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Introduction

Problems with interior and boundary layers of various types are widely encountered in various
fields of science and engineering, in particular in gas- and hydrodynamics, elasticity theory,
chemistry and biology. Due to this layer phenomenon, developing uniformly convergent
algorithms for solving such problems is a challenging task. Numerical grids provide resources
which can significantly reduce the adverse effects of layers on the accuracy of numerical
experiments. Efficient application of these resources requires detailed knowledge of the layers
themselves — their types and structures; situations in which they occur; and the means to
combat them, in particular, the rules for grid clustering in layers (see [1]).

Turning-point problems are considered important in practical applications. Some ex-
amples of turning-point problems and analytical and numerical aspects of their study are
discussed in reviews [1–3], and books [4–7]. Analytical and numerical treatment of turning-
point problems is more complicated than that problems without turning-point. In particular,
it is not always possible to decompose a solution into regular and singular components to
find estimates of the solution derivatives, since the reduced problem may be ill-posed. Thus,
even though the reduced problem does not depend on a small parameter, the values of
the regular component and/or its derivatives may be unbounded. Some special techniques
for obtaining estimates of the derivatives of solutions to turning-point problems are shown
in [1, 4, 5, 8–11], and in this paper.
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The present paper discusses the following problem with two small parameters 𝜀 and 𝜇:

𝐿[𝑢] ≡ −𝜀𝑢′′ + 𝜇𝑎(𝑥)𝑢′ + 𝑓(𝑥, 𝑢) = 0, 0 < 𝑥 < 1,
Γ[𝑢] ≡ [𝑢(0, 𝜀, 𝜇), 𝑢(1, 𝜀, 𝜇)] = (𝐴0, 𝐴1),

(1)

where 1 > 𝜀 > 0, 1 > 𝜇 > 0, 𝑎(𝑥) ∈ 𝐶𝑛[0, 1], 𝑓(𝑥, 𝑢) ∈ 𝐶𝑛,𝑛+1([0, 1]× 𝑅), 𝑓𝑢(𝑥, 𝑢) ≥ 𝑐1 > 0,
(𝑥, 𝑢) ∈ [0, 1]×𝑅.

The linear case of this problem with two small parameters 𝜀 and 𝜇, but without turning
points (𝑎(𝑥) ̸= 0), was initially analysed theoretically using the expansion technique in [12].
A quasi-linear problem with two small parameters 𝜀 and 𝜇 = 𝜀𝑝, 𝑝 > 1 was analysed
theoretically and numerically in [11, 13]. These papers also provide an introduction to areas
of application of such problems. Linear problems without turning points with arbitrarily
small parameters 𝜀 and 𝜇 have been analysed in [14–16], and in many others.

The present paper discusses the semi-linear problem (1), with an arbitrary coefficient 𝑎(𝑥)
and without any relation between the parameters 𝜀 and 𝜇.

1. Estimates of derivatives

This section describes estimates of solution derivatives for a two-point boundary-value prob-
lem (1).

1.1. Preliminary estimates

It is well known that the pair (𝐿,Γ) in (1) is inverse-monotone, i. e., if for two functions 𝑢(𝑥)
and 𝑣(𝑥), 0 ≤ 𝑥 ≤ 1,

(𝐿,Γ)[𝑢] ≤ (𝐿,Γ)[𝑣], 0 ≤ 𝑥 ≤ 1, then 𝑢(𝑥) ≤ 𝑣(𝑥), 0 ≤ 𝑥 ≤ 1.

This results in 𝜀-uniform bounds on a solution 𝑢(𝑥, 𝜀, 𝜇) to (1):

|𝑢(𝑥, 𝜀, 𝜇)| ≤𝑀, 0 ≤ 𝑥 ≤ 1. (2)

In this equation and hereafter, by𝑚,𝑀 , 𝑚𝑖,𝑀𝑗 we designate positive constants independent
of 𝜀 and 𝜇.

If 𝜇 is small enough, namely,

𝑛𝜇𝑎′(𝑥) + 𝑐(𝑥) ≥ 𝑐 > 0, 0 ≤ 𝑥 ≤ 1, (3)

for some 𝑐 > 0, then according to [8] for a linear case and [4] for a semi-linear case, we have
that

|𝑢(𝑖)(𝑥, 𝜀, 𝜇)| ≤𝑀, 0 < 𝑚 ≤ 𝑥 ≤ 1−𝑚 < 1, 𝑖 ≤ 𝑛+ 1, (4)

for any constant 0.5 > 𝑚 > 0. On the other hand, if 𝑥0 is an interior turning point and
𝑘𝜇𝑎′(𝑥0) + 𝑐 ≤ 0, 𝑘 ≤ 𝑛 + 1, i. e., 𝜇 is not a small parameter, then in the vicinity of 𝑥0 we
have the following estimate (see [8] and [4, p. 90]):

|𝑢(𝑘)(𝑥, 𝜀, 𝜇)| ≤𝑀
[︀
(𝜀1/2 + |𝑥− 𝑥0|)𝛼−𝑘 + 1

]︀
, |𝑥− 𝑥0| ≤ 𝑚,

for 𝑘 ≤ 𝑛+ 1, 0 < 𝛼 < 𝜇|𝑎′(𝑥0)|/𝑐(𝑥0), and some 𝑚 > 0. Detailed estimates of the solution
derivatives of problem (1) when (3) does not hold are given in [17].

We further assume that 𝜇 obeys constraint (3), and therefore solutions to (1) with any
𝑎(𝑥) can have only boundary layers. It is likely that a solution outside the boundary points
is close to the solution of the reduced equation 𝑓(𝑥, 𝑢) = 0, while near the boundaries it
changes abruptly to satisfy the boundary conditions.
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1.2. Estimates of solution derivatives near boundary turning points

This section uses an approach based on barrier functions to obtain estimates of solution
derivatives near turning points.

Near the turning point 𝑥 = 0, i. e., when 𝑎(0) = 0, we have

|𝑢(𝑖)(𝑥, 𝜀)| ≤𝑀𝜀−𝑖/2, 0 ≤ 𝑥 ≤ 𝑚𝜀1/2, 𝑖 ≤ 𝑛+ 1. (5)

To prove (5), we use estimate (2) to conclude that in the interval [0, 𝛿] there exists a point
𝑥0 such that |𝑢′(𝑥0, 𝜀, 𝜇)| ≤ 𝑀/𝛿, where 𝑢(𝑥, 𝜀, 𝜇) is a solution to (1). By integrating the
equation (1) from 𝑥0 to 𝑥 ∈ [0, 𝛿], we get

|𝑢′(𝑥, 𝜀, 𝜇)| ≤ |𝑢′(𝑥0, 𝜀, 𝜇)|+
1

𝜀

⃒⃒⃒⃒
⃒⃒

𝑥∫︁
𝑥0

[𝜇𝑎(𝑥)𝑢′(𝑥, 𝜀, 𝜇) + 𝑓(𝑥, 𝑢(𝑥, 𝜀, 𝜇))]𝑑𝑥

⃒⃒⃒⃒
⃒⃒ ≤

≤ 𝑀

𝛿
+

1

𝜀

⃒⃒
𝜇𝑎(𝑥)𝑢(𝑥, 𝜀, 𝜇)|𝑥𝑥0

⃒⃒
+

1

𝜀

⃒⃒⃒⃒
⃒⃒

𝑥∫︁
𝑥0

−𝜇𝑎′(𝑥)𝑢(𝑥, 𝜀, 𝜇) + 𝑓(𝑥, 𝑢(𝑥, 𝜀, 𝜇))𝑑𝑥

⃒⃒⃒⃒
⃒⃒ ≤

≤𝑀(1/𝛿 + 𝜇𝛿/𝜀+ 𝛿/𝜀) ≤𝑀𝜀−1/2,

(6)

when 𝛿 = 𝑚𝜀1/2, where 𝑚 is an arbitrary positive constant. By using (1), we get estimate (5)
for 𝑖 > 1.

Similarly, in the vicinity of the boundary turning point 𝑥 = 1, we have

|𝑢(𝑖)(𝑥, 𝜀)| ≤𝑀𝜀−𝑖/2, 0 ≤ 1− 𝑥 ≤ 𝑚𝜀1/2, 𝑖 ≤ 𝑛+ 1.

To estimate the derivatives of 𝑢(𝑥, 𝜀, 𝜇) on the interval [0,𝑚], 0 < 𝑚 < 1, we introduce an
operator

𝐿𝑖[𝑣] ≡ −𝜀𝑣′′ + 𝜇𝑎(𝑥)𝑣′ + [𝑓𝑣(𝑥, 𝑣) + 𝑖𝜇𝑎′(𝑥)] 𝑣, 𝑖 ≤ 𝑛+ 1. (7)

Since (3), the pair (𝐿𝑖,Γ) is inverse monotone on the interval 0 ≤ 𝑥 ≤ 1.

1.2.1. Estimates of the first derivative

Case 𝑎(0) = 0, 𝑎′(0) ≤ 0. In this case, to estimate the derivatives of 𝑢(𝑥, 𝜀, 𝜇) on the
interval [0,𝑚], 0 < 𝑚 < 1, we use the barrier function

𝑑𝑖(𝑥, 𝜀, 𝜇) =𝑀1𝜀
−𝑖/2 exp(−𝑏𝑥/𝜀1/2) +𝑀2, 0 < 𝑏 <

√
𝑐, 0 ≤ 𝑥 ≤ 𝑚 < 1. (8)

We have

𝐿1[𝑑1](𝑥, 𝜀, 𝜇) = 𝑀1𝜀
−1/2 exp(−𝑏𝑥/𝜀1/2)[−𝑏2 − 𝑏𝜇𝜀−1/2𝑎(𝑥) + 𝑓𝑢(𝑥, 𝑢) + 𝜇𝑎′(𝑥)]+

+ 𝑀2[𝑓𝑢(𝑥, 𝑢) + 𝜇𝑎′(𝑥)].
(9)

In the case 𝑎(0) = 0, 𝑎′(0) = 0, we have |𝑎(𝑥)| ≤ 𝑚1𝑥
2, 0 ≤ 𝑥 ≤ 1, for some 𝑚1 > 0, and

so
𝜀−1 exp(−𝑏𝑥/𝜀1/2)𝑏𝜇|𝑎(𝑥)| ≤ 𝑚2𝜇, 0 ≤ 𝑥 ≤ 1, (10)

for some 𝑚2 > 0. Therefore, taking into account (3), (4), (6), and (9), we conclude that
there exist constants 𝑀1 > 0 and 𝑀2 > 0 in (8) such that

𝑑1(0, 𝜀, 𝜇) ≥ |𝑢′(0, 𝜀, 𝜇)|, 𝑑1(𝑚, 𝜀, 𝜇) ≥ |𝑢′(𝑚, 𝜀, 𝜇)|, 0 < 𝑚 < 1, 0 < 𝑏 <
√
𝑐,

𝐿1[𝑑1](𝑥, 𝜀, 𝜇)≥𝐿1[𝑢
′](𝑥, 𝜀, 𝜇)=−𝑓𝑥(𝑥, 𝑢)≥𝐿1[−𝑑1](𝑥, 𝜀, 𝜇), 0≤𝑥≤𝑚<1, 0<𝑏<

√
𝑐.

(11)
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These relations yield the estimate

|𝑢′(𝑥, 𝜀, 𝜇)| ≤𝑀 [𝜀−1/2 exp(−𝑏𝑥/𝜀1/2) + 1], 0 ≤ 𝑥 ≤ 𝑚 < 1, (12)

when 𝑎(0) = 0, 𝑎′(0) = 0, where 𝑏 is an arbitrary constant independent of 𝜀 and 𝜇 satisfying
0 < 𝑏 <

√
𝑐.

In the case 𝑎(0) = 0, 𝑎′(0) < 0, we have 𝑎′(𝑥) < 0, 0 ≤ 𝑥 ≤ 𝑚3, for some 𝑚3 > 0, and
so relations (11), and consequently estimates (12), are valid for 0 ≤ 𝑥 ≤ 𝑚3. Taking into
account (4), the estimates are valid for 0 ≤ 𝑥 ≤ 𝑚 < 1.

Case 𝑎(0) = 0, 𝑎′(0) > 0, 𝜇 ≤ 𝜀1/2. In this case we also have estimate (10) as well as
the relations (11), and consequently estimate (12).

Case 𝑎(0) = 0, 𝑎′(0) > 0, 𝜇 ≥ 𝜀1/2. To estimate the solution derivatives in this case,
we introduce the barrier function

𝑣𝑖(𝑥, 𝜀, 𝜇) =𝑀1
𝜀𝛼/2

(𝜀1/2 + 𝑥)𝛼+𝑖
+𝑀2, 𝛼 > 0. (13)

We have

𝐿1[𝑣1](𝑥, 𝜀, 𝜇) =𝑀1
𝜀𝛼/2

(𝜀1/2 + 𝑥)𝛼+1

(︂
−𝜀(𝛼 + 1)(𝛼 + 2)

(𝜀1/2 + 𝑥)2
− (𝛼 + 1)𝜇𝑎(𝑥)

𝜀1/2 + 𝑥
+ 𝑓𝑢(𝑥, 𝑢) + 𝜇𝑎′(𝑥)

)︂
+

+𝑀2[𝑓𝑢(𝑥, 𝑢) + 𝜇𝑎′(𝑥)].

Since

−𝜀(𝛼 + 1)(𝛼 + 2)

(𝜀1/2 + 𝑥)2
− (𝛼 + 1)𝜇𝑎(𝑥)

𝜀1/2 + 𝑥
+ 𝑓𝑢(𝑥, 𝑢) + 𝜇𝑎′(𝑥) > 0, 𝑥 ≥𝑀0𝜀

1/2

for some 𝑀0 > 0, therefore, for sufficiently large 𝑀1 and 𝑀2 in (13), we obtain

𝐿1[𝑣1](𝑥, 𝜀, 𝜇) ≥ 𝐿1[𝑢
′](𝑥, 𝜀, 𝜇) ≥ 𝐿1[−𝑣1](𝑥, 𝜀, 𝜇), 𝑀0𝜀

1/2 ≤ 𝑥 ≤ 𝑚 < 1,
𝑣1(𝑀0𝜀

1/2, 𝜀, 𝜇) ≥ |𝑢′(𝑀0𝜀
1/2, 𝜀, 𝜇)|, 𝑣1(𝑚, 𝜀, 𝜇) ≥ |𝑢′(𝑚, 𝜀, 𝜇)|, 0 < 𝑚 < 1.

Thus,

|𝑢′(𝑥, 𝜀, 𝜇)| ≤𝑀

(︂
𝜀𝛼/2

(𝜀1/2 + 𝑥)𝛼+1
+ 1

)︂
, 𝛼 > 0, 𝑀0𝜀

1/2 ≤ 𝑥 ≤ 𝑚 < 1,

and from (5) we have that this estimate is valid for 0 ≤ 𝑥 < 𝑚 < 1, i. e.,

|𝑢′(𝑥, 𝜀, 𝜇)| ≤𝑀

(︂
𝜀𝛼/2

(𝜀1/2 + 𝑥)𝛼+1
+ 1

)︂
, 𝛼 > 0, 0 ≤ 𝑥 ≤ 𝑚 < 1,

for any 𝛼 > 0.

1.2.2. Estimates of higher derivatives

Estimates near the boundary turning point 𝑥 = 0. Extending the approach discussed
above for 𝑖 = 1 by using for 𝑖 > 1 the operators 𝐿𝑖, the estimate (5), the corresponding
barrier functions 𝑑𝑖(𝑥, 𝜀, 𝜇) and 𝑣𝑖(𝑥, 𝜀, 𝜇), and the estimates of the solution derivatives for
𝑗 < 𝑖, we easily obtain the following estimates near the boundary turning point 𝑥 = 0:

|𝑢(𝑖)(𝑥, 𝜀, 𝜇)| ≤𝑀 [𝜀−𝑖/2 exp(−𝑏𝑥/𝜀1/2) + 1], 0 ≤ 𝑥 ≤ 𝑚 < 1, 0 < 𝑏 <
√
𝑐, (14)
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if 1 : 𝑎(0) = 0, 𝑎′(0) ≤ 0, or 2 : 𝑎(0) = 0, 𝑎′(0) > 0, 𝜇 ≤ 𝜀1/2, and also

|𝑢(𝑖)(𝑥, 𝜀, 𝜇)| ≤𝑀

(︂
𝜀𝛼/2

(𝜀1/2 + 𝑥)𝛼+𝑖
+ 1

)︂
, 𝛼 > 0, 0 ≤ 𝑥 ≤ 𝑚 < 1, (15)

for any 𝛼 > 0, if 𝑎(0) = 0, 𝑎′(0) > 0, 𝜇 ≥ 𝜀1/2, and so in the last case the solution has
a power-of-type-1 boundary layer.

Note that if 𝜂 > 0 is a small parameter, then

𝜂−𝑖 exp(−𝑏𝑥/𝜂) ≤𝑀

(︂
𝜂𝛼

(𝜂 + 𝑥)𝛼+𝑖
+ 1

)︂
, 0 ≤ 𝑥 ≤ 1, (16)

for an arbitrary 𝛼 > 0, 𝑏 > 0 and some 𝑀 > 0, where 𝑏, 𝛼, and 𝑀 are independent of 𝜂.
Thus, from (14)–(16) we get a compact formula in the case 𝑎(0) = 0, assuming in (16) that
𝜂 = 𝜀1/2,

|𝑢(𝑖)(𝑥, 𝜀, 𝜇)| ≤𝑀

(︂
𝜀𝛼/2

(𝜀1/2 + 𝑥)𝛼+𝑖
+ 1

)︂
, 0 ≤ 𝑥 ≤ 𝑚 < 1, (17)

for an arbitrary 𝛼 > 0.
Estimates near the boundary turning point 𝑥 = 1. It is obvious that the solution

derivatives near the boundary turning point 𝑥 = 1 (𝑎(1) = 0) are estimated through the
formulas obtained from (14) and (15) by substituting 1− 𝑥 for 𝑥, namely,

|𝑢(𝑖)(𝑥, 𝜀, 𝜇)| ≤𝑀 [𝜀−𝑖/2 exp(−𝑏(1− 𝑥)/𝜀1/2) + 1], 0 ≤ (1− 𝑥) ≤ 𝑚 < 1, 0 < 𝑏 <
√
𝑐,

if 1 : 𝑎(1) = 0, 𝑎′(1) ≤ 0, or 2 : 𝑎(1) = 0, 𝑎′(1) > 0, 𝜇 ≤ 𝜀1/2;

|𝑢(𝑖)(𝑥, 𝜀, 𝜇)| ≤𝑀

(︂
𝜀𝛼/2

(𝜀1/2 + 1− 𝑥)𝛼+𝑖
+ 1

)︂
, 𝛼 > 0, 0 ≤ (1− 𝑥) < 𝑚 < 1,

for any 𝛼 > 0 if 𝑎(1) = 0, 𝑎′(1) > 0, 𝜇 ≥ 𝜀1/2.
Similarly to (17), we have the following compact formula in the case 𝑎(1) = 0:

|𝑢(𝑖)(𝑥, 𝜀, 𝜇)| ≤𝑀

(︂
𝜀𝛼/2

(𝜀1/2 + 1− 𝑥)𝛼+𝑖
+ 1

)︂
, 0 ≤ (1− 𝑥) ≤ 𝑚 < 1, (18)

for an arbitrary 𝛼 > 0.

1.3. Estimates near non-turning boundary points

Estimates of solution derivatives near non-turning boundary points have been obtained in
many papers, e. g., for nonlinear equations with 𝜇 = 𝜀1+𝑝 in [13, 18]; for linear equations
with 𝑎(𝑥) < 0 in [19]; while with 𝑎(𝑥)>0 in [20]. A popular approach to obtaining estimates
of solution derivatives for linear equations without turning points is based on certain char-
acteristic equations (see for example [20]), but it is questionable whether this approach is
appropriate in the case of semi-linear equations or interior turning points. We present here
estimates near a non-turning boundary point 𝑥0 in the most general semi-linear case and
without any restrictions on 𝑎(𝑥), 𝑥 ̸= 𝑥0, obtained by the barrier-function approach.

In the neighbourhood of the non-turning boundary point 𝑥=0 (𝑎(0) ̸=0) we get, similarly
to (6),

|𝑢′(𝑥, 𝜀, 𝜇)| ≤𝑀(1/𝛿 + 𝜇/𝜀+ 𝛿/𝜀),
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yielding

|𝑢′(𝑥, 𝜀, 𝜇)| ≤𝑀

{︂
𝜇/𝜀, 𝜇 ≥ 𝜀1/2, 0 ≤ 𝑥 ≤ 𝑚𝜀/𝜇,
𝜀−1/2, 𝜇 ≤ 𝜀1/2, 0 ≤ 𝑥 ≤ 𝑚𝜀1/2.

This estimate is readily generalized to 𝑖 ≤ 𝑛+ 1:

|𝑢(𝑖)(𝑥, 𝜀, 𝜇)| ≤𝑀

{︂
(𝜇/𝜀)𝑖, 𝜇 ≥ 𝜀1/2, 0 ≤ 𝑥 ≤ 𝑚𝜀/𝜇,
𝜀−𝑖/2, 𝜇 ≤ 𝜀1/2, 0 ≤ 𝑥 ≤ 𝑚𝜀1/2,

(19)

when 𝑎(0) ̸= 0.

1.3.1. Case 𝑎(0) > 0, 𝜇 ≥ 𝜀1/2

We will use here the following resolution of (1) with respect to 𝑢′(𝑥, 𝜀, 𝜇):

𝑢′(𝑥, 𝜀, 𝜇)=exp[𝜑(𝑥0, 𝑥, 𝜀, 𝜇)]

⎛⎝𝑢′(𝑥0, 𝜀, 𝜇)+𝜀−1

𝑥∫︁
𝑥0

exp[−𝜑(𝑥0, 𝜉, 𝜀, 𝜇)]𝑓 [𝜉, 𝑢(𝜉, 𝜀, 𝜇)]d𝜉

⎞⎠, (20)

where

𝜑(𝜉, 𝑥, 𝜀, 𝜇) = 𝜀−1

𝑥∫︁
𝜉

𝜇𝑎(𝜂)d𝜂.

Note that (20) is held for an arbitrary point 𝑥0 in [0, 1].
As 𝑎(0) > 0, so 𝑎(𝑥) ≥ 𝑚, 0 ≤ 𝑥 ≤ 𝑚 for some 𝑚 > 0, and therefore,

𝜑(𝜉, 𝑥, 𝜀, 𝜇) ≥ 𝑚𝜇(𝑥− 𝜉)/𝜀, 0 ≤ 𝜉 ≤ 𝑥 ≤ 𝑚.

Thus, taking into account estimates (4), (5), and (19) in (20) for 𝑖 = 1, we obtain

|𝑢′(𝑥, 𝜀, 𝜇)| ≤ |𝑢′(𝑚, 𝜀, 𝜇)| exp[𝜑(𝑚,𝑥, 𝜀, 𝜇)]+𝑀𝜀−1

𝑥∫︁
𝑚

exp[𝑚𝜇(𝜉−𝑥)/𝜀]d𝜉≤𝑀𝜇−1, 0≤𝑥≤𝑚.

Sequentially differentiating 𝑖 times the equation in (1), resolving the corresponding (𝑖+ 1)th

derivative in the form (20), and using estimates of derivatives for 𝑗 < 𝑖, we obtain the
estimates

|𝑢(𝑖)(𝑥, 𝜀, 𝜇)| ≤𝑀𝜇−𝑖, 0 ≤ 𝑥 ≤ 𝑚 < 1, (21)

which are more accurate than estimate (19) for 𝜇 ≥ 𝜀1/2.
For estimating solution derivatives in the case 𝑎(0) > 0, 𝜇 ≥ 𝜀1/2, we introduce the

barrier function

𝑧𝑖(𝑥, 𝜀, 𝜇) =𝑀1𝜇
−𝑖 exp(−𝑏𝑥/𝜇) +𝑀2, 0 ≤ 𝑥 ≤ 𝑚 < 1.

We get

𝐿1[𝑧1](𝑥, 𝜀, 𝜇) =𝑀1𝜇
−1 exp(−𝑏𝑥/𝜇)[−𝑏2𝜀/𝜇2−𝑏𝑎(𝑥)+𝑓𝑢(𝑥, 𝑢)+𝜇𝑎′(𝑥)]+𝑀2[𝑓𝑢(𝑥, 𝑢)+𝜇𝑎

′(𝑥)],

thus, if 𝑐− 𝑏(𝑏(𝜀/𝜇2) + 𝑎(0)) > 0, then

𝐿1[𝑧1](𝑥, 𝜀, 𝜇) ≥ |𝐿1[𝑢
′](𝑥, 𝜀, 𝜇)|, 0 ≤ 𝑥 ≤ 𝑚3
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and

𝑧1(0, 𝜀, 𝜇) ≥ |𝑢′(0, 𝜀, 𝜇)|, 𝑧1(𝑚3, 𝜀, 𝜇) ≥ |𝑢′(𝑚3, 𝜀, 𝜇)|,

for some 𝑚3 > 0, 𝑀1 > 0, and 𝑀2 > 0 and, consequently, we have

|𝑢′(𝑥, 𝜀, 𝜇)| ≤𝑀 [𝜇−1 exp(−𝑏𝑥/𝜇) + 1], 0 ≤ 𝑥 ≤ 𝑚3,

where 𝑏 is an arbitrary positive constant satisfying 𝑐 − 𝑏((𝜀/𝜇2)𝑏 + 𝑎(0)) > 0, in particular
when 𝑐− 𝑏(𝑏+𝑎(0)) > 0; and from (5) we have that this estimate is valid for 0 ≤ 𝑥 < 𝑚 < 1.

Extending this process for 𝑖 > 1 by using the operator 𝐿𝑖 from (7), barrier function 𝑧𝑖,
and applying estimates (4) and (21), we obtain, in the same manner,

|𝑢(𝑖)(𝑥, 𝜀, 𝜇)| ≤𝑀(𝜇−𝑖 exp(−𝑏𝑥/𝜇) + 1), 0 ≤ 𝑥 < 𝑚 < 1, (22)

for 𝑏 satisfying 𝑐− 𝑏(𝑏+ 𝑎(0)) > 0.

1.3.2. Case 𝑎(0) < 0, 𝜇 ≥ 𝜀1/2

To estimate the derivatives of the solution in this case, we introduce the barrier function

𝑤𝑖(𝑥, 𝜀, 𝜇) =𝑀1(𝜇/𝜀)
𝑖 exp(−𝜇𝑏𝑥/𝜀) +𝑀2, 0 ≤ 𝑥 ≤ 𝑚 < 1.

Using the operator (7) for 𝑖 = 1, we get

𝐿1[𝑤1](𝑥, 𝜀, 𝜇) = 𝑀1(𝜇/𝜀) exp(−𝜇𝑏𝑥/𝜀)[−𝑏2(𝜇2/𝜀)− 𝑏(𝜇2/𝜀)𝑎(𝑥) + 𝑓𝑢(𝑥, 𝑢) + 𝜇𝑎′(𝑥)]+
+ 𝑀2[𝑓𝑢(𝑥, 𝑢) + 𝜇𝑎′(𝑥)].

Then, for 𝑏 satisfying 𝑐−(𝜇2/𝜀)𝑏(𝑏+𝑎(0)) > 0, in particular since 𝑎(0) < 0 for 0 < 𝑏 < −𝑎(0),
we have, using (2) and (19) for 𝑖 = 1,

𝐿1[𝑤1](𝑥, 𝜀, 𝜇) ≥ |𝐿1[𝑢
′](𝑥, 𝜀, 𝜇)|, 0 ≤ 𝑥 ≤ 𝑚0,

and

𝑤1(0, 𝜀, 𝜇) ≥ |𝑢′(0, 𝜀, 𝜇)|, 𝑤1(𝑚0, 𝜀, 𝜇) ≥ |𝑢′(𝑚0, 𝜀, 𝜇)|,

for sufficiently large 𝑀1 and 𝑀2 when 0 ≤ 𝑥 ≤ 𝑚0 for some 𝑚0 > 0. These relations and (4)
yield the estimate

|𝑢′(𝑥, 𝜀, 𝜇)| ≤𝑀(𝜇/𝜀 exp(−𝜇𝑏𝑥/𝜀) + 1), 0 ≤ 𝑥 ≤ 𝑚 < 1,

when 𝑎(0) < 0, 𝜇 ≥ 𝜀1/2, 0 < 𝑏 < −𝑎(0).
Further, using sequentially the barrier function 𝑤𝑖, operator 𝐿𝑖, and estimates (19)

and (4), we obtain

|𝑢(𝑖)(𝑥, 𝜀, 𝜇)| ≤𝑀((𝜇/𝜀)𝑖 exp(−𝜇𝑏𝑥/𝜀) + 1), 0 ≤ 𝑥 ≤ 𝑚 < 1, (23)

when 𝑎(0) < 0, 𝜇 ≥ 𝜀1/2, 0 < 𝑏 < −𝑎(0).
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1.3.3. Case 𝑎(0) ̸= 0, 𝜇 ≤ 𝜀1/2

To estimate the derivatives of the solution in this case, we introduce the barrier function

𝜓𝑖(𝑥, 𝜀, 𝜇) =𝑀1𝜀
−𝑖/2 exp(−𝑏𝑥/𝜀1/2) +𝑀2, 0 ≤ 𝑥 ≤ 𝑚 < 1.

We get

𝐿1[𝜓1](𝑥, 𝜀, 𝜇) =𝑀1𝜀
−1/2 exp(−𝑏𝑥/𝜀1/2)[−𝑏2 − 𝑏(𝜇/𝜀1/2)𝑎(𝑥) + 𝑓𝑢(𝑥, 𝑢) + 𝜇𝑎′(𝑥)]+

+𝑀2[𝑓𝑢(𝑥, 𝑢) + 𝜇𝑎′(𝑥)];

thus, if 𝑐 − 𝑏(𝑏 + (𝜇/𝜀1/2)𝑎(0)) > 0, in particular 𝑐 − 𝑏(𝑏 + 𝑎(0)) > 0 when 𝑎(0) > 0 and
𝑐− 𝑏2 > 0 when 𝑎(0) < 0, then

𝐿1[𝜓1](𝑥, 𝜀, 𝜇) ≥ |𝐿1[𝑢
′](𝑥, 𝜀, 𝜇)|, 0 ≤ 𝑥 ≤ 𝑚4,

for some 𝑚4 > 0; and from (19) and (4) for 𝜇 ≤ 𝜀1/2, we have

𝜓1(0, 𝜀, 𝜇) ≥ |𝑢′(0, 𝜀, 𝜇)|, 𝜓1(𝑚4, 𝜀, 𝜇) ≥ |𝑢′(𝑚4, 𝜀, 𝜇)|,

for sufficiently large 𝑀1 and 𝑀2. Consequently, we obtain

|𝑢′(𝑥, 𝜀, 𝜇)| ≤𝑀 [𝜀−1/2 exp(−𝑏𝑥/𝜀1/2) + 1], 0 ≤ 𝑥 ≤ 𝑚4,

where 𝑏 is an arbitrary positive constant satisfying 𝑐 − 𝑏(𝑏 + 𝑎(0)) > 0 when 𝑎(0) > 0, and
𝑐− 𝑏2 > 0 when 𝑎(0) < 0.

Extending this process for 𝑖 > 1 by using 𝜓𝑖, 𝐿𝑖, and applying (19) and (4), we obtain

|𝑢(𝑖)(𝑥, 𝜀, 𝜇)| ≤𝑀(𝜀−𝑖/2 exp(−𝑏𝑥/𝜀1/2) + 1), 0 ≤ 𝑥 < 𝑚 < 1, (24)

where 𝑏 is an arbitrary positive constant satisfying 𝑐 − 𝑏(𝑏 + 𝑎(0)) > 0 when 𝑎(0) > 0, and
𝑐− 𝑏2 > 0 when 𝑎(0) < 0.

1.3.4. Compact formulas

Estimates (22), (23), and (24) are also formulated in the following compact form

|𝑢(𝑖)(𝑥, 𝜀, 𝜇)| ≤𝑀(𝜂−𝑖 exp(−𝑏𝑥/𝜂) + 1), 0 ≤ 𝑥 < 𝑚 < 1, (25)

where 𝜂 = 𝜇, 𝑏 is an arbitrary positive number satisfying 𝑐− 𝑏(𝑏+ 𝑎(0)) > 0 when 𝑎(0) > 0,
𝜇 ≥ 𝜀1/2; 𝜂 = 𝜀/𝜇, 0 < 𝑏 < −𝑎(0) when 𝑎(0) < 0, 𝜇 ≥ 𝜀1/2; 𝜂 = 𝜀1/2 when 𝑎(0) ̸= 0, 𝜇 ≤ 𝜀1/2,
and 𝑏 is an arbitrary positive constant satisfying 𝑐 − 𝑏(𝑏 + 𝑎(0)) > 0 when 𝑎(0) > 0 and
𝑐− 𝑏2 > 0 when 𝑎(0) < 0.

In accordance with (16), we also have the estimates

|𝑢(𝑖)(𝑥, 𝜀, 𝜇)| ≤𝑀

(︂
𝜂𝛼

(𝜂 + 𝑥)𝛼+𝑖
+ 1

)︂
, 0 ≤ 𝑥 < 𝑚 < 1, (26)

where 𝛼 is an arbitrary positive number; 𝜂 = 𝜇 when 𝑎(0) > 0, 𝜇 ≥ 𝜀1/2; 𝜂 = 𝜀/𝜇 when
𝑎(0) < 0, 𝜇 ≥ 𝜀1/2; and 𝜂 = 𝜀1/2 when 𝑎(0) ̸= 0, 𝜇 ≤ 𝜀1/2.



116 V.D. Liseikin

1.3.5. Estimates of solution derivatives near boundary non-turning point 𝑥 = 1

It is obvious that the solution derivatives in the vicinity of the non-turning point 𝑥 = 1
(𝑎(1) ̸= 0) are estimated by the formulae obtained from (25) and (26) by changing the sign
of 𝑎(1) and substituting 1− 𝑥 for 𝑥, namely

|𝑢(𝑖)(𝑥, 𝜀, 𝜇)| ≤𝑀(𝜂−𝑖 exp(−𝑏(1− 𝑥)/𝜂) + 1), 0 ≤ (1− 𝑥) < 𝑚 < 1,

where 𝜂 = 𝜇, 𝑏 is an arbitrary positive number satisfying 𝑐− 𝑏(𝑏− 𝑎(1)) > 0 when 𝑎(1) < 0,
𝜇 ≥ 𝜀1/2; 𝜂 = 𝜀/𝜇, 0 < 𝑏 < 𝑎(1) when 𝑎(1) > 0, 𝜇 ≥ 𝜀1/2; 𝜂 = 𝜀1/2 when 𝑎(1) ̸= 0, 𝜇 ≤ 𝜀1/2,
and 𝑏 is an arbitrary positive constant satisfying 𝑐 − 𝑏(𝑏 − 𝑎(1)) > 0 when 𝑎(1) < 0 and
𝑐− 𝑏2 > 0 when 𝑎(1) > 0.

In accordance with (16), we also have the estimates

|𝑢(𝑖)(𝑥, 𝜀, 𝜇)| ≤𝑀

(︂
𝜂𝛼

(𝜂 + 1− 𝑥)𝛼+𝑖
+ 1

)︂
, 0 ≤ (1− 𝑥) < 𝑚 < 1, (27)

where 𝛼 is an arbitrary positive number; 𝜂 = 𝜇 when 𝑎(1) < 0, 𝜇 ≥ 𝜀1/2; 𝜂 = 𝜀/𝜇 when
𝑎(1) > 0, 𝜇 ≥ 𝜀1/2; and 𝜂 = 𝜀1/2 when 𝑎(1) ̸= 0, 𝜇 ≤ 𝜀1/2.

1.4. Global estimates of solution derivatives

Using the previous local estimates (17), (18), (25)–(27), and (4) of solution derivatives for
problem (1), we can obtain global formulae for derivatives on the interval [0, 1]. In particular,
using the local estimates (26), (27), and (4), we obtain the following global estimates:

|𝑢(𝑖)(𝑥, 𝜀, 𝜇)|≤𝑀
(︂

𝜂𝛼1
1

(𝜂1 + 𝑥)𝛼1+𝑖
+

𝜂𝛼2
2

(𝜂2 + 1− 𝑥)𝛼2+𝑖
+ 1

)︂
, 0≤ 𝑖≤𝑛+ 1, 0≤𝑥≤1, (28)

where 𝛼1 and 𝛼2 are arbitrary positive numbers, 𝜂1 = 𝜀1/2 if 𝑎(0) = 0; 𝜂1 = 𝜇 if 𝑎(0) > 0 and
𝜇 ≥ 𝜀1/2; 𝜂1 = 𝜀/𝜇 if 𝑎(0) < 0 and 𝜇 ≥ 𝜀1/2; 𝜂1 = 𝜀1/2 if 𝑎(0) ̸= 0 and 𝜇 ≤ 𝜀1/2; 𝜂2 = 𝜀1/2 if
𝑎(1) = 0; 𝜂2 = 𝜇 if 𝑎(1) < 0 and 𝜇 ≥ 𝜀1/2; 𝜂2 = 𝜀/𝜇 if 𝑎(1) > 0 and 𝜇 ≥ 𝜀1/2; and 𝜂2 = 𝜀1/2

if 𝑎(1) ̸= 0 and 𝜇 ≤ 𝜀1/2.

1.5. Transformations eliminating layers

The numerical algorithm proposed in this paper for solving problem (1) is based on piece-
wise smooth layer-damping coordinate transformations 𝑥(𝜉, 𝜀) : [0, 1] → [0, 1] in compliance
with a basic principle: they are to eliminate singularities of high order of solutions 𝑢(𝑥, 𝜀)
at each subinterval [𝑎𝑖, 𝑏𝑖] of smoothness; i. e., the high-order derivatives of any concrete
solution with respect to the new coordinate 𝜉 are to have the bounds:⃒⃒⃒⃒

d𝑖

d𝜉𝑖
𝑢[𝑥(𝜉, 𝜀), 𝜀]

⃒⃒⃒⃒
≤𝑀, 𝑖 ≤ 𝑛, 𝑎𝑖 ≤ 𝜉 ≤ 𝑏𝑖, (29)

where the constant 𝑀 does not depend on the parameter 𝜀 and the number 𝑛 depends on
the order of the approximation of the problem: the higher the order, the larger the number
𝑛 will be. With the help of such transformations, any problem can be solved using high-
order approximations in the physical interval 𝑥 on layer-resolving grids defined by mapping
the nodes of a uniform grid in [0, 1] with suitable coordinate transformations 𝑥(𝜉, 𝜀), as
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in [7, 21]. It is proposed that by using the layer-resolving grids obtained by transformations
𝑥(𝜉, 𝜀) satisfying (29), 𝜀-uniform high-order convergence will be demonstrated for schemes of
high order in the physical interval 𝑥. Moreover, the numerical solution can be interpolated
𝜀-uniformly with high-order accuracy on the entire interval [0, 1].

1.5.1. Basic transformation

To generate layer-resolving grids near a boundary point, we will use as a template the
following universal coordinate transformation of the class 𝐶 𝑙[0, 1] described in [4, 5]:

𝑥𝑙𝑒𝑓𝑡(𝜉, 𝜂, 𝑎) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑐1𝜂((1− 𝑑𝜉)−1/𝑎 − 1), 0 ≤ 𝜉 ≤ 𝜉0,

𝑐1

[︂
𝜂(1− 𝛽/𝑎)− 𝜂 +

(︂
𝜂

(1− 𝑑𝜉)1/𝑎

)︂′

(𝜉0)(𝜉 − 𝜉0)+

+
1

2

(︂
𝜂

(1− 𝑑𝜉)1/𝑎

)︂′′

(𝜉0)(𝜉 − 𝜉0)
2 + . . .+

+
1

𝑙!

(︂
𝜂

(1− 𝑑𝜉)1/𝑎

)︂(𝑙)

(𝜉0)(𝜉 − 𝜉0)
𝑙 + 𝑐0(𝜉 − 𝜉0)

𝑙+1

]︃
, 𝜉0 ≤ 𝜉 ≤ 1,

(30)

where 𝜂 is a small parameter, 𝑑 =
1− 𝜂𝛽

𝜉0
≥ 1+𝑚1 > 1, 𝑛 ≥ 𝑙, 𝛽 =

𝑎

1 + 𝑛𝑎
, 1− 𝛽

𝑎
=

𝑛𝑎

1 + 𝑛𝑎
,

𝑎 is an arbitrary positive constant satisfying 0 < 𝑎 ≤ 𝛼/𝑛2, and 𝑐0 > 0, while 𝑐1 > 0 is such
as satisfies the necessary boundary condition 𝑥𝑙𝑒𝑓𝑡(1, 𝜀, 𝑎) = 1,(︂

𝜂

(1− 𝑑𝜉)1/𝑎

)︂(𝑖)

(𝜉0) = 𝑑𝑖
1

𝑎

(︂
1

𝑎
+ 1

)︂
. . .

(︂
1

𝑎
+ 𝑖− 1

)︂
𝜂𝑎(𝑛−𝑖)/(1+𝑛𝑎), 𝑖 ≥ 1. (31)

Note that formula (30) and all further formulas are valid for 𝜂 ∈ (0, 1). It was shown in [5, 7]
that this transformation eliminates up to 𝑛 both power-of-type-1 singularities 𝜂𝛼/(𝜂+ 𝑥)𝛼+𝑖

and exponential singularities (1/𝜂𝑖) exp(−𝑏𝑥/𝜂).
A simpler form of transformation (30) for an arbitrary 𝑎 > 0 was originally published

in [22], while for 𝑎 = 1 in [18]. Paper [23] shows that the grid obtained using the trans-
formation (30) is the most effective for numerical modelling of viscous flows over a plate,
compared to results obtained with the grids often used by many.

Assuming in (30) 𝑙 = 2 as we typically do, taking into account (31), transformation (30)
is as follows:

𝑥𝑙𝑒𝑓𝑡(𝜉, 𝜂, 𝑎) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑐1𝜂

(︀
(1− 𝑑𝜉)−1/𝑎 − 1

)︀
, 0 ≤ 𝜉 ≤ 𝜉0,

𝑐1

[︂
𝜂𝑎𝑛/(1+𝑛𝑎) − 𝜂 + 𝑑

1

𝑎
𝜂𝑎(𝑛−1)/(1+𝑛𝑎)(𝜉 − 𝜉0)+

+
1

2
𝑑2

1

𝑎

(︂
1

𝑎
+ 1

)︂
𝜂𝑎(𝑛−2)/(1+𝑛𝑎)(𝜉 − 𝜉0)

2𝑐0(𝜉 − 𝜉0)
3

]︂
, 𝜉0 ≤ 𝜉 ≤ 1,

(32)

where 𝑑 =
1− 𝜂𝑎/(1+𝑛𝑎)

𝜉0
, 𝑎 is an arbitrary positive constant satisfying 0 < 𝑎 ≤ 𝛼/𝑛2,

1

𝑐1
= 𝜂𝑛/(1+𝑛𝑎)−𝜂+𝑑1

𝑎
𝜂𝑎(𝑛−1)/(1+𝑛𝑎)(1−𝜉0)+

1

2
𝑑2

1

𝑎

(︂
1

𝑎
+ 1

)︂
𝜂𝑎(𝑛−2)/(1+𝑛𝑎)(1−𝜉0)2+𝑐0(1−𝜉0)3.
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An explicit transformation to generate a grid with node clustering near 𝑥 = 1, denoted as
𝑥𝑟𝑖𝑔ℎ𝑡(𝜉, 𝜂, 𝑎), which eliminates up to 𝑛 both power-of-type-1 singularities 𝜂𝛼/(𝜂 + 1− 𝑥)𝛼+𝑖

and exponential singularities (1/𝜂𝑖) exp(𝑚(𝑥− 1)/𝜂), can be defined by the formula

𝑥𝑟𝑖𝑔ℎ𝑡(𝜉, 𝜂, 𝑎) = 1− 𝑥𝑙𝑒𝑓𝑡(1− 𝜉, 𝜂, 𝑎), 0 ≤ 𝜉 ≤ 1, (33)

where 𝑥𝑙𝑒𝑓𝑡(𝜂, 𝜉, 𝑎) is given by general (30) or special (32) formulae. For example, by using
formula (32), where 𝑙 = 2, 𝑎 = 2, 𝜉0 = 1/2, we get:

𝑥𝑟𝑖𝑔ℎ𝑡(𝜉, 𝜂, 2)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1−𝑐1

(︀
𝜂2𝑛/(1+2𝑛)−𝜂+(1−𝜂2/(1+2𝑛))𝜂2(𝑛−1)/(1+2𝑛)(1/2−𝜉)+

+
3

2
(1−𝜂2/(1+2𝑛))2𝜂2(𝑛−2)/(1+2𝑛)(1/2−𝜉)2+𝑐0(1/2−𝜉)3

)︂
, 0≤𝜉≤ 1

2
,

1−𝑐1𝜂{[1−2(1−𝜂2/(1+2𝑛))(1−𝜉)]−1/2−1}, 1

2
≤𝜉≤1,

where the constant 𝑐1 is such that 𝜀1/2(0, 𝜂, 2) = 0.
An explicit transformation for generating a grid with node clustering near 𝑥 = 0 and

𝑥 = 1, denoted 𝑥𝑔𝑙𝑜𝑏𝑎𝑙(𝜉, 𝜂1, 𝑎1, 𝜂2, 𝑎2), for eliminating up to 𝑛 power-of-type-1 singularities
near both boundaries:

𝜂𝛼1
(𝜂1 + 𝑥)𝛼+𝑖

+
𝜂𝛼2

(𝜂2 + 1− 𝑥)𝛼+𝑖
,

where 𝜂1 and 𝜂2 are small parameters, as in (28), and corresponding exponential singularities,
can be defined by the combination of two transformations — either (30) and (33), or (32)
and (33), namely, by formula

𝑥𝑔𝑙𝑜𝑏𝑎𝑙(𝜉, 𝜂1, 𝑎1, 𝜂2, 𝑎2) = 𝑥𝑙𝑒𝑓𝑡(𝑥𝑟𝑖𝑔ℎ𝑡(𝜉, 𝜂2, 𝑎2), 𝜂1, 𝑎1),

or
𝑥𝑔𝑙𝑜𝑏𝑎𝑙(𝜉, 𝜂1, 𝑎1, 𝜂2, 𝑎2) = 𝑥𝑟𝑖𝑔ℎ𝑡(𝑥𝑙𝑒𝑓𝑡(𝜉, 𝜂1, 𝑎1), 𝜂2, 𝑎2),

where 𝑎𝑖 is an arbitrary positive constant independent of the small parameters 𝜂1 and 𝜂2 and
satisfying 0 < 𝑎𝑖 ≤ 𝛼𝑖/𝑛

2, 𝑖 = 1, 2.
Another way to define a similar transformation is to use 𝑥𝑙𝑒𝑓𝑡(𝜉, 𝜂, 𝑎):

𝑥𝑔𝑙𝑜𝑏𝑎𝑙(𝜉, 𝜂1, 𝑎1, 𝜂2, 𝑎2) =

{︂
0.5𝑥𝑙𝑒𝑓𝑡(2𝜉, 𝜂1, 𝑎1), 0 ≤ 𝜉 ≤ 0.5,
1− 0.5𝑥𝑙𝑒𝑓𝑡(2(1− 𝜉), 𝜂2, 𝑎2), 0.5 ≤ 𝜉 ≤ 1,

(34)

or to use 𝑥𝑟𝑖𝑔ℎ𝑡(𝜉, 𝜂, 𝑎):

𝑥𝑔𝑙𝑜𝑏𝑎𝑙(𝜉, 𝜂1, 𝑎1, 𝜂2, 𝑎2) =
1

2
(1 + 𝑦(𝜃, 𝜂1, 𝑎1, 𝜂2, 𝑎2)) , 𝜃 = −1 + 2𝜉, 0 ≤ 𝜉 ≤ 1,

where

𝑦(𝜃, 𝜂1, 𝑎1, 𝜂2, 𝑎2) =

{︂
−𝑥𝑟𝑖𝑔ℎ𝑡(−𝜃, 𝜂1, 𝑎1), −1 ≤ 𝜂 ≤ 0,
𝑥𝑟𝑖𝑔ℎ𝑡(𝜃, 𝜂2, 𝑎2), 0 ≤ 𝜂 ≤ 1.

2. Numerical algorithm and experiments

2.1. Upwind numerical algorithm

As an approximation to the singularly perturbed boundary-value problem (1), we use the
standard upwind finite-difference scheme on a non-uniform grid 𝑥𝑖, 𝑖 = 0, 1, . . . , 𝑁 , 𝑥0 = 0 <
𝑥1 < . . . < 𝑥𝑁 = 1:
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𝐿𝑁
[︀
𝑢𝑁𝑖

]︀
≡ − 2𝜀

ℎ𝑖 + ℎ𝑖−1

(︂
𝑢𝑁𝑖+1 − 𝑢𝑁𝑖

ℎ𝑖
−
𝑢𝑁𝑖 − 𝑢𝑁𝑖−1

ℎ𝑖−1

)︂
+ 𝑎−(𝑥𝑖)

𝑢𝑁𝑖+1 − 𝑢𝑁𝑖
ℎ𝑖

+

+ 𝑎+(𝑥𝑖)
𝑢𝑁𝑖 − 𝑢𝑁𝑖−1

ℎ𝑖−1

+ 𝑓(𝑥𝑖, 𝑢𝑖) = 0, 𝑖 = 1, 2, . . . , 𝑁 − 1, 𝑢𝑁0 = 𝐴0, 𝑢
𝑁
𝑁 = 𝐴1, (35)

where ℎ𝑖 = 𝑥𝑖+1 − 𝑥𝑖 and 𝑎±(𝑥) = (𝑎(𝑥) ± |𝑎(𝑥)|)/2. The nodes 𝑥𝑖, 𝑖 = 0, . . . , 𝑁 , of the
layer-resolving grid are obtained explicitly using layer-damping transformation (34), namely,

𝑥𝑖 = 𝑥𝑔𝑙𝑜𝑏𝑎𝑙(𝑖ℎ, 𝜂1, 𝑎1, 𝜂2, 𝑎2), 𝑖 = 0, 1, . . . , 𝑁, ℎ = 1/𝑁.

For estimating the accuracy of the numerical algorithm, the following characteristic is
introduced based on the double-mesh principle:

𝑟𝑡,𝜀 = max
0≤𝑖≤𝑁𝑡

⃒⃒⃒
𝑢𝑁𝑡
𝑖 − 𝑢

𝑁𝑡+1

2𝑖

⃒⃒⃒
, 𝑡 = 0, 1, . . . ,

where 𝑢𝑁𝑡
𝑖 = 𝑢𝑁(𝑥𝑖) when upwind scheme (35) is used, with 𝑁𝑡 number of mesh points. In

addition, one more characteristic,

𝑑𝑢𝑡,𝜀 = max
0≤𝑖≤𝑁𝑡

⃒⃒
𝑢𝑁𝑡
𝑖+1 − 𝑢𝑁𝑡

𝑖

⃒⃒
, 𝑖 = 0, 1, . . . , 𝑁𝑡 − 1,

is introduced, related to the jump of the numerical solution at the neighboring nodes.
The characteristic 𝑟𝑡,𝜀 is applied to estimate the order of accuracy of the numerical solu-

tion:
𝛽1 = log2(𝑟𝑡,𝜀/𝑟𝑡+1,𝜀), 𝑡 = 0, 1, . . . ,

and, consequently, 𝑑𝑢𝑡,𝜀 to estimate the order of numerical-solution jump in the neighboring
nodes

𝛽3 = log2(𝑑𝑢𝑡,𝜀/𝑑𝑢𝑡+1,𝜀), 𝑡 = 0, 1, . . .

Note that if a solution to (1) has neither boundary nor interior layers, then for the
numerical solution of this problem the value 𝛽1 is close to 𝑙0, while 𝛽3 is close to 1 through
the use of a stable scheme of order 𝑙0 on the uniform grid 𝑥𝑖 = 𝑖ℎ.

Theorem 2.1. If 𝑥𝑖=𝑥𝑔𝑙𝑜𝑏𝑎𝑙(𝑖/𝑁,𝜂1, 𝑎1,𝜂2,𝑎2), 𝑖=0, 1, . . . , 𝑁 , where 𝑥𝑔𝑙𝑜𝑏𝑎𝑙(𝜉,𝜂1,𝑎1,𝜂2,𝑎2) :
[0, 1] → [0, 1] is a coordinate transformation defined through (30) and (34) with 𝑙 ≥ 2, 𝑛 ≥ 𝑙,
then

|𝑢𝑁𝑖 − 𝑢(𝑥𝑖, 𝜀, 𝜇)| ≤𝑀/𝑁, 𝑖 = 0, . . . , 𝑁,

where 𝑀 is independent of 𝑁 .

This theorem is proved similarly to [4, sect. 7.4.1 and 7.4.2] for a semi-linear problem
with one small parameter 𝜀 on the grid obtained using the same basic transformation (30).

2.2. Numerical examples

2.2.1. Example 1

For our first numerical experiment we consider the following problem:

−𝜀𝑢′′ + 𝜇(𝑥− 2𝑥2)𝑢′ + 𝑢 = 0.1 exp(𝑥), 0 ≤ 𝑥 ≤ 1,

𝑢(0, 𝜀) = 0.05, 𝑢(1, 𝜀) = 0.15,
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with 𝜇 > 𝜀1/2. For this problem, 𝑎(0) = 0, 𝑎′(0) > 0, 𝑎(1) = −1, 𝑐(𝑥) = 1, and thus
estimates (28) are as follows:

|𝑢(𝑖)(𝑥, 𝜀, 𝜇)| ≤𝑀

(︂
1 +

𝜀𝛼1/2

(𝜀1/2 + 𝑥)𝛼1+𝑖
+

𝜇𝛼2

(𝜇+ 1− 𝑥)𝛼2+𝑖

)︂
, 0 ≤ 𝑖 ≤ 𝑛+ 1, 0 ≤ 𝑥 ≤ 1,

for arbitrary 𝛼1 > 0 and 𝛼2 > 0. This singularity is eliminated up to 𝑛 by coordinate
transformation (34) with 𝜂1 = 𝜀1/2, 𝜂2 = 𝜇.

Figure 1 and Table 1 show the numerical solution and values of the characteristics 𝛽1
and 𝛽3 for 𝜀 = 10−6, 𝜇 = 10−2 calculated using difference scheme (35) on the grid 𝑥𝑖 =
𝑥𝑔𝑙𝑜𝑏𝑎𝑙(𝑖/𝑁, 𝜂1, 𝑎1, 𝜂2, 𝑎2), 𝑖 = 0, 1, . . . , 𝑁 , where 𝑥𝑔𝑙𝑜𝑏𝑎𝑙(𝜉, 𝜂1, 𝑎1, 𝜂2, 𝑎2) : [0, 1] → [0, 1] is a
coordinate transformation (34) with 𝜂1 = 𝜀1/2 = 10−3, 𝑎1 = 1/20, 𝜂2 = 𝜇 = 10−2, 𝑎2 = 1/20.
Figure 2 shows the coordinate transformation 𝑥𝑔𝑙𝑜𝑏𝑎𝑙(𝜉, 𝜂1, 𝑎1, 𝜂2, 𝑎2).

Table 2 shows the values of characteristics 𝛽1 and 𝛽3 of the numerical solution for 𝜀=10−8,
𝜇 = 10−3, calculated with difference scheme (35) on the grid 𝑥𝑖 = 𝑥𝑔𝑙𝑜𝑏𝑎𝑙(𝑖/𝑁, 𝜂1, 𝑎1, 𝜂2, 𝑎2),
𝑖 = 0, 1, . . . , 𝑁 , where 𝑥𝑔𝑙𝑜𝑏𝑎𝑙(𝜉, 𝜂1, 𝑎1, 𝜂2, 𝑎2) : [0, 1] → [0, 1] is a coordinate transforma-
tion (34) with 𝜂1 = 𝜀1/2 = 10−4, 𝑎1 = 1/20, 𝜂2 = 𝜇 = 10−3, 𝑎2 = 1/20.

𝑁 = 160, 𝜀 = 10−6, 𝜇 = 10−2

𝑢
(𝑥
,𝜂
)

𝑥
Fig. 1. Example 1

T a b l e 1. Order of solution convergence and solution jump for 𝜀 = 10−6, 𝜇 = 10−2

𝑡 𝑁 𝑟 𝛽1 𝑑𝑢 𝛽3
1 160 0.0038 0.000000 0.008802 0.837976

2 320 0.00216 0.819031 0.004384 1.00558

3 640 0.00117 0.881370 0.002206 0.990747

4 1280 0.000607 0.945925 0.001105 0.997741

5 2560 0.00031 0.972436 0.000553 0.999506

6 5120 0.000156 0.985953 0.000276 0.999899
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𝑦
(𝑥
)

𝑥

Global

Fig. 2. Example 1

T a b l e 2. Order of solution convergence and solution jump for 𝜀 = 10−8, 𝜇 = 10−3

𝑡 𝑁 𝑟 𝛽1 𝑑𝑢 𝛽3
4 160 0.001611 0.676430 0.026067 0.991273

5 320 0.000916 0.814067 0.012987 1.005161

6 640 0.000491 0.898392 0.006485 1.001811

7 1280 0.000256 0.941229 0.003240 1.001279

8 2560 0.000130 0.972124 0.001619 1.000632

9 5120 0.000066 0.985845 0.000809 1.000304

𝑁 = 160, 𝜀 = 10−10, 𝜇 = 10−4

𝑢
(𝑥
,𝜂
)

𝑥

Fig. 3. Example 2
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T a b l e 3. Order of solution convergence and solution jump for 𝜀 = 10−10, 𝜇 = 10−4

𝑡 𝑁 𝑟 𝛽1 𝑑𝑢 𝛽3
1 160 0.0126 0.000000 0.008802 1.47946

2 320 0.00398 1.662363 0.004384 1.19617

3 640 0.000989 2.008477 0.002206 1.08667

4 1280 0.000247 2.001993 0.001105 1.04041

5 2560 6.16e-05 2.002023 0.000553 1.01946

6 5120 1.54e-05 2.003634 0.000276 1.08059

2.2.2. Example 2

For the second numerical experiment we consider the problem:

−𝜀𝑢′′ + 𝜇𝑥(1− 𝑥)𝑢′ + 𝑢 = exp(−5𝑥), 0 ≤ 𝑥 ≤ 1,

𝑢(0, 𝜀) = 1.2, 𝑢(1, 𝜀) = −0.2.

For this problem, 𝑎(0) = 0, 𝑎(1) = 0, and so estimates (28) are as follows:

|𝑢(𝑖)(𝑥, 𝜀, 𝜇)| ≤𝑀

(︂
1 +

𝜀𝛼1/2

(𝜀1/2 + 𝑥)𝛼1+𝑖
+

𝜀𝛼2/2

(𝜀1/2 + 1− 𝑥)𝛼2+𝑖

)︂
, 0 ≤ 𝑖 ≤ 𝑛+ 1, 0 ≤ 𝑥 ≤ 1,

for arbitrary 𝛼1 > 0 and 𝛼2 > 0.
This singularity is eliminated up to 𝑛 by coordinate transformation (34) with 𝜂1 = 𝜀1/2,

𝜂2 = 𝜀1/2.
Figure 3 and Table 3 show the numerical solution and values of characteristics 𝛽1

and 𝛽3 for 𝜀 = 10−10, 𝜇 = 10−4 calculated using difference scheme (35) on the grid
𝑥𝑖 = 𝑥𝑔𝑙𝑜𝑏𝑎𝑙(𝑖/𝑁, 𝜂1, 𝑎1, 𝜂2, 𝑎2), 𝑖 = 0, 1, . . . , 𝑁 , where 𝑥𝑔𝑙𝑜𝑏𝑎𝑙(𝜉, 𝜂1, 𝑎1, 𝜂2, 𝑎2) : [0, 1] → [0, 1] is
a coordinate transformation (34) with 𝜂1 = 𝜀1/2 = 10−5, 𝑎1 = 1/20, 𝜂2 = 10−5, 𝑎2 = 1/20.

Conclusion

The paper addresses a semi-linear singularly perturbed problem with two small parameters
and turning points. Estimates of solution derivatives and construction of layer-resolving grids
based on layer-eliminating coordinate transformations are described. The convergence of
numerical solutions obtained using an upwind scheme on the layer-resolving grids is analysed.
Theoretical results are confirmed by numerical experiments.
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Аннотация

Рассматривается двухточечная полулинейная краевая задача с двумя малыми параметра-
ми и точками поворота. Доказываются оценки производных решения задачи, на основе кото-
рых строятся координатные преобразования, устраняющие слои. Анализируется сходимость
численного решения задачи с помощью схемы с направленными разностями на полученных
сетках. Численными расчетами подтверждена равномерная сходимость решения для разных
значений малых параметров к точному решению.

Ключевые слова: адаптивная сетка, слои степенного типа, гибридные пограничные слои,
схема с направленными разностями.

Цитирование: Лисейкин В.Д. Теоретический и численный анализ полулинейной задачи
с двумя малыми параметрами и точками поворота. Вычислительные технологии. 2024;
29(6):108–124. DOI:10.25743/ICT.2024.29.6.007. (на английском)


	Estimates of derivatives
	Preliminary estimates
	Estimates of solution derivatives near boundary turning points
	Estimates of the first derivative
	Estimates of higher derivatives

	Estimates near non-turning boundary points
	Case bold0mu mumu aa2005/06/28 ver: 1.3 subfig packageaaaa(bold0mu mumu 002005/06/28 ver: 1.3 subfig package0000)>bold0mu mumu 002005/06/28 ver: 1.3 subfig package0000, bold0mu mumu 2005/06/28 ver: 1.3 subfig packagebold0mu mumu 2005/06/28 ver: 1.3 subfig packagebold0mu mumu 112005/06/28 ver: 1.3 subfig package1111/bold0mu mumu 222005/06/28 ver: 1.3 subfig package2222
	Case bold0mu mumu aa2005/06/28 ver: 1.3 subfig packageaaaa(bold0mu mumu 002005/06/28 ver: 1.3 subfig package0000)<bold0mu mumu 002005/06/28 ver: 1.3 subfig package0000, bold0mu mumu 2005/06/28 ver: 1.3 subfig packagebold0mu mumu 2005/06/28 ver: 1.3 subfig packagebold0mu mumu 112005/06/28 ver: 1.3 subfig package1111/bold0mu mumu 222005/06/28 ver: 1.3 subfig package2222
	Case bold0mu mumu aa2005/06/28 ver: 1.3 subfig packageaaaa(bold0mu mumu 002005/06/28 ver: 1.3 subfig package0000)=bold0mu mumu 002005/06/28 ver: 1.3 subfig package0000, bold0mu mumu 2005/06/28 ver: 1.3 subfig packagebold0mu mumu 2005/06/28 ver: 1.3 subfig packagebold0mu mumu 112005/06/28 ver: 1.3 subfig package1111/bold0mu mumu 222005/06/28 ver: 1.3 subfig package2222
	Compact formulas
	Estimates of solution derivatives near boundary non-turning point bold0mu mumu xx2005/06/28 ver: 1.3 subfig packagexxxx=bold0mu mumu 112005/06/28 ver: 1.3 subfig package1111

	Global estimates of solution derivatives
	Transformations eliminating layers
	Basic transformation


	Numerical algorithm and experiments
	Upwind numerical algorithm
	Numerical examples
	Example 1
	Example 2



