, then we are
back in the situation of Item 2 in order to perform local perturbations.

For our proof of Characterization Theorem, the algebraical characterization of (G-O) strong
stability of a G-O Kuhn-Tucker point T is important. It was given by Riickmann [48]| for
OSZ optimization and extended in [59] for our GSZ one. Here, we assume EMFCQ at T.
That sophisticated characterization refers to (restricted) Hessians of Lagrange functions, and
it bases on a case study referring to the reduction ansatz. This RA demands strong stability
in the sense of F optimization [30] for the local minimizers of the problem from the lower
(y-) stage. Herewith, RA admits local representation of Pgsz(f, h, g, u,v)around Z by Implicit
Function Theorem [48, 59]; see [14, 61]. These cases are:

I ELICQ and RA are fulfilled at z.

II EMFCQ — but not ELICQ — and GRA are fulfilled at z.

111 EMFCQ — but not GRA — is fulfilled at z.

In any case, we can also classify the type of the strongly stable stationary point z: While in
case I a saddle point, a local minimizer or local maximizer is detected by the “stationary index”
of & (a topological invariant), in cases II, IIT we have a strict local minimizer throughout [59];

of. [31, 48, 53).
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Sufficiency Part. Let Cgsri123 be satisfied. We equivalently represent Pgsz(f, b, g, u,v)
by PgSI(f7 h,
g% u® vY), and straightforwardly interpret Cgsri23 as OSZ conditions Cosz123. These condi-
tions are the (OSZ) constraint qualification EMFCQ), strong stability of all Kuhn-Tucker points
in the sense of OSZ optimization, and separateness of the values of these OSZ stationary points.
Under slight perturbations of the GSZ data, u°,v" do not (and need not) vary. Now, we are
prepared for OSZ explanations and, finally, F constructions from [23; 27, 53| in our GST
context. We briefly repeat main ideas of construction. In [27, 53|, detailed information on the
techniques can be found together with illustrations.

An easy counterexample shows that the separateness condition Cggsrs is not generally
avoidable for establishing structural stability (see [20, 53]). Here, two connected sets, say:
(arcwise) components, would have to be mapped onto one connected component, contradicting
homeomorphy. A similar reasoning made for another counterexample shows that, in general,
the 7- (level-) dependence of the intended homeomorphisms also cannot be avoided. Moreover,
each G-O Kuhn-Tucker point 2" has to be mapped to the corresponding stationary point ¢
of the slightly perturbed problem Pgsz( f ,B,g,ﬁ,f;). Finally, we conclude from the overall
boundedness assumption, from EMFCQ and strong stability, that the number of G-O Kuhn-
Tucker points is finite: 7% (o € {1,...,0°}) [27, 53, 59).

We start the construction by transforming the C?-manifold MIh] to the C?-manifold
M[h] in a suitable bounded, open neighbourhood of Mgsz[h, g]. Therefore, first we make
a local construction by a graph (or implicit function) argumentation. Locally around the
stationary points, the transformation is C?. Then, we complete the whole transformation by
means of a global construction. Here, we use the Morse theoretical technique of walking along
trajectories of a vector field in IR, Outside of (local) neighbourhoods of the stationary points,
the transformation is C'. There, this means a (by 1) diminished order of differentiability,
which does not cause any difficulty. From now on, we may assume that there are no inequalities,
i.e., I = (). Next, we dynamically construct the level shift 1. In fact, we integrate a C'*°-vector
field such that each critical value f(z%) gets shifted in IR to the corresponding critical value
f(@%) (0 € {1,...,0°}). Now, we may think 1) = Idp, referring to fo) otherwise. There are
disjoint open neighbourhoods B(z%,¢€) (balls) around % such that the smaller neighbourhoods

B(z: %) contain 2¢ (o € {1,...,0%}). We assume that the unperturbed and the perturbed

o)

lower level sets coincide in all the sets B(Z%,¢€) \ B(ZY, %) (0 €{1,...,0°}). This assumption

will not restrict generality.

Based on the foregoing reductions of I, and the previous assumption, we go on constructing
ep, (T € IR") in a local-global way. Firstly, we realize which undisturbed sets have to
be homeomorphically mapped onto which corresponding sets from the disturbed situation
(mapping task). We distinguish three situations given by levels 7 < 7,7 = 7, or 7 > 7.
Herewith, we learn that some area from outside of the feasible set possibly has to be “carried in”.
Moreover, outside of the stationary points, the intersections of the level sets with the boundaries
are transversal. Our further construction will be raised on these intersections (fundamental
domains).

Outside of B(i%¢) (0 € {1,...,0%}), we use EMF-technique indicated in the sufficiency
part on Stability Theorem. Here, we use our Lemma from Section 1, and apply this dynamical
EMF-technique on Losz(£,6°) (= Lisz(f,g,u,v)) and on Ls(f,3°) (see Figure 4(IT)). By

differential geometry, this global construction is glued together in U7, (B(2%, €) \ B(d, %))
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with the local construction sketched next. We may refer to one unperturbed stationary
point (= &%) € {2},...,2%} and corresponding perturbed point #¢. Now, we are inside of
B(z*,€). We restrict to n € {2, 3}, because higher dimensions can be reduced to those small
dimensions by successive hyperplane intersection.
Case 1. “ is lying in the interior Mosz[9°]|(= Mgszlg, u,v]) :

Then, ¢, being sufficiently slightly perturbed, lies in the interior of Mpsz[¢°]. Both stationary
points are nondegenerate [19], and for each 7 we transform the 7-levels around " onto the
local 7-levels at 2%. In fact, this local construction can be made by a C!-diffeomorphism using
Morse theory [27, 53].

Case 2. " is placed on the boundary of Mosz[d°] :

Then, ¢ may lie on the boundary or in the interior of Mpsz[§°]. Without loss of generality
we assume the second (boundary) case. Actually, using an implantation of a suitable level
structure we turn from stationary points at the boundary to fictive stationary points in the
interior. This level structure is locally given by fictive objective functions f“ and fd. (In case 1,
those fictive points naturally exist.) For performing this implantation of f“, fd we need precise
knowledge of the configurations around the boundary points £, 2¢. These configurations are
characterizable by the position (relative to the boundary) of cones or balls, together with the
growth behaviours of f, f there. We have two conical types and one radial type, governed
by strong stability (under EMFCQ); |27, 53, 59]. See, e.g., Figure 4(I). We arrive back in case
1 (interior position) by means of fictive interior problems, extrapolating the “characteristic”
of 2%, 2¢ and implanting fictive stationary points %) :Acsfic with their local level structures.
Herewith, for all 7 € IR the mapping task is fulfilled in case 2, too.

The delicate dynamical and topological techniques (and substeps) exhibited in Fig. 4(I) are
due to the local construction in case 2. They can be elaborated, e.g., in terms of boundary
displacement, positioning, sharpening or tapering flows |27, 53].

Necessity Part: Let Pgsz(f,h,g,u,v) be structurally stable. Our proof of Cgszi23 is
indirect. Assuming one of the first two regularity conditions or the third technical condition to
be violated always contradicts structural stability (see Figure 5). Based on our assumptions,
we carry over the proof the OSZ necessity part from [23] into our GSZ setting. Many details
of argumentations are Morse theoretical |11, 26, 27, 53, 59]. To avoid loss of differentiability,
we assume that all data are C' [11|. This smoothness can be achieved by fine perturbations
of all OST data and, by tracing them back, of all GSZ ones.

Here, we make the inequalities of different indices z¢ # z¢° independent from each other
(by small shifts).

Cgsz 1. As Mgszlh, g] is compact, there exists the finite number 7% := max{f(x)|
v € Mgszlh,g]}. Herewith, Mgsz[h,g] = Lgs7(f,h,g,u,v) (7 € [T 00)). Moreover, we
can choose perturbations slight enough such that Mggz[ﬁ, g] remains compact. Let 7M2% for
each sufficiently slight perturbation (f,h,§,,?) denote the maximal (feasible) value of f.
Taking 7% := max{7™ =1 (7M%)} " the homeomorphism ¢p .« gives topological equivalence
between Mgsz[h, g, u,v] = Lis7(f h,g,u,v) and Mggz[ﬁ,ﬁ,&, 0] = ng)(f, h,§, 1, v). By
Stability Theorem, topological stability implies EMFCQ. In fact, by suitable perturbations any
violation of EMFCQ at a feasible point leads to compact sets Mgsz[il, ql, MgSI[;L, g], satisfying
ELICQ but being not of the same homotopy type [12, 26, 53, 59]. When, e.g., the two sets have
a different finite number of connected components, this must contradict topological equivalence
[19].

Cgst 2. Suppose EMFCQ, but Cgsz not fulfilled: some G-O point 2" be not (G-O) strongly
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stable.
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Fig. 4. Proof of sufficiency part, Characterization Theorem

Perturbation Lemma [59]|. Let a G-O Kuhn-Tucker point " of Pgsz(f,h,qg,u,v) be
given, where EMFCQ is fulfilled, but (G-O) strong stability violated. Then, for each open C2-

such that:

(i) Posz(f, h,§,1,0) has k' G-O Kuhn-Tucker points, all being (G-O) strongly stable,
except one (namely, ).

(i1) Pgsz( f h, g, u,v) has at least k' +1 G-O Kuhn-Tucker points, all being (G-O) strongly
stable.

different G-O Kuhn-Tucker points have different critical (f— or ~f—) values.

In F or OSZT necessity parts of [11, 53] (cf. also [23]), these perturbations are realized by
three steps. Step 1 yields local isolatedness of z" as a stationary point where, additionally,
(E)LICQ is guaranteed but unstability preserved. In step 2, outside of the local situation,
(E)MFCQ and strong stability of all (other) stationary points are established. Finally, in
step 3, the unstable Kuhn-Tucker point z* “splits” By this bi- (or tri-) furcation we locally
get two new stationary points; they have strongly stability. In this GSZ situation, we use
the algebraical characterization from our preparations. Now, we introduce a topological idea:

For Lgsz(f, h,§, 1, 0), Lisz( fh, g u, ?) we have to take into account each change of the
homeomorphy type of a lower level set, when 7 traverses (—oo, c0). Based on the perturbations
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look at a C*- problerp

Pgsz( f fz g,1,0) having a compact feasible set and fulfilling EMFCQ,
and we put Lisr.(f, h,§, 4,0
h,

{xEMggz[h dlla < f(z) < b} for some a,b e R, a<b.

~

Ttem 1. 1f Ligr,(f.
@,0) and Lgsz(f,h,g,ﬂ f)

Item 2. Let Ll ,( 7, g 4,0) contain exactly one stationary point #’. Moreover, let
a< f(2') <band 2’ be (G-O) s
are not homeomorphic. o

These two items immediately result from corresponding facts on Posz(f,h, g% a°, %),

o

)
) oes not contain a stationary point, then Lgsz( f h . G,
e homeomorphic.

trongly stable. Then, L&s;(f,h, g, ,0) and Lbs,(f,h, g, a,0)

Posz( fh,g°, w0, 1°) stated in [48]. Here, Jtem 2 can be expressed with attaching k-cells (k =
stationary index at '; [59]). By Manifold Theorem and Lemma (Sections 1-2) we conclude
for all noncritical levels T: LgSI(f h,§,a,0) = Mgszlh, (g, —f + 7)] is a compact topological
manifold (with boundary). So, their homology spaces (over R) are of different finite dimensions
[51]. As these spaces are topological invariants, the two considered lower level sets cannot be
homeomorphic [19].

Now, we can make the following “discrete” statement on numbers of topological changes for

the lower level sets: The homeomorphy type of Lisz( £ h, g, %, ) changes (at least) at A"+ 1

times, while the homeomorphy type of L ( f,h,§,u,7) changes (at least) at & — 1 times,
but at most at &’ times. This difference contradicts structural stability of Pgsz(f,h,g,u,v)
(cf. [59], or see Fig. 5).

Cgsr 3¢ Let Cgsz 3 be violated, but the former two properties on EMFCQ and strong
stability be satisfied. By local addition of arbitrarily small constant functions on f, we get a
problem Pgsz(f*, h,g,u,v) satisfying Cgsr 3. Let k* stand for the number of critical points
of Pgsz(f*,h,g,u,v). Then the homeomorphy type of Ljs7(f*,h,g,u,v) changes k* times,
while the number of changes of the homeomorphy type of Lis7(f,h,g,u,v) is less than k*.
Hence, we are faced again with a situation which is incompatible with structural stability of

PgSI(f? h7 g,u, U) (Figure 5)

o S [ ]

ii;»fi? (<D
%ﬁ% %%ﬁﬁ

Fig. 5. Proof of necessity part, Characterization Theorem

4. Generalizations, Optimal Control and Conclusion.

4.1. Generalizations.

There are two lines for generalizing our topological results:

(i) Mgszlh,g] is unbounded (noncompactness),
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(ii) f is of the nondifferentiable GSZ maximum-type f(r) = maxycr) w(z,y).

On (i): We overcome noncompactness by turning to the entity of excised subsets of Mgsz[h, g].
Roughly speaking, the effect of intersection is performed by subtracting lower semi-continuous
functions from h; (i € I) and g [49, 53, 59]. Herewith, we can express cuts, e.g., by cylinders
or balls, by IR" itself or by bizarre sets. Referring to all excised sets, we get the condition of
excisional topological stability which can actually be characterized by the overall validity
of EMFCQ in the unbounded set Mgsz[h, g]. For that (Ezcisional) Stability Theorem see [59).

On (ii): Nonsmoothness is overcome by expressing Pgsz(f,h, g, u,v) as minimization of
Tpi1 over the epigraph Egsz(f) = {(z,zn11)|x € Mgszlh,g], f(z) < zp41}. From this
problem in IR™"' we obtain our stationary points of Pgsz(f,h,g,u,v) and the appropriate
condition of strong stability |53, 54, 59]. Now, (max-) structural stability of our nondifferentiable
problem can be characterized by EMFCQ, strong stability and the technical separateness
condition again. This Characterization Theorem and the one for the case combination of (i)
and (7i) are demonstrated in [59].

4.2. Optimal Control of Ordinary Differential Equations.

We turn to infinite dimensions by studying the following minimization problem in (z,u) [13,

36, 44]:

.

Min Z(x,u) = (x(a),z(b)) + [ L(t,z(t),u(t))dt

(2 € (Cus ([a. 0], R)Y", u € (Fyues ([a, ], R))?),
P, L, F, H,G) such that

x(t) = F(t,z(t),u(t)) (for almost every t € [a,b]),
(z(a), z(b)) € M[H],

L 2(t) € Mg|G(t,-,u(t))] (for almost every t € [a,b]),

where (L, F,G), (¢, H) are C3- and C?-functions (vector notation), respectively. Instead of
referring to the larger classes of Sobolev or Lebesgue spaces, we concentrate on spaces of
continuous and piecewise C? states x, and piecewise C? controls, called Cpy, and Fpyo.
For these spaces, strong topologies in Whitney’s sense can be generally introduced [59].

Assumption (BOUND). M[H] C R" x IR" and Mg[G] C [a,b] x R" x IR?, defined by
the equality and inequality contraints, are bounded.

Assumption (LB). There exist positive functions ag, fy € C(IR™', IR) such that (under
I| [l = mazimum norm) we have linear boundedness of F':

17 (%0l < aot w)][xllo + Holt,w) (%, 1) € R,

We briefly present two approaches to global structure and stability of P(¢, L, F, H,G) (cf.
[59], where a third one can also be found). While our main Approach II is refined, Approach I
is given for a better understanding.

Approach I: Particular Structure. Let u be considered as C? and a parameter.
Then, for each fixed u = u* the optimal control problem P(¢, L, F, H,G) becomes a problem
PY(¢,L,F, H,G) from calculus of variations. The corresponding system of differential equations
(on z) generates a flow (in IR™"'; [1, 20]). Under this flow, we trace back the equality and
inequality constraints, and the objective functional as well (cf. [55, 56, 59]). So we obtain an
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OST problem Pgs (f*, h*, g*) (where Y7 = [a,b]). Then, referring to the family of all v and
to perturbations of (f*, h*, ¢g*), we get the condition of (particular) structural stability
with its Characterization Theorem again (cf. Section 3; [56, 59]). The CZ-property and
parametrical treatment of u, however, are not sufficient for optimal control. That is why we
turn to the

Approach 1I: Composite Structure. We evaluate the necessary optimality condition
Pontryagin’s minimum principle [13, 44] in the way of “Kuhn-Tucker” for almost every t €
[a,b]. Here, we have suitable multiplier vectors, (adjoint) variables, and H(¢,x,u, A\, ) =
L(t,x,u) — N'F(t,x,u) — uTG(t,x,u). Then, our evaluation, called minimum principle
here [6, 38, 39, 41|, reads

DTH( Y
B0 >0 e D) and 1070 G000
N(a) = = Dg, (¢ = p* H)(2"(a), 2" (b)),
XO(b) = DY, (£ = p°" H)(2"(a),2°(b)),
N(t) = —DxH(t,a%(t), u’(t), A°(2), u° (1))

For our causal (composite) structure we need a condition like strong stability [59]:

Assumption (CONT). All the (C,y X Fpuwe-) solution components (x°,u°) of the
minimum principle depend continuously on C3 x C%-perturbations ((L,F,G), (¢, H)) —

(L, F,G), (1, ).

We interpret the first four lines of the minimum principle as Kuhn—Tucker conditions of two
families of optimization problems: (x) PEV(L,F —w,G) and (x*) Pr(\(a), \°(b), ¢, H),
an index set M[F,G] of (t,x,w) being appropriately chosen in view of P((, L, F, H,G).
For each of these problems we introduce (composite) structural stability and characterize it
essentially by (E)MFCQ and strong stability (see Section 3). Analyzing (%) so, we locally
get implicit C2-control functions wu (t,x, w), which are Kuhn-Tucker point-valued and fulfill
ul(t) = uy(t,2°(t), 2(t)). Substituting w := &(t) for any trajectory x of some auxiliary flow,
adapted to our system of differential equations, we locally receive core functions u!(¢,x).
The choices of these auxiliary or test flows etablish a structural frontier of our theory [59]. In
order to globalize a core such that its domain covers [a,b], we admit jumps in R"*" (see
Figure 6). These jumps shall be compatible with the jumps of our variables u°. Again we say
that the globalized core functions (V) u), are of class Fpw2. Let B, B be (“boundary”) sets
where the jumps may or really do happen, respectively. When these sets exist as Lipschitzian
manifolds of dimension ¢, and if they define (by decomposition) piecewise structures before or
after jumps, which quantitatively remain preserved under small perturbation of (¢, L, F, H,G),
then the core (V) is called (composite) structurally stable [59]. A further regularity condition,
called structural transversality, in short: ST, analytically determines the boundary sets (up
to a finite number of choices) and guarantees this (composite) structural stability of a core.
(See also [21, 39, 41].) The refined condition ST essentially means transversal intersection of
u (-, z(+)) (along trajectories x) at the boundary of the corresponding feasible set in IR?. This
implies transversality of x at the manifolds B, B.

Now, inserting u(t) = u%(¢,z(t)) in P(¢, L, F, H,G) delivers again a problem P (¢, L,
F, H,G) from calculus of variations, which we also trace back under its flow. In this way we get
an optimization problem with a complex underlying piecewise structure. Up to the structural
frontiers given by combinatorially more complicate index sets Y (x) and objective functions f
of continuous selection type [22|, we arrive at a GST problem (x**) Pgsz(f, h, g,v) with f of
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Fig. 6. Piecewise structure and jumps of cores

mazimum-type (cf. Subsection 4.1). Then, we introduce this optimization problem’s condition

of (composite) structural stability referring to perturbations of the original data (¢, L, F, H,G).
In that sense, we call P(¢, L, F, H,G) composite structurally stable if all the structural

elements (x), (%), (skx), (V) are (composite) structurally stable. Under our basic Assumptions

(BOUND), (LB) and up to those more complex problems we state (with simplified presentation):
Characterization Theorem on Composite Structural Stability [59].

The problem P, L, F,H,G) is composite structurally stable, if and only if the conditions

Ci,2,3,4 are satisfied:

C,. (E)MFCQ holds for all the feasible sets underlying (%), (x %), (x % x), (Q).

Co. All the Kuhn-Tucker points @, X of the problems represented in (x), (x*), (* * *)
are strongly stable (in F or G-O sense).

Cs. For all optimization problems represented in (x), (x%), (x % %) each two different
Kuhn-Tucker points have different (separate) critical values.

C,. For all core functions (V) ST is fulfilled.

Sketch of Proof: The main lines are the same as in Subsection 3.3. The new item, given
in the necessity part, “=— C,,” concerns the undisturbed or disturbed piecewise structures,
and it is illustrated in Figure 7.

For controllability, i.e., to come from time a to time b under given constraints of P(¢, L, F),
H,G), discrete mathematics [5] often turns out to be a tool of investigation as follows.
(For underlying finiteness and genericity considerations see [59].) Our control problem asks
for a domain of the core u% (compatible with u°) that is sufficiently large, say: tending to
maximality. Provided a careful choice of the set of jumps, this maximal domain problem can
be represented as a maximal matching problem in a partite graph (see, e.g., Figure 8). In a
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subset of arcs called matching, different elements are disjoint. Here, each partition stands for a
locally defined continuous core, the directedness of the ars reflects orientation by time ¢. This
matching problem can be solved by Edmond’s algorithm [25].

Inserting the global cores, arriving at an z-depending problem, we may, for example, consider
the objective function as the arc length of our piecewise structured solutions = = 2% € C’sz
of minimum principle. Therefore, we take into account arcs between neighbouring vertices
(manifolds By, Bs) of the same former partition such that the partite character gets lost (see,
e.g, Figure 9, periodic constraint z°(a) — 2°(b) = 0 implied). The corresponding minimization
problem can be regarded as a shortest path problem, solvable by Dijkstra’s algorithm [25].

Fig. 7. Proof of necessity part (composite structural stability)

Fig. 9. Directed graph featuring minimization of arc length
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4.3. Conclusion.

Besides the “discrete” (stationary) index, piecewise structures and optimization problems men-
tioned above, there is a variety of further theoretical and methodical connections between GSZ
optimization, optimal control and discrete mathematics. Concerning discrete Morse theory,
topology and systems analysis we mention [2, 8] and [42]; many other examples can be found
in 35, 59, 60]. We noted that structural frontiers can often be understood in a combinatorial
manner. Just the same is true with respect to solution algorithms for a given GSZ problem.
The more complex the problem is, the more important becomes discrete intrinsic information
of the problem for transparency, convergence and stability (cf. [52], see also [34] on time-
minimal control). Here, we refer to the research [43, 58, 59| that is based on our optimality
conditions, analytical techniques and stability results. Often, there is little knowledge about
the geometry and topology of the feasible GSZ set. As a “manifold” and stability condition,
our version of EMFCQ, that bases on Assumption Byo of LICQ, was of central importance
for a rigorous study of optimization and control. In future, there may be both a weakening
in the theoretical field of assumptions (e.g., in the way of [24]) and a systematic look for
combinatorial and geometrical treatments from reverse engineering, discrete tomography with
its inverse problems, or randomization [59).
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