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Статья посвящена некоторым обратным задачам вариационного исчисления. Ряд

вариационных принципов для жидкостей Ван-дер-Ваальса получены непосредствен-

но из начально-краевой задачи для соответствующей системы уравнений, начальных

и краевых условий с помощью полуобратного метода, предложенного автором. Ре-

зультаты работы могут усилить теоретические основы метода конечных элементов и

других прямых вариационных методов, таких, как методы Ритца, Треффтца и Кан-

торовича.

Introduction

Variational model for fluid mechanics is the theoretical basis for the finite element techniques
and other direct variational methods such as Ritz’s, Trefftz’s and Kantorovitch’s methods [1].
Most recently, a new and very effective numerical technique called meshless method or element-
free method [2] is developing. In contrast to the finite element methods, the meshless methods
requires no elements but a set of scattered nodes in the solution domain without recourse to
any elements or zones. Accordingly the meshless methods do not have a rigid connectivity
provided a priori, making them ideal in applications where finite element methods have the
most difficulties. And the variational model is also the theoretical basis for the variational-
based meshless method [3]. Furthermore, variational principles can also easily deal with the
free or moving faces in fluid mechanics and hybrid problems [4–6] of determining unknown
shape in design or modification of channels, bladings and dams etc., where some part of the
wall is unknown but the pressure distribution is described. So the importance of searching
for a variational representation of fluid mechanics must not be demonstrated in detail in this
paper, however, it is very difficult to search for a variational representation directly from the
field equations and boundary and initial conditions. In this paper, we apply the semi-inverse
method [7–11] to establish various variational principles for Van der Waal fluid.

1. Mathematical model

Let’s consider the one-dimensional fluid, the governing equations are [8–10]

∂ρ

∂t
+

∂(ρu)

∂x
= 0, (1)
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∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂P

∂x
= 0, (2)

where P , ρ and u are pressure, density and velocity respectively. For Van der Waal fluid, we
have the following pressure-density relation [12]

P =
RTρ

1 − bρ
− aρ2, (3)

where a, b, R and T are considered constants in this paper.
Using (3), equation (2) can be rewrite in the following conservative form

∂u

∂t
+

∂H

∂x
= 0, (4)

where H is defined as

H =
1

2
u2 + RT ln ρ − RT ln(1 − bρ) +

RT

1 − bρ
− 2aρ.

We introduce two general functions: path function Ψ and potential function Φ, which are
defined respectively as

∂Ψ

∂t
= −ρu, (5)

∂Ψ

∂x
= ρ, (6)

and

∂Φ

∂t
= −H, (7)

∂Φ

∂x
= u. (8)

The boundary and initial-value conditions (BC and IC) can be expressed as follows
(A) for Φ:

at inlet C1

ρu(0, t) = f0(t),

at outlet C3

ρu(L, t) = f1(t),

at initial time (on C2)
Φ(x, t0) = f2(t),

and
ρ(x, t0) = f3(t),

(B) for Ψ:
at inlet C1

H(0, t) = g0(t),
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at outlet C3

H(L, t) = g1(t),

at initial time (on C2)
Ψ(x, t0) = g2(t),

and
u(x, t0) = g3(t).

2. Generalized variational principles

The variational principle for 1-D unsteady flow in a flexible tubes in turbomachinery aerodynamics
has been studied extensively in Refs. [9, 13]. In this paper, we will extend the results in Refs.
[9, 10] to Van der Waal fluid.

The traditional way to arrive at a generalized variational principle is the Lagrange multiplier
method, which uses Lagrange multipliers to remove its constraints in a known variational
principle under constraints. But here we have no known variational principles, so the method
isn’t valid herein.

The basic idea of the proposed method is to construct a trial-functional with an unknown
variable F like this

J(Φ, ρ, u) =

∫∫
{

ρ
∂ρ

∂t
+ ρu

∂(ρu)

∂x
+ F (ρ, u)

}

dtdx, (9)

where Φ, ρ and u are all independent variables, F is an unknown function of ρ and u.
The trial-functional can be constructed by various ways, details can be found in Refs. [7].

We search for such F so that the stationary conditions of the trial-functional (9) satisfy the
field equations (1), (7) and (8).

Calculating variation with respect to Φ

δΦJ(Φ, ρ, u) =

∫∫
{

−
∂ρ

∂t
−

∂(ρu)

∂x

}

δΦdtdx = 0,

we obtain the equation (1) as stationary condition (Euler equation).
The other two stationary conditions with respect to u and ρ can be written respectively in

the following forms:

for δu ρ
∂Φ

∂x
+

∂F

∂u
= 0,

and

for δρ
∂Φ

∂t
+ u

∂Φ

∂x
+

∂F

∂ρ
= 0.

The above equations with unknown variable F is called trial-Euler equations, which should
satisfy the other two field equations (7) and (8). Accordingly we set

∂F

∂u
= −ρ

∂Φ

∂x
= −ρu, (10)

and
∂F

∂ρ
= −

∂Φ

∂t
− u

∂Φ

∂x
= −

1

2
u2 + RT ln ρ − RT ln(1 − bρ) +

RT

1 − bρ
− 2aρ. (11)
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From (10) and (11), the unknown F can be readily identified

F = −
1

2
ρu2 + RTρ(ln ρ − 1) +

RT (1 − bρ)

b
[ln(1 − bρ) + 1] −

RT

b
ln(1 − bρ) − aρ2 =

= −
1

2
ρu2 +

RT

b
+ RTρ ln

ρ

1 − bρ
− aρ2.

We, therefore, obtain the following functional

J(Φ, ρ, u) =

∫∫

L1dtdx, (12a)

where

L1 = ρ
∂Φ

∂t
+ ρu

∂Φ

∂x
−

1

2
ρu2 +

RT

b
+ RTρ ln

ρ

1 − bρ
− aρ2. (12b)

Now we remove the boundary/initial constraints by using the semi-inverse method. Supposing
a generalized variational principle without any constraints has the following form:

J∗(Φ, ρ, u) = J(Φ, ρ, u) +

∫

C1

F1ds +

∫

C2

F2dt +

∫

C3

F3ds, (13)

where Fi (i = 1, 2, 3) are unknowns, and J(Φ, ρ, u) is defined by (12).
Making the above trial-functional (13) stationary, and using the Green’s theory, at the

boundary (C1), the following trial-Euler equation can be obtained:

for δΦ ρu(ix · n) +
∂F1

∂Φ
= 0,

which should satisfy the condition at C1, therefore, we set

∂F1

∂Φ
= −f0(ix · n).

The unknown F1 can be identified as follows

F1 = −f0Φ(ix · n).

The other unknowns in (13) can be identified by the same way, as a result, we have the
following functional:

J∗(Φ, ρ, u) = J(Φ, ρ, u) + LΦ, (14a)

where J(Φ, ρ, u) is defined by (12), and LΦ is expressed as

LΦ = −

∫

C1

f0(ix · n)Φds −

∫

C2

f1(ix · n)Φdt −

∫

C3

f2(ix · n)Φds. (14b)

It is very easy to deduce various variational principles from a known generalized variational
principle. Constraining the functional (14) by selectively enforcing field equations or boundary
conditions yields various sub-generalized variational principles. For example, substituting equation
(8) into the functional (14) yields the following functional:

J(Φ, ρ) =

∫∫

L2dtdx + LΦ, (15a)
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where

L2 = ρ
∂Φ

∂t
+ ρ

(

∂Φ

∂x

)2

−
1

2
ρu2 +

RT

b
+ RTρ ln

ρ

1 − bρ
− aρ2, (15b)

which is subject to equation (8).
Further constraining the functional (15) by the equation (7), we have

J(u) =

∫∫

L3dtdx + LΦ, (16a)

where

L3 = −ρH + ρu2 −
1

2
ρu2 +

RT

b
+ RTρ ln

ρ

1 − bρ
− aρ2 =

= −ρ

[

1

2
u2 + RT ln ρ − RT ln(1 − bρ) +

RT

1 − bρ
− 2aρ

]

+

+ρu2 −
1

2
ρu2 +

RT

b
+ RTρ ln

ρ

1 − bρ
− aρ2 = −

RTρ

1 − bρ
+ aρ2 +

RT

b
= −P +

RT

b
, (16b)

which is a functional under the constraints of equations (7) and (8). The above functional (16)
can be written equivalently in the form

J(u) = −

∫∫

Pdtdx + LΦ,

which is very similar with the well-known Bateman’s principle [1].
We can also establish a variational principle with independent variables Ψ, ρ and u. The

trial-functional can be constructed as follows

J(Ψ, ρ, u) =

∫∫
{

u
∂Ψ

∂t
+ H

∂Ψ

∂x
+ F (ρ, u)

}

dtdx. (17)

We search for such F , so that the stationary conditions of the above trial-functional (17)
satisfy the field equations (4), (5) and (6). Taking variation with respect to u and ρ yields the
following trial-Euler equations:

for δu
∂Ψ

∂t
+ u

∂Ψ

∂x
+

∂F

∂u
= 0, (18)

and

for δρ

[

RT

b
+

RTb

1 − bρ
−

RTb

(1 − bρ)2
− 2a

]

∂Ψ

∂x
+

∂F

∂ρ
= 0. (19)

The above trial-Euler equations (18) and (19) should satisfy the equations (5) and (6), we
therefore set

∂F

∂u
= ρu − uρ = 0,

and
∂F

∂ρ
= −RT −

RTbρ

1 − bρ
+

RTbρ

(1 − bρ)2
+ 2aρ.

So the unknown F can be determined as

F =
RT

b(1 − bρ)
− aρ2. (20)
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Substituting (20) into (17) results in the following functional:

J(Ψ, ρ, u) =

∫∫
{

u
∂Ψ

∂t
+ H

∂Ψ

∂x
+

RT

b(1 − bρ)
− aρ2

}

dtdx.

By the same manipulation as before, we can eliminate the “boundary constraints” by the
semi-inverse method:

J∗(Ψ, ρ, u) = J(Ψ, ρ, u) + LΨ,

where

LΨ = −

∫

C1

g0ix · nΨds +

∫

C2

g3Ψdt −

∫

C3

g1ix · nΨds.

It should be specially pointed out that on C4 it requires a special treatment, for details
please see Refs. [9, 10].

It is easy to obtain the following two generalized variational principles with four independent
variables (Ψ, ρ, u, P ) and (Φ, ρ, u, P ):

J∗∗(Ψ, ρ, u, P ) = J(Ψ, ρ, u) + λ

∫∫
{

P −
RTρ

1 − bρ
− aρ2

}2

dtdx + LΨ,

J∗∗(Φ, ρ, u, P ) = J(Φ, ρ, u) + λ

∫∫
{

P −
RTρ

1 − bρ
− aρ2

}2

dtdx + LΦ,

where λ is a nonzero constant.

Conclusions

It is obvious that the semi-inverse method is an effective approach to searching for various
variational principles for fluid mechanics without using Lagrange multipliers. Applying variational
theory with a variable-domain [4, 5], we can readily obtain the shock relations for Van der Waal
fluid.
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