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[Tomyvenbr HEOOXOMUMBIE U JIOCTATOYHBIE YCJIOBUS YCTONIMBOCTU METOJOB KOJIJIOKAIIAN
o y3yiam ebblieBa epBOro U BTOPOrO POJA I CKAJIAPHBIX CHHIYJIAPHBIX MHTEIPAJIb-
HbIX ypaBHeHuit Ko ¢ KycouHo-HepepbIBHBIMUA KOIMDMUIUEHTAMA HA OTPE3KE U JIJIs
CHCTEM TaKUX ypaBHeHuU. PaccMarpuBaeTcss TakkKe IOBEJEHUE CUHTYJISIPHBIX 3HAUCHUM
MaTpUll JUCKPETHBIX YpaBHEHUII.

1. Introduction

Recently a collocation method, which is based on the Chebyshev nodes of second kind as
collocation points and on approximating the solution by polynomials multiplied with the
Chebyshev weight of second kind, was studied for both linear and nonlinear Cauchy singular
integral equations (CSIE’s) on the interval [—1, 1] (see [11, 12, 22| for the linear case and [9] for
the nonlinear case). There are several reasons for choosing Chebyshev nodes as collocation points
independently from the asymptotic of the solution of the CSIE. At first we get a very cheap
preprocessing for the construction of the matrix of the discretized equation, which is especially
important in case of approximating the solution of a nonlinear CSIE by a sequence of solutions
of linear equations (cf. [9]). A second reason is the possibility to apply such collocation methods
to systems of CSIE’s, which is, in some sense, the main topic of the present paper. Indeed, in
[11] there are only given necessary and sufficient conditions for the stability of the mentioned
collocation method in the case of scalar CSIE’s of the form

a(z)u(x) + oz) /_ uly) dy = f(x), —-l<z<l1, (1.1)

i 1Yy —x

where a and b are given piecewise continuous functions and the equation is considered in an
appropriate weighted L2-space L2 . In [12, 22| the system case could only be investigated under
additional conditions on the coefficients of the singular integral operator. In the present paper
we study a more general situation, namely we give necessary and sufficient conditions for the
stability of operator sequences {A,} belonging to a C*-algebra A, which is generated by the
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sequences of the collocation method for equations of type (1.1). These stability conditions
can be formulated in the following way. There exist *-homomorphisms W : A — L(L?),
W:A— L(L%) and ny : A — L(¢?) such that, in case of collocation w.r.t. Chebyshev
nodes of second kind, a sequence {A,} € A is stable if and only if the operators W {A4,} ,
/V[v/{An} , and 1y {A,} are invertible. In case of collocation w.r.t. Chebyshev nodes of first
kind the invertibility of W {A,} and W {4,} is necessary and sufficient for the stability of
{A,} € A. It is important that such stability results for sequences belonging to an algebra A
can be extended to the case of systems of CSIE’s.

The paper is organized as follows. In Section 2 the collocation method is described, where we
also consider Chebyshev nodes of first kind as collocation points. In Section 3 some basic facts
are collected and the existence of several strong limits of the involved operator sequences is
established. The main result is proved in Section 4 using localization principles in C*-algebras.
In the opinion of the authors it seems to be surprising that the stability conditions in the
two cases of Chebyshev nodes of first and second kind are very different. The results of
Section 4 are used in Section 5 to describe the behaviour of the smallest singular values of
the operator sequences of the collocation method w.r.t. the Chebyshev nodes of second kind.
The last Section 6 is dedicated to the very technical proof of a lemma on the local spectrum of
the sequence of the collocation method in case of the Chebyshev nodes of first kind.

2. A polynomial collocation method

Let o(z) = (1 — 2272 and p(z) = (1 — 2?)"/? denote the Chebyshev weights of first and
second kind on the interval (—1, 1), respectively, and let L2 refer to the Hilbert space of all
w.r.t. o on (—1,1) square integrable functions, equipped with inner product and norm

<u,v)U:/_ w(z)o@o(x)de and  [ull, =/ ay.

1

For w € {0, ¢} and n > 0, let p* stand for the w.r.t. w orthonormal polynomial of degree n
and abbreviate p? and p¥ to T}, and U, respectively. It is well known that

1
To(z) = 7= T.(coss) = +/2/mcosns, n>1, se€(0,m),

and
sin(n + 1)s

sin s

Un(coss) =+/2/7 , n>0,se(0,m).

Further define weighted polynomials u,, :== ¢U,. Both {T},},%, and {u, },>, form an orthonormal
basis in L2 . The zeros of p® are known to be

27 —1 '
I~ n and x, = cos I

where j=1,..., n.

n n

Further, the Lagrange interpolation operator L acts on a function f : (—1,1) — C by

Lef =" flas)e,, 62(x) = = A el
; ’ ’ ’ k:g;éj xjn = Lpp, (SL’ - xjn)(p%)/($]n>
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A function a : [-1,1] — C is called piecewise continuous if it is continuous at +1 and if the
one-sided limits a(z £ 0) exist and satisfy a(x — 0) = a(z) for all x € (—1,1). The set of all
piecewise continuous functions on [—1, 1] is denoted by PC = PC[—-1,1].

For given functions a,b € PC and f € L2, consider the Cauchy singular integral equation

a(x)u(x) + oz) /_ uly) dy = f(z), —-l<xz<l. (2.1)

i 1Yy —x

Both the Cauchy singular integral operator

1 1
S:L: — L2, UH__/ Mdy

T™J 1Y

and the multiplication operators al : L2 — L2, u + au, belong to the algebra L£(L?2) of all
linear and bounded operators in L2 which justifies to consider equation (2.1) on this space. For
the approximate solution of (2.1), we look for a function u € L2 of the form

n—1
k=0

which satisfies the collocation system

a(xs, Jun(x5,) + b(a:;’n) /_ uy) dy= f(z%,), j=1,...,n. (2.2)

w
T Jo Y-,

If we introduce Fourier projections
n—1
CT2 2 ~ 0\~
P,:L: — L, uw— E (u, Ug) o g
k=0

and weighted interpolation operators M¥ := @L¥@ ™!, then the collocation system (2.2) can be
rewritten as an operator equation

My (al +bS)Pu, = M7 f, w, €imP,. (2.3)

The reason for using M instead of L¥ is that the range of M coincides with that one of the
Fourier projection P,.

Our main concern is the stability of the sequence {4, } with A4,, = M“AP, and A = al +bS.
Recall that a sequence {A,,} is stable if there exists an ng such that the operators A,, : im P, —
im P, are invertible for n > ng and that their inverses A ! are uniformly bounded:

—1
sup |47 Pl sy < 0

n>ng
If the sequence {4,} is stable and if u* € L2 and u’ € im P, are the solutions of (2.1) and
(2.3), respectively, then the estimate
1Pa = w3l < AT Pallgy g (I1AwPa = Awll, + 11 = M1, )

shows that u converges to u* in the norm of L2 if the method (2.3) is consistent, i.e. if
A, P, — A (strong convergence) and if M¥f — f (convergence in L2). The stability result
for the collocation method (2.3), which is a conclusion of Theorem 4.8, reads as follows.
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Theorem 2.1. Let a, b € PC. Then the sequence {MZ(al + bS)P,} is stable if and only if
the operator al + bS is invertible on L%, and the sequence {M¢(al + bS)P,} is stable if and
only if the operators al + bS and al — bS are invertible on L2.

Our main tools for studying the stability of an approximation sequence are the translation of
the stability problem into an invertibility problem in a suitable C*-algebra and the application
of local principles (see, for example, [7, Chapter 3| and [16, Chapter 7]).

For the algebraization of the stability problem, let F denote the C*-algebra of all bounded
sequences {A,} of linear operators A4, : im P, — im P,, provided with the supremum norm
I{An}| £ = sup,>; [|[Anllp2 12 and with operations {A,} +{B,} := {An+ Bn}, {AH{ By} =
{A.B,}, and {A,}* := {A%} Further, let N be the two-sided closed ideal of F consisting of
all sequences {C,,} € F such that lim, . ||Cp, P12 _.p2 = 0. Then a simple Neumann series
argument shows that the sequence {A4,} € F is stable if and only if the coset {4,} + N is
invertible in the quotient algebra F /N . In the case at hand, it is more convenient to work in
a subalgebra of F rather than in F itself (the main point being that the ideal N proves to be
too small for the sake of localization). To introduce this subalgebra, define operators

n—1
T2 2 ~ ~
W, L, — L, u— E (U, Up—1-) o Uj,
=0

and consider the set F" of all sequences {A, } € F, for which the strong limits
W{A,} :=slimA,P,, (W{A,})"=slimA P,, (2.4)

and
WA} :=slm W, 4, W, , (W{A,})* = s-lim (W, A,W,)*P, (2.5)

exist. Furthermore, let 7 refer to the collection of all sequences {A,,} of the form
A, = P, K\P,+ W, KW, + C,, with K; € K(L2), {C,} e N,
where K(L2) € £(L?) stands for the ideal of all compact operators.

Lemma 2.2. (a) FV is a C*-subalgebra of F, and J is a closed two-sided ideal of FW.
(b) A sequence {A,} € FW is stable if and only if the operators W{A,}, W{A,} : L2 — L2
and the coset {A,} +J € FV /T are invertible.

The proof is not hard and can be found in [21], Prop. 3, or in [16], Theorem 7.7. It rests
essentially on the weak convergence of the sequence {W,} to zero.

3. Consistency of the method

The goal of this section is to show that the method (2.3) is consistent with equation (2.1) in the
sense that M*f — f in L2 under suitable restrictions for f and that A, P, — A strongly.
The proof of the approximation properties of the interpolation operators M is based on the
following auxiliary results.
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Lemma 3.1 ([14], Theor. 9.25).. Let u,v be classical Jacobi weights with pv € L'(—1,1)
and let j € N be fized. Then, for each polynomial q¢ with deg q < jn,

S ALatot oet) < comt [ (et

where the constant does not depend on n and q and where x, and N, = f_ll 0 (x)p(z) dx are
the nodes and the Christoffel numbers of the Gaussian rule w.r.t. the weight p , respectively.

Let Q" denote the Gaussian quadrature rule w.r.t. the weight p,

QLf = Z Newf (),

and write R = R(—1,1) for the set of all functions f : (—1,1) — C, which are bounded and
Riemann integrable on each interval [a, 5] C (—1,1) .

Lemma 3.2 ([5], Satz I11.1.6b and Satz I11.2.1).. Let u(x)=(1—x)"(14+x)° with v, 5> —1.
If f € R satisfies

|f(z)| < comst (1 —z)* " 7142 1°, —1<z<1,
for some € > 0, then hm Qif = / f(z)p(z) dx . If even
If(z)] < const (1 —z) 2 (1+a) 5, —l<a<l,

then lim, oo || f — L4 f|, =0

Corollary 3.3. Let f € R and |f(z)| < const (1 —22)7 1, =1 <z < 1, for some ¢ > 0. Then
MYf— finL2 forw=p andw=o0.

Proof. Since ||f — My fll, = ¢~ f — Ly fl|,, we can immediately apply the second
assertion of Lemma 3.2 to get the assertion in case w = . To consider the case w = o,
introduce the quadrature rule

Onf = / (EN@g @) dr = Y o f (o).

where

- /1 T.(z)  p(x) i — /1 To(z)(1 — 2?)o(x) iy — m[1—(27,)%

r =
14— xZn Trlz,(xgn) 1 ({ﬂ - xgn)T;L(xZn) n

for n > 2. Consequently,

n

Quf == 3 [1 = @f)’] flaf).

k=1
Since the nodes 7, of the quadrature rule (), are the zeros of 27,, = U,, — U,,_3, the estimate

1

9 (L) (@) p(z) dw < 2Qu I
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holds true (see |5, Hilfssatz 2.4, §I11.2]). As an immediate consequence we obtain
AR = L A < 23 1R =230 1)
n o n¥ » = n P kn n : :

Now let 6 > 0 be arbitrary and p be a polynomial such that |op — f||, < 6. For n > deg p
we have |MSf — f|I> < 2(”]\/[7‘{(90]9—]”)”3_4— Hgop—in) . Since, in view of Lemma 3.2,
limy, oo Q%lep — fI> = llop — fI> , we get via (3.1) that limsup || M7 f — f||> < 662, which

n—oo

proves the assertion in second case, too.

The strong convergence of the sequence {M¥(al 4+ bS)P,} is part of the assertion of the
following theorem. For the description of the occuring strong limits we need two further
operators: the isometry

Jo L2 — L2 u— > yulu, )T, (3.2)
n=0

where 79 = v/2 and ~,, = 1 for n > 1, and the shift operator

VLl — L2, ue > (U ln)eling (3.3)

n=0

o)

with its adjoint V* : L2 — LZ, w— > 7 (U, Upt1)oln.

Theorem 3.4. Fora,b € PC, the sequence {A%} :={M(al 4+ bS)P,} belongs to the algebra
FW. In particular, W{A“} = al + bS and

al —bS, w=y,

WA} = {
J Y ad, +ibV*), w=o0.

Proof. Step 1: Uniform boundedness. Let a,b € PC and w € {p, o}. We have to verify
the strong convergence of each of the sequences {MY(al + bS)P,}, {(M¥(al + bS)P,)*},
{WoMg(al + bS)W,,} and {(W,,M¥(al + bS)W,,)*}. Let us start with showing the uniform
boundedness of these sequences. Since ||W,,|| = 1, it is sufficient to prove the uniform boundedness
of the sequences {M*(al + bS)P,}.

We write M'bSP, as M'bP, M SP, and consider first sequences of the form M*aP, where
a is an arbitrary function with ||a|| := sup {|a(z)| : z € [-1,1]} < oco. Let u,, = ¢v, € im P,.
Then, using the algebraic accuracy of a Gaussian rule, we get the estimate

2 2 2 2 2 2
Mz aun |, = | Liavall, = Qilaval* < llall, loall, = llalls lunll; - (3.4)

In case w = ¢ we apply Relation (3.1) and Lemma 3.1 with g = o and v(x) = 1 — z* to obtain

n
™
1M |l < 2|lall - D1 @)?] oa(af,)* < const [lall%, loall}
k=1

and thus
|Mau,l, < const llall lluall, ,  un € im P, (3.5)



94 P. Junghanns, S. Roch, B. Silbermann
where the constant does not depend on a, n, and u,, .
For the uniform boundedness of the sequences { MY SP,} we observe that
SoU, =1T,11, n=0,1,2,..., (3.6)

which shows that, for u, € im P,, the function ¢, := Su, is a polynomial of degree not greater
than n . Thus, Relation (3.1), Lemma 3.1, and the boundedness of S : L2 — L2 yield

||Mgsun||<27 < 207 |gn[* < const ||Qn||i < const ||un||<27

In case w = ¢ we also use Lemma 3.1 to obtain
-1
|0 Sunlly = || L0 anll ZA lgn () [1 = (#,)7] ™ < const [laall;

This verifies the uniform boundedness of all sequences under consideration. Their strong convergence
on L2 follows once we have shown their convergence on all basis functions @, of L2.

Step 2: Convergence of {M¥(al + bS)P,}. It is an immediate consequence of Corollary 3.3
and of (3.6) that

lim M (al + bS)Pyt,, = (al +bS)u,, in L2 forall m=0,1,2,...

n—oo

Step 3: Convergence of {(M¥(al + bS)P,)*}. The determination of the adjoint sequence is
based upon a formula for the Fourier coefficients of the interpolating function M f. For this

goal, we write
n—1
=0
and get in case of w = ¢

7T ~
PERp f@)u(=1,) (3.7)

a}pn(f) = <M7ffa ﬁj)G = <L7f¢_1f7 UJ')SO =

7=0,...,n—1.1In case of w =0 we have for =0, ..., n—2

n

A5 (f) = (M, 0)0 = (L3~ £.0°Uy)e = = D [ ()i (o).

k=1

For j = n — 1 we use the three-term recurrence relation

Upr1(z) = 22U (x) — Up—1(x), k=1,2,..., (3.8)
as well as the relation
1
Thii(x) = i[UnH(:U) —Upi(x)], n=0,1,2,..., U, =0, (3.9)

to obtain

(1 = 2)Una(2) = 5 [Toa(2) = Toa (2)] - (3.10)

N[ —
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Consequently, with ¢(x) := x,

) 1, .
afz—l,n(f) = <LZ§0 1f7902Un—1>U: §<Ln90 lfaTn—1>a:

T n
— %Z
k=1

f(x%n) 0 :1 " 27V e
( )Tn—l( ) 271;][( Vi1 (23) .

PTEy,
Thus,
g ™ - (oa ~ g N
af,(F) = gjn- ; f@g)u(=,), j=0,....,n—1, (3.11)
where €, =1 for j=0,...,n—2and ¢;, = 1/2 for j =n — 1. As an immediate consequence

of (3.7) we deduce for u,v € L2

i
L
S
i
L

(M7aPyu,v)s = a(zi,) p_(u, ) otie(wg, )u; (27, ) (v, 45) s =

= a(zy,) ' (v, Uz)os (g, )ue(Th, ) (U, Ur) g =

Hence, the adjoint of M¢aP, : L2 — L2 is M¢aP, : L2 — L2. In case w = o, (3.11)
implies

Y 7r " N~ o~ —
(M7aPyu,v), = Z@ngza(%n) (u, Ue) gtie (27 )5 (27,,) (v, Uj) o =
=0 k=1 (=0

n—1 n n—1

(€0,) > €m0, Ty)o iy (2, )i (2,,) (1, Tig) o =
/=0 k=1 7=0

Il
313
o

1
= (u, (2P, — Pn_l)M1‘fE§(Pn_1 + P,)v), .
Thus,

1

Epn_l) M?a(P,—1 + P,), (3.12)

(MfaP,)" = MfaP, and (M7aP,)" = (Pn —
whence in both cases the strong convergence on L2 of (M“aP,)* to al. For the determination
of the adjoint operator of M¥SP, , we recall the Poincaré-Bertrand commutation formula (see
[13, Chapter II, Theorem 4.4]): If p(z) = (1 —2)%(1+ )" is a Jacobi weight with a, 3 € (—1,1)
then, for u € L2 and v € Li_l ,

(Su,v) = (u, Sv), (3.13)

where (.,.) refers to the unweighted L?(—1,1) inner product. Thus, the adjoint operator of
S: L2 — L2 is pSp~'T : L2 — L2. Taking into account that SP,u is a polynomial of
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degree at most n due to (3.6), we conclude that, for all u,v € L2,

n

> _(SPu)(af,) (Pav)(af,) =

k=1

= (SPyu, Lo *Pw), = (SPu, oMo ' Pv), =

n

T
n—+1

(MfSPyu,v), = (LEp 'SP, 'Pu), =

= (u, PnQOSM;ng_lan>U .

Analogously we get, for j =0, ..., n —2 and u € L2,

n

(M SPyu, ), = (Lyp 'SPy, ¢*Us)y = %Z(Spnu)(xgn)ﬂj(xZn) = (SPyu, Lyus), =

k=1
= (u, PapSe L),
and, again using Relation (3.10),
<M7(LTSPTLU’7 un—1>0 = §<L;TL¢ 1SPTLU’7 wUﬂ_Q - Un—3>0 - % Z(S‘Pnu) (‘rkn)un—l(xkn> =
k=1
1 —1lro~
= §<u, PopSo™ Loy 1), -
Hence,
(M?SP,)* = P,pSM?p ™' P, = M?pSM?o™'P, (3.14)
and . )
(M7ZSP,)" = 3 S Lo (P, + P,) = §<pScp_1LZ(Pn_1 + P,), (3.15)

where in (3.14) we took into account (3.6) and (3.9) and in (3.15) the relations
ST, = —ilU,_1, n=0,1,2,..., U, =0. (3.16)

In combination with Lemma 3.2 and Corollary 3.3 it is clear now that the sequence {(M¥(al +
bS)P,)*P,} converges strongly on L2 to @l + Sy~ 'bI in both cases w = ¢ and w = .

Step 4: Convergence of {W,M?(al + bS)W,}. We are going to verify the convergence of
W, M&aW, i, and W, M SW,w,, for each fixed m > 0. Let n > m. With the help of (3.7), the
identity

Boron(o) = Vo T gy )
and Corollary 3.3 we get
n—1
W, M?aW, i, = Za:f_l_j’n(aﬂn,l,m)ﬂj =
=0
n—1 n
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Consequently,
W,M¢aW, = MfaP, — al in L2.

To describe the strong limit of W, M7aW,,, we take into account that

— 2k —1 2k —1 2k —1
Up—1-m(xf,) = \/2/71'8111( m)( )™ = +/2/7sin 57 cos m 5 )™
n

2n

i.e.
anflfm(mzn) = (_1)k+17me (mzn)

and )
Lif =) @5, (NT; with &F, = Zf ) T5(7)
=0
Then, from (3.11) and Lemma 3.2, we conclude
W, MW, = = Zag_l_j’n(aﬂn_l_m)ﬂj =

n

n—1
m ~ ~ ~
= E :5n—1—j,nﬁ E :a(xZn)un—l—m<xgn)u”—1—j(x2n>uj =
ay

k=1

n

- Zgn 1- J" Z (xZn)’Vme(xkn)’Y]T (x,m)u =

k:l
J= 0 " =

= J 'Lladyty — J, 'ad,t, in L2,
where J, is the isometry introduced in (3.2). Thus,
W,MSaW, = J;'L%aJ, P, — J;*aJ, in LZ2.

97

(3.17)

(3.18)

(3.19)

For the strong convergence of the sequences related with the singular integral observe that,

due to (3.6), for all n > max{m, k},

<WnM;fSWnam7ak>a - <M;'L0Sﬂn—1—maan—l—k> <L¢(P_1Tn m;Un 1— k)

21 (n—m)jr . (n—k)jm
= Zcos sin =
n+1 n+1

= —i(LP O i1, Uk = —(MES Py, U)o -

Hence,
W.M?SW, = -M?SP, — —S in L?,.

Further, the identities

Ja(ﬂn—l—Z - an) - ’Yn+2Tn+2 - ’YnTn - _29067” n > 07

(3.20)

(3.21)
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(3.6), (3.9), and (3.19) imply for n > m > 1, (in case n = m — 1, note that LT, = 0)

W MESWoiin = ~ WMo Wi (Tmt — tmsr) =

2 Jo- 1L *1Ja(ﬂm+1 — am,1> —

2

= iJ LUy — i, Uy in L2

Obviously, W, M?SW,uqg = iW,,M?T, = 0. Hence, by means of the shift operator V'
introduced in (3.3) we can formulate the derived convergence result as follows:

W,M?ZSW, = iJ;'L°V*P, — iJ;'V* in LZ. (3.22)

Step 5: Convergence of {(W,M?(al + bS)W,)*}. In case w = ¢, the strong convergence of
this sequence follows from (3.17), (3.20), (3.12) and (3.14), together with the outcome of step
3. In case w = o we have, in view of (3.19),

(W, M7 aW,u,v), = (LiaJ,Pyu,J *Pw), = % Z a(x;'-n)(JaPnu) (x?n)(J;*an)(:p‘]?n) =

J=1

= (u,J;L{aJ *P,v),

)Y oTn

e. (W,M2aW,)* = J*LoaJ, *P, — JraJ;* in L2 . Using (3.22), we get in the same manner

o . o\/* ﬂ-l - * —x% g
<WnMnSWnU,U>g - Z<an Pnua JO'PTLU>G' n Z(v F, U)( )(JO' an)(x]n) =

7j=1
= oV Pou, Lo " I Py = i(u, VM J*P,)o

whence the strong convergence of (W, MJSW,,)*.
For further considerations we need Fredholm and invertibility conditions for the operator
al +bS: L2 — L2 if a,b € PC. For this goal, we define ¢ := (a + b)/(a — b) on [—1, 1] and
f(p) :==exp(im(p — 1)/2) sin(mu/2) on [0, 1], and we associate to this operator the function

c(@)(1—p)+elx+0)u, pel01], ze(-11),
c(z,p) = q c()+[L—c@)f(p), nel01], z=1,
L+ [e(=1) = 1]f(w), welo,1], z=-1.

Note that, for z1,2z0 € C, 21 + (22 — 2z1)f(1), p € [0,1], describes the half circle from z; to
25 that lies to the right of the straight line from 21 to zy. Thus, if ¢(x £+ 0) is finite for all
x € [—1,1], the image of c(x,p) is a closed curve in the complex plane which possesses a
natural orientation, and by wind c(z, 1) we denote the winding number of this curve w.r.t. the
origin 0.

Lemma 3.5 (|6], Theorem I1X.4.1).. Let a,b € PC. The operator A = al +0bS : L2 — L2
is Fredholm if and only if a(x £0) — b(x £0) # 0 for all x € [-1,1] and c(x,pn) # 0 for all
(x,p) € [—1,1] x [0,1]. In this case, A is one-sided invertible and ind A = —wind c(z, p) .

Lemma 3.6. Let a,b € PC. Then the operator W{A%} = J=1(a.J, + ibV*) is invertible in L2
if and only if the operator W{A%} = al + bS is invertible in L2 .
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Proof. The invertibility of W{Ag} is equivalent to the invertibility of B = aJ, + ibV*.
Since J, = @I — ipS and V* = I + ipS with ¢(x) = = (this follows from (3.6), (3.9),
and (3.8)), the operator B is again a singular integral operator. Thus, the invertibility of B is
equivalent to the Fredholmness of B with index 0, or to the Fredholmness of C' = BV with
index —1. With the help of V = I — i@S and SpS = @I + K, where Kou = —1/v/27{u, Ug)
(see (4.3) below), we get

C = a(pl — i S)(WYI — ipS) + ibl = —iap?S — i*S + ibl + K = i(bl — aS) + K ,

with a compact operator K : L2 — LZ. Now the assertion follows from b — a/b + a =
—(a+b/a—b)"" and Lemma 3.5.

4. Local theory of stability

Let A“ denote the smallest C*-subalgebra of " which contains all sequences of the form
{M¥(al + bS)P,} with a,b € PC and the ideal J. The aim of this section is to derive
necessary and sufficient conditions for the stability of the sequences {M¥(al + bS)P,} and,
more general, for arbitrary sequences {A,} € A“. Our approach to these results is essentially
based on the application of the local principles by Allan/Douglas and Gohberg/Krupnik to
study the invertibility of a coset {A,}° := {A4,} + J in the quotient algebra A“/J. In what
follows we agree upon omitting the superscript w in all notations (such as in M*, which will
be abbreviated to M,,) whenever the validity of the assertion where this notation is used does
not depend on w = ¢ or w = o.

The applicability of a local principle in a Banach algebra depends on the existence of
sufficiently many elements which commute with every other element of the algebra, i.e. which
belong to the center of the algebra. The following lemma establishes the existence of such
elements for the algebra A“/J.

Lemma 4.1. If f € C[—1,1], then the coset {M, fP,}° commutes with every coset {A,}° €
AY/)T.

Proof. It is enough to verify that {M, fP,}° commutes with all cosets {M,aP,}° where
a € PC and with the coset {M,SP,}°. The first assertion is obvious; one even has
{MnaP}{M,fP,} = {M,fP,}{M,aP,} for arbitrary a, f € PC. For the second assertion,
note that the equalities M, fP,M,SP, = M,fSP, and M,SP,M, fP, = M,SM,fP, hold.
So, what remains to prove is

(M, fSP, — M,SM,fP,} € J forall feC[-1,1]. (4.1)

We show that (4.1) holds true for all algebraic polynomials p in place of f. Then the assertion
follows from the closedness of J and from (3.4) and (3.5). So let p be a polynomial of degree
not greater than m . Then M, pP,_,, = pP,_,, for n > m. Consequently,

M,pSP, — M,SM,pP, = M,(pS — Sp)P, + M,,S(I — M,)p(P,, — P,_p,) .

Obviously, the sequence { M, (pS — Sp)P,} belongs to J . Moreover, P, — P,_,, = W,,P,,W,, ,
which implies that

M,S(I — M)p(Py — Po_) = MpS(I — M,)pPy Wy PrW, =
— (Ma(Sp = PSP + MypSP, = MySPMupPy ) Wo P,
and, hence, {M,S(I — M,,)p(P,, — P,—m)} € J.
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Together with the identities M, fiM, foP, = M,fif2P, and (M, fP,)* = M,fP,, the
preceding lemma shows that the set C¥ := {{M,,fP,}° : f € C[—1,1]} forms a C*-subalgebra
of the center of A“/J . This offers the applicability of the local principle by Allan/Douglas
which we recall here for the reader’s convenience.

Local principle of Allan and Douglas (comp. [1, 4]). Let B be a unital Banach algebra
and let B, be a closed subalgebra of the center of B containing the identity. For every maximal
ideal x € M(B.), let J, denote the smallest closed ideal of B which contains z, i.e.

J: = closg {Zajcj:aj €B,ciex,m=1,2, } )

j=1

Then an element a € B is invertible in B if and only if a + 7, is invertible in B/7, for all
x € M(B.). (In case J, = B we define that a + J, is invertible.) Moreover, the mapping

M(B:) — [0,00), x = [[b+ Tall

is upper semi-continuous for each b € B. In case B is a ("-algebra and B, a is central C*-
subalgebra of B, then all ideals 7, are proper ideals of B, and ||b|| = max{||b+ J.|| : = € M(B.)}
for all b € B.

We will apply this local principle with 4“/J and C¥ in place of B and B,, respectively. The
algebra C* is *-isomorphic to C[—1, 1] via the isomorphism {M,, f P, }° — f . This can be seen as
follows: If f € C[—1, 1] is invertible, then the coset {M,, f P, }° is invertible. Conversely, assume
this coset is invertible and choose one of its representatives {M, fP, + P,KP, + W,LW,, +
G} which then is invertible modulo 7. An application of the homomorphism W yields the
invertibility of fI + K modulo compact operators, i.e. the Fredholmness of the multiplication
operator fI. But Fredholm multiplication operators are invertible.

Consequently, the maximal ideal space of C is equal to {Z¥ : 7 € [—1, 1]} with

E%:{Mﬁ%&V:fGC}LH,ﬂﬂ:O}

Let J¢ denote the smallest closed ideal of A¥/J which contains the maximal ideal Z* of C¥,
l.e.

J? = clos e,z {Z{AZLM,‘jijn}O {AIY e A% f;, € C[=1,1], fi(7) =0, m=1,2,.. } :
j=1

Then the local principle of Allan/Douglas says that all ideals J* are proper in A“/J, and that
a coset {A,}° is invertible in A¥/7 if and only if {4, }° + J, is invertible in (A¥/J)/J¥ for
every 7 € [—1,1].

Our next goal is the description of the local algebras (A¥/J)/J¥. First let —1 < 7 < 1.
Let h, be the function which is 0 on [—1, 7] and 1 on (7, 1]. Then, for every a € PC,

{M,aP,}° + J; = a(t + 0){M,h,P,}° + a(t){M,(1 — h;)P,}° + T, .

Consequently, the algebra (A“/J)/J is generated by its cosets e :== {P,}° + J,,

(P + {M,SPY) + T, and q:={Mh.P)°+ 7. . (4.2)

N =

p=
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Obviously, ¢ is a selfadjoint projection. In order to see that the same is true for p, we make use
of the relation )
SpS =l + Ky, where Kou=——— (u,up),1p, (4.3)

V2
which is a consequence of (3.6), (3.9), (3.21) and of the continuity of the operator SpS : L2 —
L2 . Indeed,

~ _ 1
SSOSUn = ZSSOTTL-H = 5 S@(Un—i-l - Un—l) =

1 ~
i(Tn - Tn+2), n 2 1, PUn, n Z 17
_ Yup — —=4o, N =2VU.
_5 T27 n=>0 ) \/5
n—1 i n—1
Further we recall that SP,u = z’Z(u, U)o Thi1 = 5 Z(u, U)o (Ugy1 — Uk—1) , which implies
k=0 k=0
Aﬁ@%ﬁz@&&—%VWﬂﬂMp (4.4)

Consequently, we have the identities MY SP, M?oSP, = M7 SpSP, — %M;fSVPanpl W,, and
MZpSP, = oSP, —ipJ,VW,PiW, . Thus, in both cases,

1

{MnSPn}O{MnSPn}O + jr — 90(7') {MnSPn}O{MnSOSPn}O + \.7’7’ -
(4.5)
1
e (MypP )+ T = {PV+ T, —1<71<1.
5 (M) + 7, = (P2}
The identities (3.6), (3.8), and (3.9) imply that, with ¢ (z) =z,
V=ul—ipsS, V"=o¢Il+ipS. (4.6)

From this we can conclude that {M,SP,}° + J, is selfadjoint. Indeed,

i i
M,SP,}° = ——{M,1pSP,}° == V*P,} —{M,yP,}° i
{ ¥+ 90(7){ ipSP}° + T, 90(7)({ 3 =AM P }) + T,
and, consequently,
(OLSPY +T) = S (RVRY ~ (MOP)) +7, =

- jﬁm@@ww&p+xm4mﬁar+z.

So we have seen that the local algebra (A“/J)/J¥ is generated by its identity element and by
two projections in case —1 < 7 < 1. Algebras of this kind are described by the following result.
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Theorem 4.2 (Halmos’ two-projections theorem, [8]).. Let B be a unital C*-algebra,
and let p, q € B be projections (i. e. self-adjoint idempotent elements) such that op(pgp) = [0,1] .
Then the smallest closed subalgebra of B, which contains p, q, and the identity element e, is
*~isomorphic to the C*-algebra of all continuous 2 X 2 matriz functions on [0,1], which are
diagonal at 0 and 1. The isomorphism can be chosen in such a way that it sends e, p, and q
into the functions

o R ) PR e R

respectively.

To apply this theorem, we have to check whether o(4,7),7 (pgp) = [0, 1] for p and ¢ defined
by (4.2). For this, let G be the smallest C*-subalgebra of £(L2) which contains all operators
al + bS with a,b € PC[—1,1] and the ideal £ = K(L2) of all compact operators on L2 . By
JY ., 1€ [-1,1], we denote the smallest closed ideal of G/K , which contains all cosets fI + K
with f € C[—1,1] and f(7) = 0.

Lemma 4.3. If {A,}° + J, is invertible in (A/T)/Tr, then (W{A,} + K) + T? is invertible
in (G/K)/T7 .

Proof. Let {A,,} € A, and assume that there is a sequence {B,,} € Asuch that { B, }°{A, }°+
J = {P.}° + J,. Then B,A, = P, + J, + P,KP, + W, TW, + C,, with some operators
K, T € K, some coset {J,}° € J, and some sequence {C,} € N. Further, given ¢ > 0,
there exist sequences {4} € A and functions f; € C[-1,1] with f;(7) = 0 such that

{Jn}? =B}l 47 < € for B, = ZAQ)Mnijn. Hence, there are operators K., T. € K(L2)
j=1
and a sequence {C=} € N such that

JoPo =Y " AYM, f;P, — P,K.P, = W,T.W, — C;P, <e forall n>1.
j=1

L(L3)

W{J.} — 7 W{APY T — K. pny S = which implies W{J,} + K € JY . Thus,

because of W{B,}W{A,} = I+ W{J,} + K, the coset (W{A,}+K)+ J¥ is invertible from
the left in (G/K)/JF . Its invertibility from the right can be shown analogously.

Now we can complete the description of the local algebras in case —1 < 7 < 1. The product
pgp is a non-negative element of (A/J)/J-, which implies that its spectrum o(4,7),7 (pgp)
is contained in [0,1]. We prove that the spectrum of pgp coincides with this interval. Assume
there is a A € (0, 1) such that pgp — Ae is invertible in (A/J)/J, . The invertibility of pgp — Ae
is equivalent to the invertibility of

Hence,

(q—=MNp—Ae—p) =

= SO (e = NP (P + {MuSPY) = 5 (P — (MoSPY) + T

Lemma 4.3 implies that (A4 K) + 79 := ((hT NI +8) = AT —8)+ IC> +J9 is invertible
in (G/K)/TE. If =1 <z <7, wehave (A+K)+ T = (-2M\[ + K) + J¢, and —2A\ + K

x
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is invertible in G/K. If 7 < < 1 then (A + K) + J9 = ((1 oI+ S+ /c) + 79, which
is also invertible in (G/K)/J¢ . From the local principle of Allan and Douglas we conclude
the Fredholmness of (h, — A)(I +S) — A(I — S) in L2. But this is in contradiction to (see
1 A—h; 0) A\=h(1—-0

Lemma3.5)06[1—x,1}:{ A(T+ ) A(T )} .

Thus we can apply Halmos’ two projections theorem to get that the local algebra (A/J)/J;
is *-isomorphic to the C*-algebra of the continuous 2 x 2 matrix functions on [0, 1] which are
diagonal at 0 and 1. The isomorphism can be chosen in such a way that it sends {P,}° + 7.,

1
—{ P} +{M,SP,}°)+ T, ,and {M,h.P,}°+ 7, into the functions given in (4.7), respectively.
2

Now we turn our attention to the local algebras at 7 = 1. Since {M,,(al +bS)P,}°+ T, =
{M,[a(T)I+b(7)S]P,}°+T- , these local algebras are generated (as C*-algebras) by their cosets
{P.}°+ J. (the identity element) and {M,SP,}°+ J, . It turns out that the properties of the
latter coset (and, thus, the behaviour of the algebras generated by it) depends heavily on the
weight function w. For w = ¢ we have the following result, the proof of which will be given in
the Appendix.

Lemma 4.4. Let 7 = £1. The coset {MZSP,}° + J; is a unitary element of the algebra
(A7/T)] T, and its spectrum is equal to T, , where Ty; =TN{t € C: £3¢ > 0}.

Consequently, the algebra (A%/J)/JF is *-isomorphic to the algebra C(T,) of all complex
valued continuous functions on T,, and the isomorphism can be chosen such that it sends
{MZSP,}°+ J? into the function ¢ — t.

The treatment of the case w = ¢ starts with the following lemma.

Lemma 4.5. The sequences { M2 1P, } and {(Mfo™'P,)*} converge strongly to the multiplication
operators o' : L2 — Li and oI : L?D — L2, respectively.

o)

Proof. Convergence of M?¢~1P,: Since L? is continuously embedded into Li we have, due
to Corollary 3.3,

lim M?p P, = lim M¢U,, = U,, = ¢ '@, forall m >0 in Li.

n—oo n—oo

Thus, it remains to show that the operators Mo~ 'P, : L2 — L?O are uniformly bounded.
Consider the quadrature rule

Onf = / (L2 @) de = Y pf (0.

where p(x) = (1 — 2%)3/2, and abbreviate z{ to zj. The quadrature weights py, are equal to

o = /1 Un(z) (1—a*)p(z)

LT — T U! (xy)

_q_ g [ U@e@)de 1 ()t 2ol dp —

= (1—a22)A,, n>1.
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Define ¢;; := (€5, 0%, for 4,5 = 1, ..., n. We remark that U, (z3) = \/2/7

nd vgn

and compute

Me = / Mp(m)dw:

1 T — Tk

- a-a) [ Oul 0y e — [ ) @) el do =

1 T — Tk 1

where we take into account the orthogonality and symmetry properties of U,. For i # j, it
follows

(=D)AL =) (1 [Un@)]) pla) de

R 2(n + 1) /1 (@ — )z — ;)
_ (=) —a) (=) gy (=D — 2 (1 - 7))
N 2(n +1)2 T — Ty 2(n+1)? ’

1.e.

For i = j, we get

U () e;; = / [Un(@)]" p(z)dz

-1 (x — x5)?

= 0-ap) [ L i [ B o) a -

1 (T — )2 1 L=
= a-a nep + 1= [ P ey -

= (L=a)A, [Un(a)] +1 -

— [ Wnns@) + s ) Unl®) 0y o =

1 LU—.Tj

= (1= 2N, [Un(@)]” + 1= X5 Una () Uy () -

sin(njm/n+ 1)

= 2 _ 1)+ ¥ B NTT! () —
sin(jm/n+ 1) V2/m(=1)""", we have A7 U, (x;)U, (7;) = 2,

Since U,—1(z;) = \/2/7

which yields

g; <A —=a)X =pjn, Jj=1,...,n. (4.9)
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Let now f: (—1,1) — C be given. Then, due to (4.8) and (4.9),

[P = 3 @l < 30 S 1) ) <

i=1 j=1 i=1 j=1
< 2Z\f:cz Eii — ZZ V| f ()] | f () |ey <
=1 j=1
< 2 plrol - [ Z il @)l ()] ple) do <
=1
< 200117

Using this estimate in combination with the explicit form of the quadrature weights py,
derived above we obtain, for u,, = pv, € im P, ,

Mz ully = lleLge ol = L5 o], <
< 2Qn|¢ o]’ = ZZA Won(@f) 1P = 2 [vally = 2 lunll
which proves the desired uniform boundedness.

Convergence of (M#p~'P,)*: The strong convergence of M?¢~'P, implies the uniform
boundedness of (Mfe™'P,)* : L2 — LZ. Since {¢™'T),,},72, forms an orthonormal basis in
L2, it remains to prove that (M7 ™' P,)*p~'T,, — T,, in L2 . In view of

Mg = (M Po)" 0™ T, U)o = (07 Tony M Pl

we have 7,,,; = 0 for j > n and, forn >m and j <n,

Damj = (T LE ™ US) =

n+1 k=1 i () = afn(Tm>

taking into account Relation (3.7). Hence, due to Corollary 3.3, (M?p ' P,)*¢ T, = M?T,, —
T,, in L2 | and the lemma is completely proved.
We still need a consequence of the lifting principle Lemma 2.2.

Lemma 4.6. If {A,}° € A/T and W{A,} : L2 — L2 as well as W{A,} : L2 — L2 are

invertible from the same side, then they are invertible from both sides.

Proof. A closer look at the proof of Lemma 2.2 shows that also a one-sided version of that
lemma holds: if W{A,}, W{A,} and {4, }° are invertible from the same side, say from the
right hand side, then the sequence {A,} is stable from that side in the sense that there is
a sequence {B,} such that A,B, = P, + G, with a sequence {G,} € N. Since the A, are
matrices, this clearly implies the common stability of the sequence {A,}. But then, due to

Lemma 2.2, W{A,}, W{A,} and {A,}° are two-sided invertible.
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Corollary 4.7. One has {M7SP,}°{(MfSP,)*}° = {P,}° and, hence,
{M7S P {(MPSE) Y + T =B} + JF forall e [=1,1],

whereas

{(MZSP,) }{AMESSP,}° + T8 #{P.}°+ J? for 7==1. (4.10)
Proof. By (3.14), (4.4), and (4.3),

M?SP,(M?SP,)* = (M,ngoSPn - %M;fSVPanPan> M?p~'P, =
= P+ MfKoM?p ' P, — %M;fSVPanHWan@_an.
It remains to show that the sequences

{MfK\M?p~'P,} and {W,PW,M¢o 'P,} = {W,PLM?p ' P,W,}

belong to the ideal 7. This is a consequence of Lemma 4.5 and the relations

1P, = ol = V27| [ ulo) do

(u, Up)y| < const ||u||¢,

< const [juf,

and {
Kou|l, = —=
[ Koull, 7 |
which imply the compactness of the operators P; : L} — L? and Ko : L2 — L2 .
Now assume that (4.10) is not true for 7 = 1, for example. Then it is also not true for
7 = —1 which can be seen as follows. Set (W f)(x) := f(—x). Then

WSW =-S5, WPR,=P,W, WM?=MW, and {PW}°T{WP,}°=T%
(observe that Wy, = (—1)*uy). Hence, applying W to
{(Mrfspn)*}o{vaSPn}o + jfp = {Pn}o + jfp
yields
{PW(M?SP,)WPR,Y{M?(=S)P,} + T ={P.}°+ T, .

Together with (4.5) and the local principle by Allan/Douglas, this leads to the invertibility of
the coset {M¥SP,}° in contradiction to Lemma 4.6.

Thus, the coset {(M?SP,)*}°+ J¢ is an isometry in the local algebra (A?/7)/J¥. Thanks
to a result by Coburn [3]|, C*-algebras generated by an isometry possess a nice description in
terms of shift operators on the Hilbert space ¢? of all square summable sequences of complex
numbers. In particular, Coburn’s theorem implies that the local algebra (A¥/J)/J¢ is
*_isomorphic to the C*-subalgebra of £(¢?) generated by the shift operator

Y= 02 {xg, 21, ...} = {0, 2, 21, ...}
where the isomorphism sends { M?SP, }° 4+ J¢ into
S0 2 {xg, w1, ..} {3, T, L)

Applying the local principle of Allan and Douglas together with Lemma 2.2 and Lemma 3.6,
we can summarize the considerations of this section.
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Theorem 4.8. (a) There is a *-isomorphism n,, from A¥/J onto a C*-algebra of bounded
functions living on ((—1,1) x [0, 1)) U({£1} x T,) in case w = o and on ((—1,1) x [0, 1])U{£1}
in case w = . This isomorphism sends the coset {MYaP,}° into

- a(z+0)p+a(z)(1—p)  (a(z+0) —a(@))y/p(l - p)
T, ) —
(a(z +0) —a(@)) /(1 —p)  alz+0)(1 - p) +alz)n

and the coset {M¥SP,}° into
(2, 1) 1 0
m’u O _1
for (z,p) € (=1,1) x [0,1]. Moreover, for (z,t) € {£1} x T,,
Ne{ M7 (al + bS)P,}°(x,t) = a(x) + b(x)t

and, for x = +£1,
N AM? (al +bS)P,}°(x) = a(z)] + b(x)X*".

(b) The sequence {A,} € A“ is stable if and only if the operators W{A,}, W{An} L2 —

L2 are invertible and if, in case w = @, the operator n,{ A, }°(x) is invertible on (* for x = +1.

We remark that the invertibility of W{A,} already implies that det n,{A,}°(z,p) # 0 for
all (z,p) € (=1,1) x [0,1] and that n,{A,}°(£1,t) # 0 for all t € T4; (see Lemma 3.5).

For the stability of the sequence {A%} = {MZ(al + bS)P,}, this theorem yields the
invertibility of W{AZ} = al 4+ bS and of W{Ag} = J'(aJ, +ibV*) as necessary and sufficient
conditions. By Lemma 3.6, the invertibility of W{A?} is a consequence of the invertibility of
W{AZ}. Similarly, the sequence {A?} = {M?(al+bS)P,} proves to be stable if and only if the
operators W{A?} = al 4+ bS and W{Aﬁ} = al —bS on L2 and the operators a(£1)1 + b(+1)3*
on ¢? are invertible. It is easy to see that the invertibility of the latter operators is equivalent
to the condition a(£1) 4+ b(£1)z # 0 for all z € C with |z| < 1 which, on its hand, is already a
consequence of the invertibility of al 4+ bS. This proves Theorem 2.1.

The assertion (b) of Theorem 4.8 can be easily translated into the case of a system of CSIE’s

Z |:ajk(.T)Uk:($) + M/_ ur(y) dy] =fi(x), -l<z<l,j=1,...,m, (4.11)

i —x
k=1 1Y

with piecewise continuous coefficients aj; and b;,. Indeed, denote by {A%k} the operator
sequence of the collocation method for (1.1) with aj; and b, instead of a and b, respectively.
Then the collocation method for (4.11) is stable in (L2)™ if and only if [W {42¥}] "' and

k=1
PVV {A{Lk}] L, are invertible and if, in case w = ¢, [n, {AZ*}° (2)]
‘7’ =
r==x1.

m . . .
ikt 18 invertible for

h. Behaviour of the smallest singular values

The singular values of a matrix A are the non-negative square roots of the eigenvalues of A*A.

The singular values of a matrix A4, € C"*" will be denoted by 0 < a§”) <...<o™ counted

with respect to their multiplicity.



108 P. Junghanns, S. Roch, B. Silbermann

(a) (b)

a(z)=(1-2)'/% b(z)=—iz a(z)=(1.01—22)1/2, bl(m)f—ifv
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The smallest three singular values of A, = M} (al + bS)P, .

If {A,} € F is a stable sequence of matrices, then there is a positive constant C' such that

the smallest singular value O'YL) of A,, (hence, every singular value of A,,) is greater than C for all
n, and conversely. Thus, if { A, } is non-stable, then there is a subsequence of the sequence (U%”))
which tends to zero. Figures (a) and (b) illustrate this behaviour for the non-stable sequences
{A,} with A, = M#?(al + bS)P, , where a(zx) = /1 —z, b(x) = —iz and a(x) = v/1.01 — 22,
b(x) = —ix, respectively. In both cases we observe that not only a subsequence of (crf])) but
the sequence itself tends to zero. Moreover, in Figure (b), also the sequence (Uén)) of the second
singular values goes to zero, whereas all other singular values are uniformly bounded from below
by a positive constant. It is the goal of the present section to explain this effect and to derive
a formula for the number of the singular values of A, which tend to zero. Here we restrict
ourselves to the case w = ¢, although analogous considerations are possible for w = o .

The desired results are closely related with a Fredholm theory for approximation sequences
which has been developed in [20] and [18]. For the reader’s convenience, we start with recalling
some definitions and results from [20] and [18].

Fractal algebras. This class of subalgebras of F has been introduced and studied in
[19, 17]. We will see in a moment that the algebra A? is fractal, and that the property of
fractality is responsible for the fact that the complete sequence of the smallest singular values
of a non-stable sequence {A,,} € A? tends to zero and not only one of its proper subsequences.

Given a strongly monotonically increasing sequence 1 : N — N, let F, refer to the C*-
algebra of all bounded sequences {A,} with A, € C"™>*7(™ and write A, for the ideal of all
sequences {A,} € F, which tend to zero in the norm. Further, let R, stand for the restriction
mapping R, : F — F,, {A,} — {Ayw}. This mapping is a *-homomorphism from F onto F,
which moreover maps N onto N,,. Given a C*-subalgebra A of F, let A, denote the image of
A under R, which is a C*-algebra again.

Definition 5.1. Let A be a C*-subalgebra of the algebra F.

(a) A *-homomorphism W : A — B of A into a C*-algebra B is fractal if, for every strongly
monotonically increasing sequence n, there is a *-homomorphism W, : A, — B such that
W =W,R,.

(b) The algebra A is fractal if the canonical homomorphism 7 : A — A/(ANN) is fractal.

Thus, given a subsequence { A, )} of a sequence {A,} which belongs to a fractal algebra A,
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it is possible to reconstruct the original sequence { A, } from this subsequence modulo sequences
in ANN. This assumption is very natural for sequences arising from discretization procedures.
On the other hand, the algebra F of all bounded sequences fails to be fractal. The following
theorem is shown in [17] and will easily imply the fractality of the algebra A?.

Theorem 5.2. Let A be a unital C*-subalgebra of F. The algebra A is fractal if and only if
there exists a family {W;her of unital and fractal *-homomorphisms W, from A into unital
C*-algebras B; such that the following equivalence holds for every sequence {A,} € A: The
coset {A,} + ANN is invertible in A/(ANN) if and only if Wi{A,} is invertible in By for
everyt e T'.

To make the proof of the fractality of the algebra A¥ more transparent, we introduce
a few new notations and rewrite Theorem 4.8 as follows. Set T := {1, 2, 3, 4} and define
*homomorphisms Wy, Wy : FW — L(L2) and W3, Wy : FV — L(I1?) by Wy =W, Wy := W
and
Wa{An} = n,{A.}°(1), Wi{An} = np{An}?(-1).

Theorem 4.8’. (a) A sequence {A,} € A¥ is stable if and only if the operators Wi{A,} are
invertible for allt € T.
(b) The mapping
smb : A? — L(L2) x L(L2) x L(I*) x L(I*),

{An} = (Wl{An}a W2{An}7 W3{An}’ W4{ATL})

is a *-homomorphism with kernel N.

The first assertion is just a reformulation of Theorem 4.8, and the second one is a simple
consequence of the fact that every *-homomorphism between C*-algebras which preserves
spectra also preserves norms.

Corollary 5.3. The algebra A¥ is fractal.

Proof. By Theorem 5.2, we have to prove that all homomorphisms W; are fractal. For W,
and Ws, the fractality is evident: these homomorphisms act as strong limits, and the strong
limit of a subsequence of {A,} coincides with the strong limit of {A,} itself. Concerning W3
and Wy, a closer look at the proof of Corollary 4.7 shows that the assertion of that corollary
remains valid for every infinite subsequence of {M?SPF,} in place of the sequence {M?SP,}
itself. Thus, Coburn’s theorem again applies, yielding the fractality of W3 and Wj.

Fredholm sequences. Let J(F) stand for the smallest closed subset of F which contains
all sequences { K, } for which sup dim Im K, is finite. The set J (F) is a closed two-sided ideal of
F which contains the ideal N of the zero sequences. A sequence {A, } € F is called a Fredholm
sequence if it is invertible modulo the ideal J (F). If {A,} is a Fredholm sequence then there is
a number k such that liminf,_ . 0,(:31 > 0 (see [18, Theorem 2|). The smallest number £k with
this property is called the a-number of the sequence {A,} and will be denoted by a{A,}. This
number plays the same role in the Fredholm theory of approximation sequences as the number
dim Ker A plays in the common Fredholm theory for operators A on a Hilbert space.

The remainder of this section is devoted to the proof of the following result which characterizes
the Fredholm sequences in A%.
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Theorem 5.4. (a) A sequence {A,} € A% is Fredholm if and only if the operators W{A,}
are Fredholm operators for everyt € T.

(b) If {A,} € A% is a Fredholm sequence, then
af{A,} = dim Ker W1{A,,} + dim Ker W2{A,,} + dim Ker W3{A,,} + dim Ker W {A,}.

(c) If {A,} € A% is Fredholm and k = a{A,} > 0, then lim, ., a,(g") —0.

Fredholm inverse closed subalgebras. Let A be a unital and fractal C*-subalgebra of
F which contains the ideal N'. A sequence {K,} in A is said to be of central rank one if, for
every sequence {A4,} € A, there is a sequence {u,} € ¢ (= the set of all convergent sequences
of complex numbers) such that

KA Ky = pnKo,.

The smallest closed two-sided ideal of A which contains all sequences of central rank one will be
denoted by J(A). The algebra A is called Fredholm inverse closed in F if J(A) = AN J(F).

Sequences of essential rank one. Let A be as before. A central rank one sequence of
A is said to be of essential rank one if it does not belong to the ideal N. For every essential
rank one sequence {K,}, let J{K,} refer to the smallest closed ideal of .4 which contains the
sequence {K,} and the ideal V. In [18] it is shown that, if {K,} and {L,} are sequences of
essential rank one in A, then either J{K,} = J{L,} or J{K,} N J{L,} = N. Calling {K,,}
and {L,} equivalent in the first case we get a splitting of the sequences of essential rank one
into equivalence classes, which we denote by S. Further, with every s € S, there is associated
a unique irreducible representation W; of A into the algebra L£(H,) for some Hilbert space H;
such that the ideal J{K,} is mapped onto the ideal K(H;) of the compact operators on H,
and that the kernel of the mapping W : J{K,} — K(H,) is N. The main result of [18] reads
as follows:

Theorem 5.5. Let A be a unital, fractal and Fredholm inverse closed C*-subalgebra of F
which contains the ideal N .

(a) If{A,} € Ais a Fredholm sequence, then the operators Ws{ A, } are Fredholm operators
for every s € S, and a{A,} = .o dim Ker W,{A,}.

(b) If {A,} € A is Fredholm and k = a{A,} > 0, then lim,,_, o,(cn) = 0.

(¢) If the family (Wy)ses is sufficient for the stability of sequences in A (in the sense that the
invertibility of all operators W { A, } implies the stability of {A,}) and if all operators Ws{A,}
are Fredholm for a sequence {A,} € A, then this sequence is Fredholm.

We know already that A¥ is a fractal algebra. Thus, once we have shown that this algebra
is Fredholm inverse closed and once we have identified the set S with T'= {1, 2, 3, 4} as well
as the representations Wy with the corresponding homomorphisms W, figuring in Theorem 5.2,
then Theorem 5.4 is proved.

Another type of “compact"sequences. Let again A refer to a unital C*-subalgebra of
F. Besides the ideal J(A) we consider a further ideal, K(.A), which is the smallest closed
two-sided ideal of A containing all sequences { K, } € A with dim Im K,, <1 for all n.

Proposition 5.6. Let A be a unital and fractal C*-subalgebra of F which contains N'. Then,
J(A) =K(A).
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Proof. If {K,} is a central rank one sequence in A then, since N' C A, every matrix K,
has rank one. Thus, {K,} belongs to IC(A).

For the reverse inclusion, first observe that, under the made assumptions, the center of A
consists exactly of all sequences of the form {«, P,} where {a,} is in ¢, the set of all convergent
sequences. Now let {K,,} € A be a sequence with dim Im K, < 1 for all n. The fractality of .4
further implies the existence of the limit « := lim || K,|| (see [17, Theorem 4]). If & = 0, then
{K.,} is a zero sequence, hence in N' C K(A).

In case a # 0 we are going to show that {K,} is a central rank one sequence. Assume { K, }
is not of central rank one. Then there are a sequence {4, } € A and a non-convergent sequence
(a,) € 1°° such that

K,A, K, = a,K, for all n.

Choose two partial limits 3 # 7 of the sequence () as well as two subsequences p and 7 of
the the positive integers such that

Quny — B and  ayp) — 7 asn — oo.

Then both sequences {o,m)Kum) — BKum)} and {oum) Kymy — 7EKym } tend to zero. Hence,
again due to the fractality of A (see [17, Theorem 1]), both sequences {«a, K, — fK,} and
{a, K, — vK,} are zero sequences. But then, also their difference (5 — v){K,} goes to zero.
Since || K, || — « # 0, this implies 5 = 7 in contradiction to the choice of 5 and 7.

Identification of the ideals J(A¥) = IC(A?). Our next objective is to characterize the
image of the ideal [J(.A?) under the mapping smb introduced in Theorem 4.8’.

Theorem 5.7. The homomorphism smb maps J (A¥) onto K(L2) x K(L2) x K(I?) x K(I?).

Proof. It is shown in [18, Theorem 3| that every irreducible representation of a C*-algebra
A maps every central rank one element of A onto a compact operator (an element k of a C*-
algebra A is of central rank one if, for every a € A, there is an element p in the center of A
such that kak = pk). In our setting, the homomorphisms Wy, 1 < ¢ < 4 are irreducible since,
in any case, the ideal of the compact operators belongs to the image of A¥ under W;. Thus,

smb(J(A%)) C K(L2) x K(L%) x K(I*) x K(1%).

For the reverse inclusion first recall that, by definition, the set J of all sequences {P, K P, +
W, LW,, + C,,} with K, L compact and {C,,} € N is contained in A¥. Since every compact
operator can approximated as closely as desired by an operator with finite dimensional range,
we have J C KC(A¥) and thus, by Proposition 5.6, J C J(A¥). Moreover, it is easy to check
for the sequence {K,} := {P,KP, + W, LW, + C,} that

Wi{K,} =K and Wy{K,}=L,

and it is immediate from the definition of W5 and Wy that W3{K,} = W4{K,} = 0. Hence,
K(L%) x K(L2) x {0} x {0} lies in smb(J(A¥)). So it remains to show that smb(J7(A%))
contains all quadrupels of the form (0, 0, K, 0) and (0, 0, 0, K) with K a compact operator on
2.

It is well known and easy to check that the smallest closed C*-subalgebra of L£(I?) which
contains the shift operator Y also contains all compact operators and that, in particular, K (I?)
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is the smallest closed ideal of that algebra which contains the projection Il := I — ¥3* acting
by
IM: % — 12 A{wg,z1,...}— {20,0,0,...}.

Because of Wi {M?SP,} = ¥* for t = 3 and t = 4, it is consequently sufficient to prove that
the quadrupels (0, 0, II, 0) and (0, 0, 0, IT) belong to smb(7(.A%)).
For this goal, we consider the sequences {A,} and {B,} with

A, =P, — (M£SP,)*M?SP, and B, :=M?VP, — (MfSP,)*M?SVP,

where, as above, V = ¢I — ipS and ¢(z) = x. For the sequence {4, } we have W1{A,} =
I — Sy~ 1S (Section 2), and this operator is 0 as we have already mentioned several times.
Similarly, Wo{A,} = I — (—pS¢~1)(—S) = 0 due to Theorem 3.4. It is further immediate from
the definitions that W3{A,} = Wy{A,} = II; thus, smb {A,} = (0, 0, II, II).

Concerning the sequence { B, }, we will first show that it is indeed an element of the algebra
A?. To see this, write SV = S(¢I — ipS) as

SV =S —ipl + (SwI — 1S) — i K, (5.12)

where the rank one operator K is given by (4.3). Thus, SV is the sum of a singular integral
operator with continuous coefficients and of a compact operator, which maps into the convergence

manifold of the AM?. Hence, {M?SVP,} € A¥ and {B,} € A”. To compute the operators
Wi{B,}, we recall from Section 2 that

WH{MZV P} = Wi{ M7 (I —ipS) P} = ¢l —ipS =V, Wo{MIVP,} =l +ipS,
Wa{M?V P} = Ws{M?((1)I —ip(1)S)P,} =1 and W {M?VP,} = —I
and that
Wi {M?SPY = —Wo{M?SP,}* = pSp'I and W3{M?SP,}" = W, {M?SP,}* = 3.

For the operators W, { M SV P, } we make use of identity (5.12) which together with the results
of Section 2 yields

Wi{M?SV P} =SV, Wo{M?SVP,} =—ipl — S,
W3{M?SVP,} = Ws{M?(¢¥(1)S —ip(1)])P,} =X* and Wy {MSSVP,} =-%"
Puzzling these pieces together we find
Wi{B,} =V — pSp™'SV = (I — pSp™'S)V =0,

and
Wo{B,} = (W1 +ipS) + S~ (=S —ipl) = S~ (SyYI — ¢S)

which is also 0 since the range of the commutator Syl — 1S consists of constant functions only
and since the operator Sp~! annihilates every constant function. Finally,

W{B,} =1-3%" =11 and Wy{B,}=-1-%(-%") = —II,

whence smb {B,} = (0, 0, IT, —II).
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1 1
Thus, the homomorphism smb maps the sequences §{An + B,} and Q{A” — B,} onto

the quadrupels (0, 0, IT, 0) and (0, 0, 0, IT), respectively. We show that these sequences are
essential rank one sequences in A¥. For this goal, we determine the matrix representation of
A, = P, — (M?SP,)*M#?SP, with respect to the basis functions g, & = 0, ..., n — 1. For
0 <k, m<n-—1we have

Tem = ((MPSP,)* M?SP,ty,, ), =
= (M?SP,ty,, M?SP,t)y = (M?StU,,, M?Sty),
and, since Stu,, = SpU,, = iT,,+1, we obtain

Tkm = <Mrme+17 Mrka+1>a = (er@_leH,er@_lTkﬂﬁ =

™

= D T (@) Tiga () =
=1

n+1

2 1 1
ZCOS (m+ 1)l o (k+ D)ir

n+1z:1 n+1 n+1
R (m — k)lr (m+k+2)lr
= g 2 (oo T s PRI

=1

Short calculations using the well known identity

. 1
n Sin (n—|—§)x 1
Zcoslx: —7 —3
—1 281n§
yield in case k =m
n—1
Tmm = 1>
n+1

whereas in case k # m
0 if m+k is odd

Tkm = . .
if m+ £k is even.

n +1
2 n—1 .
n——|—1 [gkm]k,mzo with
[0 if m+k isodd
Fhm = 1 if m+ k iseven,

Summarizing we find that A, =:

and analogously one gets that the matrix representation of B,, with respect to the same basis is

n

2 _ 1 1
B, =: 1 [Ekmi1]p_y- It is evident now that the sequences E{An + B,} and §{An — B,}
n k)

consist of matrices with rank one only. Thus, by Proposition 5.6, these sequences are of essential
rank one, and this observation finishes the proof of the inclusion

K(Lg) x K(Lg) x K(I*) x K(I*) € smb(J (A?))

and of Theorem 5.7.
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Fredholm inverse closedness of A¥. To finish also the proof of Theorem 5.4, we have
finally to show that the ideals J(A%) = IC(A¥) and J(F) N .A¥ of A® coincide. This equality
is a simple consequence of the following result which, on its hand, is a generalization of [18,
Theorem 3].

Theorem 5.8. Let A be a C*-subalgebra of F and let {J,,} be a sequence in J(F)N.A. Then,
for every irreducible representation W : A — L(K) of A, the operator W{.J,} is compact.

Proof. The proof is based on [15, Prop. 4.1.8] which states that, under the above assumptions,
there exist an irreducible representation = : F — L(H) of F with a certain Hilbert space H, a
subspace H; of H and an isometry U from H; onto K such that H; is an invariant subspace
for 7{.J,,} and

W{J,} = Un{J.}uU".
From [18, Theorem 3| we know that 7{.J,,} is a compact operator on H. Since H; is invariant
for w{J,}, this moreover implies that 7{.J,,}|n, is a compact operator on Hy. Thus, W{J,} is
compact on K.
The Figures (a) and (b) revisited. Having Theorem 5.4 at our disposal, it is easy to

explain the behaviour of the smallest singular values in Figures (a) and (b). In case A = al+bS,
a(x) =+/1—xz, b(x) = —iz, we have for A, = M?AP,

dim Ker Wi{A,,} + dim Ker W5{A, } + dim Ker W3{ A, } + dim Ker Wy4{A,} =

=0+0+14+0=1

whereas the same quantity is 0+ 0+ 1+ 1 =2 in case a(x) = v/1.01 — 22, b(x) = —ix . Thus,

in Figure (a) the lowest singular value tends to zero and the aén) remain bounded away from

zero by a positive constant for all n, whereas in Figure (b) both lim ai”) = 0 and lim O'én) =0.

6. Appendix: proof of lemma 4.4

Lemma 6.1. The coset {M?SP,}° is a unitary element of A°/J .
Proof. We use (3.15) and (4.3) and get

1
MZSP,(M?SP,)* = 5 TS0Se T LY (Paoy + P) =

1 1
= 2 ZLZ<P7L71+P">+§ SKUSOALZ(anJrPn):

1 1
= (Paci + P+ g MIKop LY (Puca + Pa)

Now, from Kyp lu = — (u, Up)o

¥l
3

n
™

1Pl = D (1= @) [T P ag)]” <
k=1

1
< const [ (@) |07 Puf)@) do = const [P,

1
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(see Lemma 3.1), and P,_; = B, — W,,PL\W,,, it follows {MZSP,}°{(MZSP,)*}° = {P,}°. On
the other hand we have

1
(M?SP,)*MSSP, = pSp 'LIM?SP, — égOSgo‘lLZWnPanMgSPn
and pSp 'LEMSP, = pS¢p 'SP, = P, due to (3.6) and (3.16).

Forn > 1, let Q,, : £> — ¢* denote the projection Q& = {&,...,&,-1,0,0,...}, and define
E* :im P, — im+Q,, by

and

Then, for £ € im @, ,

(BN 6= \/gﬁk_lﬁgn = EY¢ and (E,)'e=) \/ggn_kign = B¢,
k=1 k=1

where
p(2)T,(2)
p(27,)(x — a7, T (27,)

() =
Remark that, for n > 1,

/ / 2n(—=1 k+1
T3(e) = nlpale) and T3(of,) = 2
kn

In view of Lemma 3.1 and estimate (3.1), the sequences { E*} and { E£,} are uniformly bounded,
i.e. there are constants ¢; and ¢y such that

%Z u(zg))? < e llul> forall ueimP, (6.1)
k=1

n _ e
Vg
k=1

Lemma 6.2. The sequences { EXM?SP,E=,Q,} and {(EXMZSP,E=,Q,)*} are strongly convergent
on (.

and

2 n
<Y |Gl forall £ef® (6.2)
o k=1

Proof. The uniform boundedness of these sequences is obvious. So it remains to prove their
convergence on the elements e, = {J,,x}72, of the standard basis of 2. Forn > m > 1, one
has .

Fon = EXM?SPyEY Qem-y = {SZ"mn(m‘T )}

n j=1
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(here we identify {&,...,&,1,0,...} € €2 with {&,...,& _1}). We compute, for = # 9, ,

7T(—1)’““1/1 eWTly) 4

@) = /5 (Y=t — =)

2 n T
T (_1>k+1 1 /1 1 1
on(z] —a)mi ) \y—a7, y—a P(W)Tnly) dy

and, taking into account (3.16),

l/_ L o)y dy = l/_l Loy Ta(y)o(y) dy

™ 1Yy—a ™ 1 Yy—@

= (= Waa) - 3 [ D) Tal)ots)dy =

1
= (1 -2, ().
Thus, for j # k,

SZU ag _ —
( kn)(xjn> ni x%n o I;’n Sjk
With the help of
d
L0 =) ()] = (1= 2V (@) — 200, 1(a)
we get
~ 1 a7
Sre o — _ kn — (n) )
( kn)(xkn) ni QO(ZE%n) Skk
It follows .
coS k%n_lw ek
- even,
(n) insin %ﬂ' J
S, = kﬁf (6.3)
cos 5T ,
——=—, J+k odd,
1n sin kQ—njw
and, consequently,
——F—, j+k even,
() k+j5—-1 J
‘Sjk | < 1
——  j+k odd.
|k = Jl
Thus, for fixed m , the sequences {fn} = {35:2, e 3537)1, 0,...} are uniformly dominated by a
square summable sequence, which implies
e {12}, = ) e
where sj;, = lim 3;2) , L.e.
2 4+ k
- even , ,
8 k-1 7 eV e o Vs S
ik = = —F - — . .
! 2 ik odd mi(j — k) mi(j+k—1)

mi(j— k)’
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Thus,
EfM?SP,ET Q, — S := [Sjk); =1 oM 0.

Now it is easy to see that
(BfMISP,E*,Qn)" — S = [si5],521 on 2,

1— (_1)146 1— (_1)j+k—1

where 5; = - T Hence, denoting by T'(a) = [a;_1];5-¢ and H(a) =
[@j1k+41];5-0 the Toeplitz and Hankel operator w.r.t. the symbol a(t) = Z apt™, t € T,
k=—0o0

respectively, we have
S=T(¢)— H(¢) and S*=T(¢)+ H(¢) with ¢(t) =sgn(S3t).

Finally, from
ktj—1

COS 5 —Tr -
- ; even,
(n) in sin %ﬂ' J
Sntl—jn+l—k — ik
COS o .
———=0—, J+tk odd,
insin =
we get
E;M¢SP,E~,Q, — —S and (E;MSP,E~,Q,)* — —S"
in ¢2.

We remark that the assertion of the previous lemma is not directly used in the following,
but it essentially suggests the further considerations.

n n

~ . . . kE k+1
For k,n € Z and n > 1, let ¢} denote the characteristic function of the interval {—, i )

multiplied by y/n. Then the operators

E,: 6 —1AR), {&} o > &&F

k=—o00

and

E_,=(E,)" vimE, — 6, > &7 {1 -

k=—o00

act as isometries. If we further denote the orthogonal projection from L?(R) onto im E, by Zn,
then we get as a consequence of [7], Prop. 2.10 and Exerc. E2.11, the following lemma.

Lemma 6.3. The sequence E,SE_, L, : L?(R) — L2(R) is strongly convergent.
Lemma 6.4. The sequences {E=,Q,SQ.EFP,} belong to the algebra FW

Proof. Obviously, the sequences under consideration are uniformly bounded. For k =
1,...,n, define functions
km k—1

, cos— < x < cos
n

T,

33

i () =
0, otherwise,
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and let R, S, : L2 — L2 refer to the operators

n

R.f = ﬁ S e oeltn s Suf =D (. 00a0r
k=1

k=1

Then, in view of (6.2),
IR IZ < 2> [foomel® = 2 lISufI2 < e IFIIZ
k=1

i. e. the sequence {R,} C £(L?) is uniformly bounded. Moreover, for the characteristic function
[ = X[zy of an interval [z,y] C [-1,1], we have

‘(f, oo - \/gﬂxzn) - ‘@ /_ {f(cos 5— f (cos - %)] s

( km kE—1 )
x,y & | cos —, cos T
n

n

’<f,gpz>a—\/§f<xgn) \/é/__ {f(coss)—f(C082k2;1W>} e

which implies, again by (6.2),

|R.f — MSf|2 = H @ > [<f, Mo — @mm} o,
k=1

Consequently, R, f — f in L2 for all f € L2 . In particular, we get the following equivalences

(& €C):

=0,

™ .
< \/j , otherwise,
n

27

2
SCQ_.
n
o

=0,

g

n
E Ui — f in L2 & lim
—1 n—oo

> &, — Raf
k=1

2

i T
& i —& — s =
lim \/ka {(f,¢k)e| =0,
k=1
& lim fj Tengr — S, fll =0
n—oo 1 n ’

& m n,.n 3
= Z\/%fk@k_)f in Lj.
k=1

Since R, — I in L2, the convergence E7,Q,SQ,EP,f — ¢ in L% for an f € L2 is
equivalent to

EannSQnE:Rnf - EirnQnSQn{<f7 ¢Z>U}kil - g il’l Li
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and, due to the previous considerations, equivalent to

S silf oo — g in L2 (6.5)

j=1 k=1

The mapping T : L2 — L2(0,1) defined by (Tf)(s) = /7 f(cosms) is an isometry, whereby
Ty = @i . Consequently, (6.5) is equivalent to

X D> 5T, E @@ — xpuTg in LA(R). (6.6)

JET keZ

The left-hand side of (6.6) can be written as EnSE,nznx[OﬂT f, and Lemma 6.3 guarantees the
convergence of this sequence. Hence, we have proved that W{A, } exists for A, = E*,Q,,SQ,.EP, .

To prove the existence of W{An}, we proceed as follows. By definitions and by taking into
account (3.11) and (3.18) we find, for u € L2 and & € ¢2,

n

EfW,u = {\/72 U, U)ol ](;c,m)} —

k=1
n

{\f S i) %T@:kn)} ,

k=1
o oo @ — ~ o\
gkn = Mngkn = E Zgjnuj(xkn)uj ) (67)
=0

and

n n—1
T - o\~
WnEirnan = \/%ngl Zgnflfjmunflfj(xkn)uj =
k=1 =0
T ~
N \/%ng 1 Z% kJrlT (25, )u; =
k=1 7=0
p n n—1
= IS DT =
k=1 Jj=0
— \/7ka 1 k‘+1€
Thus, if we define P? : L2 — L2, E7 : im P — im Q,,, and W 02— (2 by
n—1 N
Pif =3 (wToTe, Eif ={fGi)hl . We={(-D"a},%
k=0
respectively, then E,W, = WE?.J,P, = WE°P’J, and W,Et, = J-'E° W , where E7, =

(E7)~!. Consequently,
WoE" QnSQuESW, = J-VE® O, WSWQ,E P J, (6.8)
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The strong convergence of this sequence can be proved as the strong convergence of the
operators EY,Q,SQ,.E P, .
oo

Defining J,u = Zsjn(u,ﬂj>gﬂj (€jn =1, 7 > n—1) and taking into account (6.7), we

can write, for u € L2 and £ € (2,

n n—1
<QnE;_PanU, €>€2 = \/gz Z gjn<u’ aj>aa($2n)gk—1 =

k=1 j=0

n n—1
= <u7 \/g ; &ﬂ—lg ]2% 5]‘”?7]‘ (xgn)a])U
= <U, Ethn5>a 5

which leads to (Q,EP,J,)* = E*,Q,, i.e. (Q.EfP,)* = J 'E*,Q, . Furthermore, again
due to (6.7),

<Ethn£a u>a - \/éka_l@vgm Pnu>o =
k=1

= \/7;&1

- <§7 E;PanUNQ

(u uj>05]nuj(x,m) =
7=0

such that (E1,Q,)* = E;P,J, . Hence,
(EY,QuSQ.EP.) = J 'EY Q,S8*Q.E; P, J, .
Analogously, with the help of (6.8) one can show that

(WaEL,QuSQuEW,)" = J;E,QuWS WQuE[ P, "

n-m-n

Since J, — I in L2 we conclude also the strong convergence of A* P, and (W, A,W,)*P,,
and the proof of {EY,Q,SQ,E;P,} € FV is done.

For the second sequence we can use the same arguments taking into account the following
two facts:

a) E- =V,Ef and E—,, = E*,V,,, where V,,¢ = {&,_1,...,&,0,...} , £ € 2. Consequently,
E-,Q.SQ.E, P, = FE*, V,SV,EIP,;

b) V,T(a)V, = Q,T(a)Q, , where @ = a(t™!), and H(¢) belongs to the smallest closed
subalgebra 7 of L£(¢?) containing all Toeplitz operators T'(a) with a € PC(T). Thus,
V.SV, = Q,S0Q,, So € 7, and Lemma 6.3 remains true for Sy instead of S.

This completes the proof of the lemma.

In what follows we will use the local principle of Gohberg and Krupnik (see below). Although
it is possible to apply the local principle of Allan and Douglas (cf. Section 4) equivalently, we
decided to go this other way with the aim of a little more clear presentation.
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Let B be a unital Banach algebra. A subset M C B is called a localizing class if 0 ¢ M and
if, for all ay,as € M, there exists an element a € M such that

aa; = aja=a for j=1,2.

Let M be a localizing class. Two elements z, y € B are called M-equivalent (in symbols:
z N y), if

inf — = inf — =0.

inf (e~ y)lls = inf o~ y)alls =0
Further, x € B is called M-invertible if there exist a;,as € M and z, 2o € B such that

zixa; = a7 and a9z = as.

A system { M },cq of localizing classes (€2 is an arbitrary index set) is said to be covering if,
for each system {a,},cq with a, € M., there exists a finite subsystem a.,,...,a,, such that
ar, + -+ -+ a,, is invertible in the algebra B.

Local principle of Gohberg and Krupnik ([6], Theorem XII.1.1). Let B be a unital
Banach algebra, {M.,},cq a covering system of localizing classes in B, x € B and x S s
for all 7 € Q. Then z is M -invertible if and only if x, is M -invertible. If  commutes with
all elements from (J ., M, then x is invertible in B if and only if 2, is M -invertible for all
Te.

For 7 € [-1,1], let

m, :={f € C[-1,1]: 0 < f(z) <1, f(z) =1 in some neighborhood of 7}

and define M, = {{M7fP,}°: fe€m.} . Then {M;},c-11 forms a covering system of
localizing classes in F"' /7 , which, due to Lemma 4.1, has the property that all elements of this
system commute with all elements of the form {M?(al + bS)P,}°, a,b € PC. The Relation
(3.5) shows that, for a,a;,b,b, € PC, the cosets {M?(al + bS)P,}° and {MZ (a1l + b, S)P,}°
are M, -equivalent if a(7 £0) = a;(7 £ 0) and b(7 £0) = by (7 £0).

Lemma 6.5. The cosets {M?SP,}° and {iEannSQnEfan}o are M4q-equivalent.
Proof. Let a € my and B,, = EfMZaP,E*, (ETMSSP,EY,Q, — Q,SQ,) . Then

B, = diagla(z5,), ..., a(a3,)|[s5) — sjul4_y

and, due to the uniform boundedness of the sequences {E;} and {E¥, } |

HMT‘;aPn(MZSPn — E*,Q,SQ.E P, < const ||B7L||L(£2) :

)“z;(Lg)

1
Assume that suppa C [cosme, 1], 0 < € < 1/4. Since the function g(z) = zcot z = 1 — 522+- .

is analytic for [z| < 7, we have |cotz — 27| < const|z| for |z| < 3m/4, which leads to

(n) +J
Sjk — Sik n2

n . 1
HBnHZL(gz) < Z Z \sgk) — s;k]* < const (5 + 5)

1<j<ne+i k=1

. It follows

< const
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and, consequently,

[{MZaP,(MISP, — E*,Q,SQ,E; P,)}°|| < const v/z.
Analogously one can show that

|{(MISP, — EX,Qu.SQnE; P,)M7aP,}’|| < const /e,

and the M;-equivalence of {M?SP,}° and {EannSQnE:{}O is proved. The proof of the M_;-
equivalence of {M7SP,}° and {—E_,Q,SQ,E, }° is similar.

Lemma 6.6. The sequence {EannSQnEﬂan — /\Pn} is stable in L2 if and only if \ ¢ D, =
{zeC:|z] <1, 3z >0}.

Proof. Due to [2, Prop. 4.1], the sequence {Q,S*Q,, — NO,,} is stable in ¢? if and only if
A Do :={zeC:|z|] <1, ¥z <0}. This fact implies the assertion immediately (recall the
uniform boundedness of EFX and £, = (EX)™).

Proof of Lemma 4.4. Let 7 = +1. Lemma 3.5 and the local principle of Allan and Douglas
imply that o)/ 79 (S) = T,. Further, by Lemmas 4.3 and 6.1,

T, C O(Ae /7)) T2 ({M;;SPH}O—FJTU) CcT.

Let A € T\T, . Due to Lemmas 6.6 and 6.4, the coset {i—EannSQnEan — )\Pn}o is invertible
in 7 /7 . By Lemma 6.5 and the local principle of Gohberg and Krupnik we get the M-
invertibility of {MZSP, — AP,}° .

1
Let x(z) = —i2—x and A\ € T\ Ty. Then {MIxSP,— \P,}° is M;-equivalent to

{M?SP, — \P,}°, and M_j-equivalent to A{P,}°. So, M;- and M_;-invertible. For
7 € (—1,1) we use the fact that (A7/J)/J° is *-isomorphic to a C*-algebra of continuous
2 x 2 matrix functions on [0, 1], which was shown in Section 4. This isomorphism sends

1+7
2

{(M?\SP, — AP}’ + J° = { M?SP, — APn} +J?

into the function
147

A
5 0

147
2

which is invertible. Consequently, for each 7€ (—1,1), there exist {B]}€.A” and {7, ;k}o ceJ?,
k =1,2, such that

0 A

{By} {MIXSP, — AP} ={P.}° + {T},}°
and
{M7xSP, = AP}’ {B}’ = {P.}* + {T},}" .

Since {7, ;k}o is M-equivalent to the zero element of A7/J , we get the M -invertibility of
{MZxSP, — A\P,}° also for 7 € (—1,1). The local principle of Gohberg and Krupnik gives
the invertibility of {MZxSP, — AP,}° in FV/J . Because of the inverse closedness of C*-
subalgebras, the inverse of {M?xSP, — AP,}° belongs to A?/J , which implies, due to the
local principle of Allan and Douglas, the invertibility of {MIxSP, — AP,}° + J7 .

The invertibility of {MZxSP, — AP,}° 4+ J°, for A € T\ T_; can be shown analogously.
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