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Исследуется алгоритмический подход к задаче управления нагреванием (или охла-
ждением) однородного шара за минимальное время. Крабс показал [28], что эта зада-
ча оптимального управления может быть интерпретирована как задача двухстадий-
ной оптимизации. На первой стадии решается задача минимального по норме управ-
ления, а на второй — задача обобщенной полубесконечной оптимизации. Итерацион-
ная процедура реализует обе стадии, включая аппроксимацию негладких функций
и пошаговое применение метода дискретизации к задаче оптимизации. Для иллю-
страции алгоритма наряду с комментированной блок-схемой используются описания
различных вариантов, альтернатив и практических приемов.

1. Introduction

This article is devoted to a problem, given by time minimal heating (or cooling) of a ball. In
this example of an optimal control problem, we consider questions concerned with problem
representation, theoretical and practical solvability and structural frontiers.

The ball B consists of a homogeneous material. Based on a description in the article Krabs
[28], we study the problem

Ptm






Min I(T, u) := T , such that (1)
there is a bounded function θ : [0, R] × [0,∞) → IR, where
θ|(0, R] × (0,∞) is partially differentiable,
u = θ(R, ·)|[0, T ] is continuous, and
θt(r, t) = a∆θ(r, t) = a

r2

∂
∂r

(r2θr(r, t))((r, t) ∈ (0, R] × (0,∞)), (2)
θ(r, 0) = θ0 (r ∈ [0, R]), (3)
θ(R, T ) = θE, (4)
T ≥ 0, (5)
|σu(R, t)| ≤ σ∗ (t ∈ [0, T ]). (6)

∗The authors are responsible for possible misprints and the quality of translation.
1 Corresponding author.
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Here, ∆θ represents the Laplacian of θ and R denotes the radius of B. The temperature
θ(r, t) is a function of the radial variable r, where r measures the distance from the center
point 03 of B, and of the time t. Moreover, we start with an initial temperature θ0 and
finish with an intended target (end) temperature θE > θ0 (or θE < θ0, respectively). Because

of this inequality, each time T̂ which is optimal for Ptm, can not be zero (i. e., T̂ > 0).
The temperature is essentially governed by the heat equation (2), where a > 0 describes
the coefficient of heat conductivity (see Myint-U [32]). This can effectively be realized by the
substitution v(r, t) := rθ(r, t) in (2). We interpret uT (·) := u(·) = θ(R, ·)|[0, T ] as a control
variable (T ≥ 0). Now, we are focussing on partial differential equations with the following
unique solution of the (boundary-value) problem (2) – (4) (see Krabs [28]):

θ(r, t) = 2r
∞∑

k=1

(−1)k+1

kπ
exp(−a(kπ

R
)2t)θ0

1
r
sin(kπ

R
r) +

+ 2a
R

∞∑
k=1

(−1)k+1kπ ·
t∫

0

exp(−a(kπ
R

)2(t − s)) u(s) ds · 1
r
sin(kπ

R
r) .






(7)

Furthermore, the function σu(r, t) denotes some thermal stress tangential to the boundary ∂B

of B (r = R). Finally, σ∗ is a given upper bound of the stress.
Under suitable physical assumptions, at the boundary the function σu = σθ0

u has the form

(σu(R, t) =) σθ0

u (R, t) = Eα
1−µ

(
3

R3

R∫
0

θ(r, t)r2 dr − u(t)
)
. (8)

(For more details see Parkus [34], where other elementary geometrical bodies are considered.)
Here, E is the modulus of elasticity, µ and α are the coefficients of cross-extension and linear
heat extension, respectively. By means of (7), (8) represents the thermal stress for r = R, that
can be evaluated further. Its dependence on the parameter θ0, indicated in (8), then becomes
obvious.

Fig. 1 displays the ball with its distribution of temperatures at some time t.

2. Evaluation of the Problem

2.1. Problem Decomposition

In the article Krabs [28], a first interpretation of Ptm as a problem from two-stage optimization
is given, based on the representation (7) of the temperature.

On the lower stage, for each T ≥ 0 we consider the one-parameter family (Pnm

T )T∈[0,∞) of
norm-minimal control problems on the thermal stress at the boundary, given by

Pnm

T






MinuT
||σθ0

uT
(R, ·)||∞,T ,

where uT ∈ C([0, T ], IR) fulfills

uT (T ) = θE.






(9)

The mapping || · ||∞,T denotes the maximum-norm for continuous functions on [0, T ]. This
problem is called an approximation problem. (See Braess [3], Krabs [27], Jongen/Jonker/Twilt
[16] for further details.) In Krabs [28] we find the following re sult:
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Fig. 1. A ball B consisting of a homogeneous material, and its temperature distribution. Increasing

darkness represents increasing temperature.

Item 1 : For each T ≥ 0 the problem Pnm

T has precisely one solution ûT .

This (unique) solution ûT of Pnm

T (T ≥ 0) is

ûT (t) := θE−yT (T )
uT (T )

· uT (t) + yT (t) (t ∈ [0, T ]) , (10)

where (uT , yT ) is the unique solution of the system of integral equations:

uT (t) −
t∫

0

k(t − s)uT (s) ds = 1

yT (t) −
t∫

0

k(t − s)yT (s) ds = θ0(t)





(t ∈ [0, T ]) . (11)

Here, we have

k(t) := 6a
R2

∞∑
k=1

exp(−a(kπ
R

)2t) , (12)

θ0(t) := 6
R2

∞∑
k=1

1
(kπ)2

exp(−a(kπ
R

)2t) θ0 . (13)

The mapping u0
∨(t, T ) := ûT (t) is called a core of a Kuhn-Tucker function or, more precisely: a

global minimizer function. In the special case θ0 = 0 and, hence, θ0 ≡ 0, the variable yT ≡ 0
is the unique solution of the second equation from system (11). Hence, the representation (10)
of ûT simplifies and we observe (Krabs [28]):

uT (t) = 1 +
t∫

0

r(t − s) ds (t ∈ [0, T ]) , (14)

where
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r(t) :=
∞∑

κ=1

kκ(t) (t ∈ [0, T ]) , (15)

k1(t) := k(t) (cf. (12))

and

kκ(t) =
t∫

0

kκ−1(t − s)k(s) ds(t ∈ [0, T ], κ ∈ IN \ {1}). (16)

Tricomi [40] provides more information on the solution theory of integral equations. Related
qualitative or numerical aspects can be found in Gripenberg/Londen/Staffans [6], Hackbusch
[9] and Jörgens [15]. Concerning the heat equation and methods from the optimal control, we
also refer to Hackbusch [8]. Moreover, for Ptm further basic theory can be found in Krabs [26],
[29].

Inserting the optimal control variables (u =) ûT into the given problem Ptm leads to the
upper stage, given by the following generalized semi-infinite (GSI) optimization problem of
class C0, with x := T and y := t:

PGSI(f, g, v)






Min f(x) := x such that

± σσ0

uT
(R, y) + σ∗ ≥ 0 (y ∈ Y (x)),

x ≥ 0,

where Y (x) := [0, x] (x ∈ IR).






(17)

Here, g, u comprise the three or two continuous inequality constraints on x and y, respectively.
A similar way of (partially) representing Ptm by a generalized semi-infinite optimization
problem is done in Kaplan/Tichatschke [20]. The problem Ptm is an example of a so-called
terminal problem. For a first numerical treatment see the paper Kaplan/Tichatschke [21], which
also includes a convergence theorem.

From Krabs [28] we get the following second item:

Item 2 : Under the parameter constellation

θ0 = 0, d = σ∗(1−µ)
Eα

< |θE|,

PGSI(f, g, v) has precisely one optimal solution T̂ .

Then, the pair (T̂ , ûT̂ ) is the unique solution of the problem Ptm. Item 2 on PGSI(f, g, v)
is based on a monotonicity argumentation which ensures that the function

d̂(T ) := |d(T, θE)| − d (T ∈ [0,∞)) (18)

has a single zero, where

d(T, θE) := |θE |
uT (T )

. (19)
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2.2. Problem Treatment: the Basic Idea

Krabs [28] directs his attention to an approximate solution of the problems Pnm

T (T ∈ [0,∞))
of the lower stage. Now, we embed this approximation into an iterative concept of solving Ptm.
Remember that our approach can be interpreted as a two-stage optimization problem, where
PGSI(f, g, v) becomes treated, too. The functional data of this GSI problem are continuous,
but they need not be differentiable. Hence, in order to apply the approaches from Weber [42],
[43] or Pickl, Weber [35], we must approximate continuous data by C1-differentiable functions.
This will be done by means of approximate problems, defined by exchanging series (see, e. g.,
(12) – (13), (15)) by their νth partial sum (ν ∈ IN).

Another obstacle consists in the fact that, here, it is hard to verify or falsify boundedness and
EMFCQ for MGSI [g]. So, little structural or topological knowledge exists about the latter set.
If, however, the functional approximations lead to set approximations of MGSI [g] of topological
manifold character, then we could combine such a process (approximation) with our iteration
procedure from Weber [42] (or [43]). By this stepwise and levelwise process, Ptm becomes
described closer and closer.

Based on a presentation of an iterative concept, we are going to discuss these opportunities
of a stepwise (perturbational) approximation. For that purpose we choose the concept of
(equidistant) discretization, which extends from the GSI Approach I of Weber [42] (or [43])
to the whole two-stage problem with its two variables x and y. For a better understanding,
we give a short description of that approach (see also Weber [44]).

2.3. A General Iteration Concept and Its Foundations

GSI problems have the following form:

PGSI(f, h, g, u, v)






Minimize f(x) on MGSI [h, g], where

MGSI [h, g] := {x ∈ IRn | hi(x) = 0 (i ∈ I),

g(x, y) ≥ 0 (y ∈ Y (x)) }.

The semi-infinite character comes from the perhaps infinite number of elements of Y = Y (x),
while the generalized character is due to the x-dependence of Y (·). These latter index sets are
supposed to be feasible sets in the sense of f initely constrained (F) optimization, i. e.:

Y (x) = MF [u(x, ·), v(x, ·)] := { y ∈ IRq | uk(x, y) = 0 (k ∈ K), v`(x, y) ≥ 0 (` ∈ L)}
(x ∈ IRn).

Let h = (hi)i∈I , u = (uk)k∈K and v = (v`)`∈L comprise hi : IRn → IR, i ∈ I := {1, . . . , m}, uk :
IRn × IRq → IR, k ∈ K := {1, . . . , r}, and v` : IRn × IRq → IR, ` ∈ L := {1, . . . , s},
respectively. We assume that f : IRn → IR, g : IRn × IRq → IR, hi (i ∈ I), uk (k ∈ K) and
v` (` ∈ L) are continuously differentiable. We locally focus our attention by referring to a given
open, bounded set U0 ⊆ IRn. Here, we make the following assumptions on the lower stage (of
y):

Assumption AU0 : ∪
x∈U0 Y (x) is bounded (hence, by continuity, compact).

In generalized semi-infinite optimization, the feasible set need not be closed. However, the
following assumption guarantees closedness.

Assumption BU0 : For all x ∈ U0, the linear independence constraint qualifica-
tion (LICQ) is fulfilled for MF [u(x, ·), v(x, ·)]. This means, that the family of vectors
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Dyuk(x, y), k ∈ K, Dyv`(x, y), ` ∈ L0(x, y),

is linearly independent, where L0(x, y) := { ` ∈ L | v`(x, y) = 0 } consists of active indices.

By means of some differential topology (Hirsch [12], Jongen/Jonker/Twilt [17]), these
assumptions permit local linearization of Y (x) (x ∈ U0) by finitely many C1-diffeomor phisms
φj

x : Vj → Sj (j ∈ J) in such a way that the images Zj are x-independent squares (in
hyperplanes). Herewith, PGSI(f, h, g, u, v) becomes represented (in U0) by an ordinary semi-
infinite optimization problem POSI(f, h, g0, u0, v0) with feasible set MOSI [h, g0]∩U0 = MGSI [h, g]∩
U0. (For details see Weber [41], [43].)

We also need a constraint qualification on the upper stage (of x):

Definition. Let a point x ∈ MGSI [h, g] be given. We say that the extended Mangasarian-
Fromovitz constraint qualification (EMFCQ) is fulfilled at x, if the following conditions
EMF1, 2 are satisfied:
EMF1. The family of vectors Dhi(x), i ∈ I, is linearly independent.

EMF2. There exists an “EMF-vector” ζ ∈ IRn such that

Dhi(x) ζ = 0 for all i ∈ I,

Dxg
0
j (x, z) ζ > 0 for all z ∈ IRq, j ∈ J, with (φj

x)
−1(z) ∈ Y0(x),

where Y0(x) := { y ∈ Y (x) | g(x, y) = 0 } consists of active indices. EMFCQ is said to be
fulfilled for MGSI [h, g] on U0, if EMFCQ is fulfilled for all x ∈ MGSI [h, g] ∩ U0.

The following three theorems underline the importance of EMFCQ for establishing that
MGSI [h, g, u, v] := MGSI [h, g] is a topological manifold with boundary, it behaves continuous,
but also stable under perturbations of the defining functional data. With these perturbations
we remain inside of suitable open neighbourhoods of (h, g, u, v) in the sense of the strong or
Whitney topology C1

S that takes into account asymptotic effects. Concerning the Lipschitzian
condition of local linearizability (by Lipschitzian charts), upper and lower semi-continuity,
continuity (in the Hausdorff-metric), transversality (absense of tangentiality) and topological
stability (in the sense of homeomorphy) see Berge [2] and Weber [43].

Manifold Theorem (Weber [43]). Let EMFCQ be fulfilled in U0 for MGSI [h, g]. Then
there is an open neighbourhood W ⊆ IRn of U0 such that MGSI [h, g] ∩W is a Lipschitzian
manifold (with boundary) of the dimension n − m.

Continuity Theorem (Weber [42], [43]). Let EMFCQ be fulfilled in U0 for MGSI [h, g].
Moreover, let the closure W ⊆ IRn of some open set W ⊆ U0 be representable as a feasible
set from finitely constrained optimization which fulfills LICQ, and let the intersection of its
boundary ∂W with MGSI [h, g] be transversal. Then, there is an open C1

S-neighbourhood
O ⊆ (C1(IRn, IR))m × C1(IRn+q, IR) × (C1(IRn+q, IR))r × (C1(IRn+q, IR))s of (h, g, u, v) such
that M

W : (h̃, g̃, ũ, ṽ) 7→ MGSI [h̃, g̃, ũ, ṽ] ∩ W , is upper and lower semi-continuous at all
(h̃, g̃, ũ, ṽ) ∈ O.

If, moreover, W is bounded, then O can be chosen so that O is mapped to Pc(IR
n) by

M and M is continuous.

Stability Theorem (Weber [42], [43]). The feasible set MGSI [h, g] is topologically stable,
if and only if EMFCQ is fulfilled for MGSI [h, g].

In Approach I of Weber [42], [43] we discretize the x-independent squares Zj of inequality
constraints. Here, we take a regular grid, such that any two neighbouring points of the finitely
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many grid points zσ,ν are equidistant (in each step ν ∈ IN). Making the underlying grid
finer and finer, we arrive at a sequence of finitely constrained problems PF(f, h, g0,ν) (ν ∈
IN) which are easier to treat and have global minimizers x̂ν . Using Continuity Theorem and
Stability Theorem, we see that there exists a subsequence (x̂νκ)κ∈IN converging towards a global
minimizer x̂ of our given problem. (For more details and further approaches cf. Weber [43].)

2.4. Problem Treatment: an Explanation

Let us come back to the treatment of Ptm, interpreted as a two-stage problem. For our
approach, first numerical experience is done by Jathe/Pickl/Weber [14] using Mathematica
(cf. Kaufmann [24]). The computation bases on given (fixed) parameters a,R, α, µ, σ∗, θ0, θE,
and more technical (auxiliary) parameters of initialization and termination. These auxiliary
parameters are ν0, ν1, and νE (being sufficiently large, ν0 < ν1 < νE), mν0−1, c

0, ` 0, s0, ε0, εE,
and d (defined in the way of Item 2). Herewith, we have initialized the essence of a corresponding
“commented flow diagram”.

After the following basic considerations, we continue to present and explain the flow diagram
below.

We also can weaken the full discretization by means of referring to nondiscretized (here:
differentiable) approximate functions on the upper stage. If we rigorously simplified the model
functions, then this weakening would become a preferable alternative. For example, then we
could apply the nonlinear optimization subroutine Find Minimum of Mathematica on Lagrange
(penalty) functions or, alternatively, a quasi-Newton method for finding a zero of its gradient
(later on, see also (33)).

Let us come back to the preparation of our flow diagram. If we do not know whether
MGSI [g] is bounded, we introduce an upper bound Tmν−1

ν > 0 of (x =) T in each step ν,
where mν = 4ν−ν0

ν0 + 1 and Tmν−1
ν = 2ν−ν0

ν0. Let ν ∈ IN be already chosen appropriately
large, say ν ≥ ν0 with respect to some ν0 ∈ {4k | k ∈ IN} being divisible by 4. In other
words, we remain in the T -interval [0, Tmν−1

ν ] (or, to make a numerical differentiation later
on: in a bit larger interval [T−1

ν , Tmν
ν ]). This set becomes discretized and then, based on the grid

points T = T `
ν (` ∈ {−1, . . . , mν}), the (y =) t-interval Y (T ) = [0, T ] becomes analogously

discretized, too. Here, we are in a standard situation with natural coordinate transformation
φx : y 7→ z, where y = zT, z ∈ [0, 1]. Turning from step ν to step ν + 1, the considered
T -interval reaches a double size and a double finess of discretization.

Because of our discretization, the constraint T ≥ 0 on the upper stage will be satisfied
automatically. For the two other constraint functions gσ (σ ∈ {1, 2}) we need not distinguish
between index sets Y σ(T ), but refer to Y (T ) alone. Despite of some nice properties (e. g., the
reverse monotonicity behaviour of g1 and g2) the special properties from Weber [43], Chapters
1 and 3, (e. g., quasi concavity) are hard to verify here.

We shall study the geometry or topology of some approximate set MGSI [g
ν ]∩ (−∞, Tmν−1

ν ].
In the case of a manifold form we conclude EMFCQ for this set by using Manifold Theorem.

Using Krabs [28] and a convergence argumentation based on strictly monotonical decreasing
(invertibility), we easily prove the “approximate version” of Item 2. For an illustration see Fig. 2,
(a).

Item 3 : Under the parameter constellation from Item 2, the νth approximate problem
has precisely one optimal solution T̂ν for sufficiently large ν. For ν → ∞, the sequence of
solutions T̂ν tends to the desired (unique) solution T̂ of Ptm.
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In the general case of a parameter constellation, our iteration also analyzes the strictly
monotonical decreasing of a function T 7→ d̂ν(T ), which approximates T 7→ d̂(T ). We write in
short: d̂·,ν := d̂ν(·); see the illustration in Fig. 2, (b), (i) (Jathe/Pickl/Weber [14]). Herewith, we

study the zero sets of d̂·,ν and d̂(·). We get a better visualization and qualitative understanding
of MGSI [g] by raising the bound Tmν−1

ν with the factor 2 step by step.
Altogether, on the other hand, we wish to find (in certain steps) a smaller (sub)interval

that contains a solution T̂ . Finally, to hope to arrive at an approximate solution T̂ν ≈ T̂ of
the given problem Ptm (“ ≈ ” stands for nearby), where T̂ν lies in the zero set of d̂·,ν . In case
of such a successful interval adaption, the doubling of the interval size stops.
For the iteration process, we choose a mainly Lagrangian (penalty) way. This way is presented
below, and it also incorporates the (previously described) graphical and numerical evaluations
with respect to d̂T,ν .

The intimate relation between t and T (t ∈ [0, T ]) motivates a slightly modified variant

of Approach I (see Alternative (II) below). We have z`,j
ν := t

j
ν

T `
ν
, where tjν = T j

ν (j ∈ {0, . . . , `}).

Subsequently, we state both versions and indicate two further alternative variants. (Our notational
modifications with respect to Subsection 2.3 should not cause misunderstandings.)

Now, we define, calculate and visualize according to the following (commented) “flow
diagram”. We omit technicalities, e. g., smaller enumerating loops. For more information on
the (“discrete”) variables in (20) – (25) below, we refer to Kaiser/Krabs [19] (cf. also Tricomi
[40]). In a balanced way we consider both the usual (functional) notation of this work and
elements of Mathematica. (The causal sequel within the “flow” differs from Mathematica.)

Commented flow diagram (fixed parameters being given, alternatives implied):

Mark (A) ν = ν0 (initialization) :

cν0 := 4 , qν0 := 1 , pν0 := 1 ,

sν0 := s0 > 0 , εν0 := ε0 > 0 , and `ν0 := `0 (e. g., `0 := ν0) ,
mν0−1 := ν0

4
+ 1 ,

v
j

σ,ν0 := 1 (j ∈ {0, . . . , mν0−1 − 1}, σ ∈ {1, 2}) . Mark (B) ν ≥ ν0 (declarations,
recursion and adaptions) :

mν := cν · (mν−1 − 1) + 1,
(T =) T−1

ν := −2−ν+ν0

, (t =) t−1
ν := −2−ν+ν0

,

(T =) T `+1
ν := T `

ν + 2−ν+ν0

, (t =) t`+1
ν := t`ν + 2−ν+ν0

(` ∈ {−1, . . . , mν − 1}) .

(Subsequently, we especially refer to these discrete values of T and t.)

kν(t) := 6a
R2

ν∑
k=1

exp(−a(kπ
R

)2t) , (20)

kν,1(t) := kν(t) and (21a)

kν,κ(t) :=
t∫

0

kν,κ−1(t − s)kν(s) ds (κ ∈ IN \ {1}). (21b)

(Here, we apply a standard method from numerical integration; e. g., Krylov [31], or the
subroutine Integrate.) For the following approximate definitions (23), (25) (remember (11)),
the index T may be omitted in the variables uT,ν(t), yT,ν(t), respectively:

rν(t) :=
ν∑

κ=1

kν,κ(t) , (22)

uT,ν(t) := 1 +
t∫

0

rν(t − s) ds , (23)
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Fig. 2. Iteration procedure for solving Ptm (visualization, some examples):
(a) Under the parameter constellation from Item 2: Find the unique solution T̂ with the help of

stepwise minima T̂ν (see Item 3).
(b) General parametrical case:

(i) a function d̂·,ν (based on a numerical computation from Jathe/Pickl/Weber [14]),

(ii) graphs g0
σ,ν(·, z) and zeroes of functions g0

σ,ν(·, z) − α.
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θ0,ν(t) := 6
R2 (

ν∑
k=1

1
(kπ)2

exp(−a(kπ
R

)2t))θ0 , (24)

yT,ν(t) := θ0,ν(t) +
t∫

0

rν(t − s)θ0,ν(s) ds and, finally, (25)

dT,ν :=
|θE−yT,ν(T )|

uT,ν(T )
, (26)

d̂T,ν := |dT,ν | − d . (27)

Alternative (I): Up to a renumbering, about a quarter of all the points t the values

kν(t), θ0,ν(t) can recursively be determined from kν−1(t), θ0,ν−1(t). Hence, storing suitable
variables from the foregoing step, many calculations need not to be performed. Therefore, we
put

kν0−1(t) := 6a
R2

ν0−1∑
k=1

exp(−a(kπ
R

)2t), θ0,ν0−1(t) := 6
R2 (

ν0−1∑
k=1

1
(kπ)2

exp(−a(kπ
R

)2t))θ0,

kν(t) := kν−1(t) + 6a
R2 exp(−a(νπ

R
)2t), θ0,ν(t) := θ0,ν−1(t) + 6

(νπR)2
exp(−a(νπ

R
)2t)θ0

(ν ≥ ν0). ¤

We investigate the qualitative form of the graph of T 7→ d̂T,ν , especially its monotonicity
and, finally, its zeroes. Therefore, Newton’s method can be applied (see, e. g., Jongen/Triesch
[18]). Krabs [30] suggests regula falsi. Moreover, we visualize (plot) the graph in a figure and,
concerning monotonicity, we study the corresponding arithmetic mean 4d̂`

ν of the left and

right hand side difference quotients at T `
ν : 4d̂`

ν :=
d̂

T
`+1
ν ,ν

− d̂
T

`−1
ν ,ν

2−ν+ν0+1 . (One can make a case

study based on the nondifferentiable form of d̂·,ν ; see (18).) During the investigation, we
observe the behaviour of the sequence of zero sets. In particular we look for a limit set, perhaps
consisting of the singleton T̂ . Furthermore, we define

ûT,ν(t) :=
θE−yT,ν(T )

uT,ν(T )
· uT,ν(t) + yT,ν(t) (computation: together with (26)), (28)

σT,ν(t) := E·α
1−µ

·
(
θ0,ν(t) − ûT,ν(t) +

t∫
0

kν(t − s) · ûT,ν(s) ds
)

, (29)

g1,ν(T, t) := σT,ν(t) + σ∗, g1,ν(T, t) := −σT,ν(t) + σ∗, (30)

(z =) z`,j
ν := t

j
ν

T `
ν

(j ∈ {0, . . . , `}). (31)

Soon we shall evaluate functions g0
σ,ν(T, z) := gσ,ν(T, zT ) at T ∈ {T−1

ν , . . . , Tmν
ν } (σ ∈

{1, 2}).
First of all, we visualize the graph of g0

σ,ν(·, z) (referring to the numbers z from (31));
moreover, in view of the approximate (bounded) feasible set, we calculate and visualize the
zeroes of g0

σ,ν(·, z) − α for, e. g., α ∈ {−10,−9, . . . , 9, 10} ∪ {±1
2
,±1

4
,±1

8
,± 1

16
,± 1

32
}. An

illustration is given in Fig. 2, (b), (ii).
If we think that the approximate feasible set describes MGSI [g] in a sufficiently close way

and if ν ≥ ν1 holds, then we put cν+1 := 2. From this illustration we may (but need not) make
a conjecture, whether the properties EMFCQ and boundedness hold for MGSI [g]∩(−∞, Tmν−1

ν ].
Otherwise (in the case of no approximation), we put cν+1 := cν .
At certain steps ν, we adapt the iteration procedure. Our decision may on the one hand

be based on the insights about d̂T,ν and g0
σ,ν (for example, we redefine intervals with respect

to both their size and their fineness of decomposition). On the other hand, we may vary the
auxiliary parameters (according to Ptm perhaps also the fixed parameters; cf. mark (A)) and
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the values pν , qν , or we can turn to Alternative (I), or to the subsequent Alternatives (II),
(III). The variation of the parameters can be interpreted as a further entrance of parametric
programming or optimal control theory and its methods into this work.

Referring to T = T `
ν , we write shortly:

g0
σ,ν,`,j := gσ,ν(T, z`,j

ν T ) (= g0
σ,ν(T

`
ν , z

`,j
ν )) (j ∈ {0, . . . , `}) . (32)

Alternative (II): In Approach I, we originally discretize analogously with the help of

z`,j
ν := j−1

mν−1
(j ∈ {1, . . . , mν − 1} or, for numerical differentiation, j ∈ {0,mν}). As a result

we obtain functions g0,ν in the sense of Subsection 2.3. ¤

Motivated by Hestenes [10], [11], Powell [36] (referring to equality constraints) and modified
in the sense of Rockafellar [37] (referring to inequalities see Kaiser/Krabs [19] and Weber [43],
Remarks 3.1.6), now we mimic a “discretized” Lagrange function. Namely, in the sense of a
penalty method, we put:

L`
ν := T `

ν + 1
4sν

2∑
σ=1

∑̀
j=0

((max{0, vj
σ,ν − 2 sν g0

σ,ν,`,j})
2 − vj

σ,ν

2
),

` ∈ {0, . . . , mν − 1}. (33)

By comparing these nonnegative values we select a minimum `ν , which corresponds to the
point T `ν

ν :

`ν ∈ Arg min{L`
ν | ` ∈ {0, . . . , mν − 1}}. (34)

Alternative (III): Here, we exploit the information of the inequalities, given by their
approximate derivatives. Namely, we put the (arithmetic mean) difference quotient of the
smooth function g0

σ,ν(, z
`,j
ν ) at T `

ν by

4g0
σ,ν,`,j :=

g0
σ,ν,`+1,j − g0

σ,ν,`−1,j

2−ν+ν0+1
,

and then we define

4L`
ν := 1 +

2∑
σ=1

∑̀
j=0

max{0, vj
σ,ν − 2sνg

0
σ,ν,`,j}4g0

σ,ν,`,j (` ∈ {0, . . . , mν − 1}).

Then we ask whether there is an ` satisfying |4L`
ν | < εν . If this is not the case and ν+1 < νE,

then we may suitably adapt the penalty variable sν+1 := sν

2pν
to the control of convergence:

we put “ ν := ν + 1 ” and go back to the mark (B). Otherwise, we select a minimum `ν ∈
Arg min{|4L`

ν | | ` ∈ {0, . . . , mν − 1}}. ¤

The number T `ν
ν is given both as an numerical output and as a point inside a figure

(visualization). Of course, this output can be arranged just for a number of iteration steps ν.
If ν + 1 < νE or |d̂

T
`ν
ν ,ν

| > εν holds, then we could suitably define pν+1, qν+1 and we put

v
j
σ,ν+1 := max{0, vj

σ,ν − 2sνg
0
σ,ν,`ν ,j}, (35)

sν+1 := sν

2pν+1 , εν+1 := εν

2qν+1 , “ ν := ν + 1 ”; (36)
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afterwards we return to mark (B). Otherwise, the whole procedure stops.

In the case of |d̂
T

`ν
ν ,ν

| ≤ εν , we regard the number T `ν
ν (of the last step ν) as a satisfying

approximation of the desired minimum T̂ . This is an optimistic reservation. (Another approximate

candidate could be an expected lim inf of all forthcoming values T `ν̃

ν̃ , assuming that the
procedure continues running.) ♦

If, furthermore, in the limit of ν̃ (imagining ν̃ → ∞) we suppose EMFCQ and boundedness
to hold for MGSI [g], then the heuristic (optimistic) approximation reservation, made at the
termination of our iteration, is supported by the theory of Approach I. (Remember the stepwise
arising question on the validity of EMFCQ and boundedness, and the iteration procedure
of Approach I. This approach was presented in Subsection 2.3, based on the a topological
study.) For that purpose, we choose a sufficiently large parameter νE. However, in the present
Subsection 2.4, our main Lagrangian (penalty) approach also evaluates the F optimization
problems which result from Approach I with its discretization on the lower stage. For more
information on the corresponding numerical obstacles in F optimization see Spellucci [39].
We also remember the reflection under absence of a discretized upper stage, where different
subroutines may be applied on the (less complex) GSI optimization problem.
Another opportunity for insights is established by the additional (parallel) approach from the
values d̂T,ν̃ (ν̃ ≥ ν0). In the case of the parameter constellation from Item 2, we indeed have
an existence and convergence theory (see Item 3).

2.5. Further Evaluations

Until now, we studied the structure and numerical treatment of our control problem Ptm.
Existence and convergence results were stated (Items 1 – 3) and a (commented) flow
diagram was presented. Moreover, we expoited relations to generalized semi-infinite optimization
and discussed alternatives and obstacles. Further difficulties will be noted below. For an illustration
and a numerical evaluation see Fig. 2, and for further information cf. Weber [43].

From foregoing reflections we learn that in such a concrete problem there may be obstacles
(frontiers) in applying iteration procedures, resulting from lacking structural knowledge of the
feasible set MGSI [g] (here I = ∅). In our iteration procedure, given above in the flow diagram,
a great algorithmical effort (a lot of operations) has to be performed in order to overcome these
structural frontiers. Errors can happen in the course of the procedure by accumulation of
roundings (sensitivity).

However, we also remember the treatments, or adaptions, stated above in Alternatives
(I) – (III), by studying the mappings T 7→ d̂T,ν , T 7→ g0

σ,ν(T, z) and by varying auxiliary
parameters and variables. For our present concrete, but structurally complex problem, some
further practical treatments from GSI optimization may turn out to be helpful again.

Namely, in order to get an idea how MGSI [g] looks like and whether EMFCQ is fulfilled,
we can utilize (vectors of) pseudo-random numbers (Eichenauer-Herrmann [4]). Hereby, we
obtain more information on structures of (in)feasibility. We also mention Karger [22], [23] on
randomization in graph (or matroid) optimization problems. In a forthcoming article, we return
to pseudo-random numbers from the viewpoint of random graphs which admit insights being
related to the Morse theory (see also Weber [43]). Concerning the diagnosing of infeasibilies
we refer to Aggarwal/Ahuja/Hao/Orlin [1] on certain discrete optimization problems. (For the
continuous case see Kearfott [25].) Furthermore, we refer to methods from reverse engineering
(Elsässer [5], Hoschek/Dankwort [13]), image restoration (Noll [33]), discrete tomography (Gritzmann
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[7]) and discrete topology (Rozvany [38]). These methods approximately describe or visualize a
manifold or a structure based on discrete data.

In this way we have widened our scope from continuous problems of invertibility and
reconstruction in optimal control and GSI optimization (Weber [43]) to discrete inverse problems.

3. Conclusion

In this article, we presented, analyzed and algorithmically treated an optimal control problem
from time-minimal heating (or cooling). First systematical analysis and evaluation was done by
Krabs. Our research additionally utilized an approach from generalized semi-infinite optimization,
and we discussed the wide field of alternative methods, structural obstacles and related mathematical
techniques. Hereby, we finally took into consideration stochastic and discrete features and
methods.

Treating the heating problem in terms of a general model is very hard, such that rigorous
utilization of the topological, geometrical or intrinsic combinatorial character of the specialized
real-world problem is undispensable.

In the sense of these reflections, our heating problem remains an interesting subject of future
reserach from both the theoretical and numerical viewpoint.

Acknowledgement. The authors thank Prof. Dr. Werner Krabs and Prof. Dr. Yurii Shokin
for support, and Dipl.-Math. Susanne Mock for technical help.
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[5] Elsässer B. Approximation mit rationalen B-Spline Kurven und Flächen. Doctoral
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