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Introduction

Problems with interior and boundary layers of various types are widely encountered in various
fields of science and engineering, in particular in gas- and hydrodynamics, elasticity theory,
chemistry and biology. Due to this layer phenomenon, developing uniformly convergent
algorithms for solving such problems is a challenging task. Numerical grids provide resources
which can significantly reduce the adverse effects of layers on the accuracy of numerical
experiments. Efficient application of these resources requires detailed knowledge of the layers
themselves — their types and structures; situations in which they occur; and the means to
combat them, in particular, the rules for grid clustering in layers (see [1]).

Turning-point problems are considered important in practical applications. Some ex-
amples of turning-point problems and analytical and numerical aspects of their study are
discussed in reviews |1H3], and books [4H7]. Analytical and numerical treatment of turning-
point problems is more complicated than that problems without turning-point. In particular,
it is not always possible to decompose a solution into regular and singular components to
find estimates of the solution derivatives, since the reduced problem may be ill-posed. Thus,
even though the reduced problem does not depend on a small parameter, the values of
the regular component and/or its derivatives may be unbounded. Some special techniques
for obtaining estimates of the derivatives of solutions to turning-point problems are shown
in 1} 4}, 5, 8-H11], and in this paper.

108



Theoretical and numerical analysis of semi-linear problem with two. .. 109

The present paper discusses the following problem with two small parameters € and pu:

L{u] —eu” + pa(x)u' + f(z,u) =0, 0<x<l1, (1)
F[u] [u(O,a,u),u(l,g,,u)] = (A07A1>7

where 1 >¢>0,1> u >0, a(z) € C"[0,1], f(x,u) € C™"TL([0,1] x R), fu(z,u) > c; >0,
(x,u) € [0,1] x R.

The linear case of this problem with two small parameters € and u, but without turning
points (a(z) # 0), was initially analysed theoretically using the expansion technique in [12].
A quasi-linear problem with two small parameters ¢ and u = &P, p > 1 was analysed
theoretically and numerically in |11} [13]. These papers also provide an introduction to areas
of application of such problems. Linear problems without turning points with arbitrarily
small parameters ¢ and p have been analysed in [14-16], and in many others.

The present paper discusses the semi-linear problem , with an arbitrary coefficient a(z)
and without any relation between the parameters € and pu.

1. Estimates of derivatives

This section describes estimates of solution derivatives for a two-point boundary-value prob-

lem .

1.1. Preliminary estimates

It is well known that the pair (L,T") in (1) is inverse-monotone, i. e., if for two functions u(x)
and v(x), 0 <z <1,

(L,D)[u] < (L,D)], 0<a<1, then  w(z) <wv(z), 0<zx<1.
This results in e-uniform bounds on a solution u(z, e, 1) to ([I)):
lu(z,e,u)| <M, 0<z<1. (2)

In this equation and hereafter, by m, M, m;, M; we designate positive constants independent
of € and p.
If i is small enough, namely,

npa' (x) +c(x) > >0, 0<ax<l, (3)

for some ¢ > 0, then according to [§] for a linear case and [4] for a semi-linear case, we have
that

WD (z,e,p)| <M, 0<m<z<l-m<l1, i<n+]1, (4)
for any constant 0.5 > m > 0. On the other hand, if xy is an interior turning point and
kupa' (xg) + ¢ <0, k <n+1,ie., pisnot a small parameter, then in the vicinity of xy we
have the following estimate (see [8] and [4, p. 90]):

[ (@6, p)] < M (2 + |z = 2o)* ™ +1], |o = 20| <m,

for k<n+1,0 < a < pl|d(zg)|/c(xo), and some m > 0. Detailed estimates of the solution
derivatives of problem ({1)) when (3)) does not hold are given in [17].

We further assume that p obeys constraint , and therefore solutions to with any
a(x) can have only boundary layers. It is likely that a solution outside the boundary points
is close to the solution of the reduced equation f(x,u) = 0, while near the boundaries it
changes abruptly to satisfy the boundary conditions.
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1.2. Estimates of solution derivatives near boundary turning points

This section uses an approach based on barrier functions to obtain estimates of solution
derivatives near turning points.
Near the turning point = = 0, i.e., when a(0) = 0, we have

u®(z,e)| < Me™2, 0<az<me? i<n+l (5)
To prove (), we use estimate to conclude that in the interval [0, 0] there exists a point

xo such that |u/'(zg, e, u)| < M/, where u(z,e, ) is a solution to (l). By integrating the
equation from z( to x € [0, 0], we get

WW@MSW%@MHE/W@meHﬂwM@mwwS
= (6)

<5 el e o) |+ | [~ (@ute. e + S e,z )de| <

™ | =

zo

< M(1/5+ pbd/e +6/e) < Me/?,

when 6 = me'/?, where m is an arbitrary positive constant. By using , we get estimate ()
for i > 1.
Similarly, in the vicinity of the boundary turning point x = 1, we have

WD (z,e)| < Me™2, 0<1—x<me/? i<n+1

To estimate the derivatives of u(z,e, ) on the interval [0,m], 0 < m < 1, we introduce an
operator

Lifo] = 0" + pa(@)’ + [fu(e,0) + ind (@) v, i <n+ 1. 7)
Since , the pair (L;,I") is inverse monotone on the interval 0 < z < 1.

1.2.1. Estimates of the first derivative

Case a(0) = 0, a’(0) < 0. In this case, to estimate the derivatives of u(x,e, u) on the
interval [0,m], 0 < m < 1, we use the barrier function

di(z,e, 1) = Mye 2 exp(=bz/e/?) + My, 0<b<+e, 0<z<m<l. (8)
We have
Lildi](z, ) = My exp(—ba/eV2) 8 — bue2a(x) + fulw, u) + pa(2)] +

= M
+  Ms|fu(z,u) + pa'(z)). (9)

In the case a(0) = 0, a’(0) = 0, we have |a(z)| < mi2?, 0 < x < 1, for some m; > 0, and

SO
e Yexp(—bz /e bula(z)| < mop, 0<z <1, (10)

for some msy > 0. Therefore, taking into account , , @, and @, we conclude that
there exist constants M; > 0 and M, > 0 in (8) such that
di(0,6, 1) > [/ (0,6, p)],  di(m,e, ) > [u'(m,e,p)], 0<m<1, 0<b<

Lalds] (6, ) > L[] £, ) = — ol 0) > L [—d) (.2, 1), 0<z<m<1, 0<ber/z D
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These relations yield the estimate
[ (x,e, )| < MgV exp(—=bx/e?) +1], 0<z<m <1, (12)

when a(0) = 0, a/(0) = 0, where b is an arbitrary constant independent of ¢ and p satisfying
0<b< e

In the case a(0) = 0, ¢’(0) < 0, we have d'(z) < 0, 0 < z < mg, for some mg > 0, and
so relations , and consequently estimates , are valid for 0 < x < mg. Taking into
account , the estimates are valid for 0 <z <m < 1.

Case a(0) =0, a’(0) > 0, u < /2. In this case we also have estimate as well as
the relations , and consequently estimate .

Case a(0) = 0, a’(0) > 0, pu > /2. To estimate the solution derivatives in this case,
we introduce the barrier function
a/2

vi(z, e, 1) = My -+ My, o> 0. (13)

We have

Li[n](x,e,p) = M

g/2 <_5(a +D(a+2) (a+1)pa()
1(51/2 + z)otl

/!
B LI e+ )+

ML, ) + i (@)
Since

Celat1)(@+2)  (a+Dpale)

1/2
(51/2 + .']J)Q 81/2 + x + fu(x7u> + /’La/(x) > 07 x Z M(]Ef /

for some My > 0, therefore, for sufficiently large M; and M in (13]), we obtain

L[ ](x, e, p) > Li[u](x,e, 1) > Li[—v](x, e, p), Mpe'?2 <z <m <1,
vi(Moe? e,pn) > W' (Moe¥?,e, )],  vilm,e, ) > W/ (m,e,pm)|, 0<m< 1.

Thus,

/2

Iu’<w,s,u)|§M( - )QHH), a>0, Me'?<z<m<l,

(V2 +u
and from (5)) we have that this estimate is valid for 0 <z <m < 1, i.e.,
a/2

/
W' (z, e, )| < M (W

—i—l), a>0, 0<zxz<m<l,
for any a > 0.

1.2.2. Estimates of higher derivatives

Estimates near the boundary turning point x = 0. Extending the approach discussed
above for ¢ = 1 by using for ¢ > 1 the operators L;, the estimate , the corresponding
barrier functions d;(z, e, ) and v;(z, e, p), and the estimates of the solution derivatives for
j < 1, we easily obtain the following estimates near the boundary turning point z = 0:

O(@e ] < Ml exp(~ba/e) +1], 0<z<m<l, 0<b<ve  (14)
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if 1:a(0) =0, a'(0) <0, or2:a(0)=0,d(0) >0, u<e? and also
a/2

|u(“(w7e,u)|§M(m+1>, a>0, 0<z<m<l, (15)

for any o > 0, if a(0) = 0, @’(0) > 0, u > £'/2, and so in the last case the solution has
a power-of-type-1 boundary layer.
Note that if n > 0 is a small parameter, then

a

Ui

n~"exp(—bx/n) < M (W

—i—l), 0<x<1, (16)

for an arbitrary a > 0, b > 0 and some M > 0, where b, o, and M are independent of 7.

Thus, from f we get a compact formula in the case a(0) = 0, assuming in that
_ 172

77 =& )

a/2

(%) - -
w20l < M (e

for an arbitrary o > 0.
Estimates near the boundary turning point & = 1. It is obvious that the solution
derivatives near the boundary turning point = 1 (a(1) = 0) are estimated through the

formulas obtained from and by substituting 1 — = for x, namely,

+1>, 0<z<m<l1, (17)

uD(z,e, 1) < M7 exp(=b(1 —x)/eY?) +1], 0<(1—2)<m<1, 0<b<
if 1:a(1)=0,a'(1)<0,0or2:a(l)=0,d(1) >0, u<e'/?
Ea/2
(51/2 +1— x)a—l—i

\u(i)(x,a,uﬂgl\/[( —i—l), a>0, 0<(l—z)<m<l,
for any o > 0 if a(1) = 0, a’(1) > 0, p > /2.
Similarly to , we have the following compact formula in the case a(1) = 0:

Ea/2

(/2 + 1 — g)oti

Ium(x,s,u)lszw( +1>, 0<(l-2)<m<l, (18)

for an arbitrary a > 0.

1.3. Estimates near non-turning boundary points

Estimates of solution derivatives near non-turning boundary points have been obtained in
many papers, e.g., for nonlinear equations with p = ' in [13] [18]; for linear equations
with a(z) < 0 in [19]; while with a(z) >0 in [20]. A popular approach to obtaining estimates
of solution derivatives for linear equations without turning points is based on certain char-
acteristic equations (see for example [20]), but it is questionable whether this approach is
appropriate in the case of semi-linear equations or interior turning points. We present here
estimates near a non-turning boundary point xy in the most general semi-linear case and
without any restrictions on a(x), x # x, obtained by the barrier-function approach.

In the neighbourhood of the non-turning boundary point =0 (a(0) #0) we get, similarly

to @,

o' (z, 6, )| < M(1/0 4 p/e +d/e),
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yielding
: ple, p=el? 0<z<me/p,
el < i { 1 1 TSk

This estimate is readily generalized to i < n + 1:

. i 12 (< <
(i) (n/e)t, p>eY? 0<x<me/y,
[u' (z, e, )| < M{ 8_2‘/27 0< 51/2’ 0<z<mel? (19)

when a(0) # 0.

1.3.1. Case a(0) > 0, p > '/2

We will use here the following resolution of (1)) with respect to u'(x, e, p):

xT

U/@a@aM):eXP[Qb(ﬂanxa&N)] ul(‘xng?/JJ)—i_g1/exp[_¢(x07£787”)]f[£7“<§7£7”)}d§ ) (20)

0

where
X

O .6, 1) = 6‘1/ua(77)d77-
3
Note that is held for an arbitrary point z, in [0, 1].

As a(0) > 0, so a(x) > m, 0 <z < m for some m > 0, and therefore,

gb(f,x,s,u)zmu,(x—f)/e, Oﬁfﬁwﬁm

Thus, taking into account estimates , , and in for i = 1, we obtain

' (2, &, )| < \U’(m,a,u)leXp[¢(m,x,€,u)]+M81/exp[mu(€—x)/€]d£§Mu1, 0<z<m.

m

Sequentially differentiating 7 times the equation in , resolving the corresponding (i + 1)™
derivative in the form , and using estimates of derivatives for j < ¢, we obtain the
estimates

D (z, e, )| < Mp™', 0<z<m<]1, (21)

which are more accurate than estimate for ju > e'/2.
For estimating solution derivatives in the case a(0) > 0, u > &2, we introduce the
barrier function

zi(x, e, 1) = Myip "exp(=bx/p) + My, 0<x<m<l1.
We get
Li[z1)(w,e, 1) = Myp™" exp(—ba/p)[=b%e/ 1 =ba(a)+fulw, u)+pd (2)]+ M fu (2, u) +pd ()],
thus, if ¢ — b(b(¢/p2) + a(0)) > 0, then

Ll[zl](x75>ﬂ) > |L1[ul]($a‘€7ﬂ)‘v 0<z<mg
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and

21(0757/’6) Z |Ul(075»ﬂ)|» 21(m3757ﬂ) Z |U/(m3>5aﬂ)|,

for some ms > 0, M; > 0, and M, > 0 and, consequently, we have
W/ (2,6, )| < M[p™" exp(=bx/p) +1], 0<z < ms,

where b is an arbitrary positive constant satisfying ¢ — b((¢/p?)b + a(0)) > 0, in particular
when ¢ —b(b+a(0)) > 0; and from (b)) we have that this estimate is valid for 0 <z <m < 1.

Extending this process for ¢ > 1 by using the operator L; from , barrier function z;,
and applying estimates and , we obtain, in the same manner,

[ (z,e, p)| < M(pPexp(—bz/p) +1), 0<z<m<l, (22)
for b satisfying ¢ — b(b + a(0)) > 0.
1.3.2. Case a(0) < 0, p > g'/2
To estimate the derivatives of the solution in this case, we introduce the barrier function
wi(z,e, 1) = My(p/e) exp(—ubx/e) + My, 0<z<m<1.
Using the operator for 1 = 1, we get

My (/) exp(—pbx/e)[=b*(u? [€) = b(p?[e)a(x) + fu(w,u) + pa'(x)]+

Ll[le'T?gnu) -
+ MQ[fu(xwu)+Ma/(x)]'

Then, for b satisfying c— (1%/€)b(b+a(0)) > 0, in particular since a(0) < 0 for 0 < b < —a(0),
we have, using and fori =1,
Lifwi)(z, e, 1) = | Li[u](z,e, 1), 0 <z < my,

and
w1(075>ﬂ) > |u/(0>57,u)|7 wl(m07€>#) > |u/(m0v57#)|7

for sufficiently large M; and M, when 0 < x < mg for some mgy > 0. These relations and
yield the estimate

(2,6, )] < M(pu/eexp(—pbr/e) +1), 0<z<m<l,
when a(0) < 0, p > &'/2,0 < b < —a(0).
Further, using sequentially the barrier function w;, operator L;, and estimates
and , we obtain
@ (,e, )| < M((p/e) exp(—pbz/e) +1), 0<z<m<1, (23)

when a(0) < 0, p > e'/2,0 < b < —a(0).
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1.3.3. Case a(0) # 0, pu < g'/?

To estimate the derivatives of the solution in this case, we introduce the barrier function
Vi(z, e, 1) = Mye " exp(—=bx/e'?) + My, 0<z<m<1.

We get

Li[tn](x, €, p) = M exp(—ba /e /?)[~0% — b(u/e"/?)a(x) + fula,u) + pa'(z)]+
+M[fu(a,u) + pd' (2));

thus, if ¢ — b(b + (u/c'/?)a(0)) > 0, in particular ¢ — b(b + a(0)) > 0 when a(0) > 0 and
¢ —b* > 0 when a(0) < 0, then

Lifn](z,e,p0) > |Lifu'](z e, )], 0 < <y,
for some my4 > 0; and from and for 1 < £'/2, we have
1(0,e, 1) = W06, 1), thr(ma, e, p) = | (ma, €, ),
for sufficiently large M; and M,. Consequently, we obtain
W (2,6, 1)| < MgV exp(=bx/e/?) +1], 0< 2 < my,

where b is an arbitrary positive constant satisfying ¢ — b(b + a(0)) > 0 when a(0) > 0, and
¢ —b* > 0 when a(0) < 0.
Extending this process for ¢ > 1 by using ¢;, L;, and applying and , we obtain

[u (2,2, p)| < M(e™ P exp(~br/e'*) +1), 0<w<m<1, (24)

where b is an arbitrary positive constant satisfying ¢ — b(b+ a(0)) > 0 when a(0) > 0, and
¢ —b* > 0 when a(0) < 0.

1.3.4. Compact formulas

Estimates , , and are also formulated in the following compact form
[ (2,6, )| < M(n~"exp(=ba/n) +1), 0<z<m<1, (25)

where 1 = p, b is an arbitrary positive number satisfying ¢ — b(b+ a(0)) > 0 when a(0) > 0,
p>e%n=¢/p, 0<b< —a(0) when a(0) < 0, u > £"/?; n = /2 when a(0) # 0, u < /2,
and b is an arbitrary positive constant satisfying ¢ — b(b + a(0)) > 0 when a(0) > 0 and
¢ —b* > 0 when a(0) < 0.

In accordance with , we also have the estimates

(e}

WW%WMSM( L

— L ___4+1), 0<z<m<1 26
et osEeman 0

where « is an arbitrary positive number; n = g when a(0) > 0, g > €Y/2; = £/ when
a(0) < 0, > eY?; and n = /2 when a(0) # 0, u < e'/2.
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1.3.5. Estimates of solution derivatives near boundary non-turning point =1

It is obvious that the solution derivatives in the vicinity of the non-turning point x = 1
(a(1) # 0) are estimated by the formulae obtained from and by changing the sign
of a(1) and substituting 1 — z for z, namely

W@ (@, e, 1)] < M(n~"exp(=b(1 =) /n) +1), 0<(1—z)<m<1,

where n = p, b is an arbitrary positive number satisfying ¢ — b(b — a(1)) > 0 when a(1) < 0,
p>e%n=¢/p, 0<b<a(l) when a(1) >0, u > e¥/?; n = e'/? when a(1) # 0, p < /2,
and b is an arbitrary positive constant satisfying ¢ — b(b — a(1)) > 0 when a(1) < 0 and
¢ —b* > 0 when a(1) > 0.

In accordance with , we also have the estimates

(67

n
(n+1—x)oti

|u(i)(x,5,u)|§M( +1), 0<(1l—z)<m<l1, (27)

where « is an arbitrary positive number; n = pu when a(1) < 0, g > €Y/2; n = £/ when
a(l) >0, u > eY?; and n = /2 when a(1) # 0, u < e'/2.

1.4. Global estimates of solution derivatives

Using the previous local estimates , , 7, and of solution derivatives for

problem , we can obtain global formulae for derivatives on the interval [0, 1]. In particular,
using the local estimates , , and , we obtain the following global estimates:

' e
(m A+ z)att = (1 —z)oets

|u(i)(m,5,y)|§M( +1)7 0<i<n+1, 0<z<l1, (28)

where a; and ay are arbitrary positive numbers, 1, = ¢'/? if a(0) = 0; n, = p if a(0) > 0 and
p>e%m =¢e/pifa(0) < 0and pu > e'? n = e¥/? if a(0) # 0 and pu < ¥/?; gy = /2 if
a(l) =0; my = pif a(l) < 0 and pu > e¥/2; ny = ¢/p if a(1) > 0 and p > £'/?; and 7, = €'/2
if a(1) # 0 and pu < '/2,

1.5. Transformations eliminating layers

The numerical algorithm proposed in this paper for solving problem is based on piece-
wise smooth layer-damping coordinate transformations x(,¢) : [0,1] — [0, 1] in compliance
with a basic principle: they are to eliminate singularities of high order of solutions u(z, ¢)
at each subinterval [a;,b;] of smoothness; i.e., the high-order derivatives of any concrete
solution with respect to the new coordinate ¢ are to have the bounds:

u[z(§,€), €]

di

e

where the constant M does not depend on the parameter ¢ and the number n depends on
the order of the approximation of the problem: the higher the order, the larger the number
n will be. With the help of such transformations, any problem can be solved using high-
order approximations in the physical interval x on layer-resolving grids defined by mapping
the nodes of a uniform grid in [0,1] with suitable coordinate transformations (&, ¢), as
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in |7, [21]. It is proposed that by using the layer-resolving grids obtained by transformations
z(&, €) satisfying , e-uniform high-order convergence will be demonstrated for schemes of
high order in the physical interval x. Moreover, the numerical solution can be interpolated
e-uniformly with high-order accuracy on the entire interval [0, 1].

1.5.1. Basic transformation

To generate layer-resolving grids near a boundary point, we will use as a template the
following universal coordinate transformation of the class C'[0, 1] described in [4} 5]:

(cin((1—dé)=Ye — 1), / 0 <& <&,
c1 [77(1 —Bfa) —n+ <W> (&) (€ — &o)+
Tiesit(€,1,0) = % (ﬁ) (E)(E— &)+ ...+ (30)
@
+% <W) (&0)(€ —&)' + col(€ — fo)lH] ; <&,
where 7 is a small parameter d—l_nﬂ>1+m >1,n>1 0= a 1—é— na
" P Y ! =T 14 na’ a 14+na’

a is an arbitrary positive constant satisfying 0 < a < a/n?, and ¢q > 0, while ¢; > 0 is such
as satisfies the necessary boundary condition z.p(1,¢,a) =1,

Ui (4) 11 1 . a(n—i)/(14na) -
(1—d§)1/a (&]):da a—i‘l a—i‘l—l U] , 1>1. (31)

Note that formula and all further formulas are valid for € (0,1). It was shown in |5, 7]
that this transformation eliminates up to n both power-of-type-1 singularities n®/(n + z)**™
and exponential singularities (1/n") exp(—bx/n).

A simpler form of transformation for an arbitrary a > 0 was originally published
in [22], while for @ = 1 in [18]. Paper 23] shows that the grid obtained using the trans-
formation is the most effective for numerical modelling of viscous flows over a plate,
compared to results obtained with the grids often used by many.

Assuming in [ = 2 as we typically do, taking into account , transformation (30)
is as follows:

can ((1 - d£>_1/a - 1) ) 0 < g < 507
1
an/(1+na) __ d= a(n—1)/(1+na) (¢ __
sepl&n )= | T & (32)
1 ,1/1
by (5 1) 0 - (e - | <6<,

1 — na/(l—l—na)
€o

where d = , a is an arbitrary positive constant satisfying 0 < a < a/n?,

1 1 o i 1,1 /1 V(e
— /)y gD (1) 4 (a - 1) D ) (g2 (1-6)°.
1
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An explicit transformation to generate a grid with node clustering near x = 1, denoted as
Tright (€, M, @), which eliminates up to n both power-of-type-1 singularities n*/(n+ 1 — )"
and exponential singularities (1/7) exp(m(x —1)/n), can be defined by the formula

xright(fanaa) =1- l'left(l - 57777&)7 0 S 6 S 17 (33)

where z;.4:(n, &, a) is given by general or special formulae. For example, by using
formula (32)), where [ =2, a =2, §; = 1/2, we get:

1_01 (n2n/(1+2n)_n+(1_n2/(1+2n))772(n71)/(1+2n)(1/2_5)_’_
3

O (1 _2/(142n)12,,2(n—2)/(14+2n) M2 Y
trion(€,m,2) =  +5 (1P AF )2 (1/2—€)2 4 co(1/2 5)),

- [1—2(1—p? 4 20) (1) 121},

where the constant ¢; is such that !/2(0,7,2) = 0.

An explicit transformation for generating a grid with node clustering near z = 0 and
xz = 1, denoted Zgpai(§, M1, a1, 12, az), for eliminating up to n power-of-type-1 singularities
near both boundaries: N N

Ui + 12
(m+x)*t (2 +1—z)ot

where n; and 7, are small parameters, as in , and corresponding exponential singularities,
can be defined by the combination of two transformations — either and , or
and , namely, by formula

Tgiobal (§, M1, A1, M2, A2) = Tiefr(Trigne (€, M2, G2), T, a1),

or
Tgiobal (§5 11, Q15 M2, A2) = Tright(Tiep(§, M1, a1), M2, a2),
where a; is an arbitrary positive constant independent of the small parameters n; and 7, and
satisfying 0 < a; < a;/n?, i =1,2.
Another way to define a similar transformation is to use x.p:(€,7, a):

0'5xleft(2§a m, al)a 0 S 5 S 057

xglobal(£7n17a17n27a2) = { 1— 0~5xleft(2(1 _ 5)’772’ &2), 0.5 S 5 S 1’ (34)

or to use xright(gv 1, (I)Z

1 _
xglobal(£7771>a177727a2) 25(1+y(95n1>a17n27a2))7 6‘:_1+2€7 Oggé 17
where ( )
_ —Zright(—0,m,a1), —1<n <0,
97 A1, T2, A2) = g
y( h L 712 2) { Iright(ea n2, a2)7 O S n S 1.

2. Numerical algorithm and experiments

2.1. Upwind numerical algorithm

As an approximation to the singularly perturbed boundary-value problem , we use the
standard upwind finite-difference scheme on a non-uniform grid x;, i = 0,1,..., N, 20 =0 <
T <...<xy=1



Theoretical and numerical analysis of semi-linear problem with two. .. 119

N [Uﬂ = _ 2 ufly —ul B ul —ulY, X ai(xi)uz]'\—[&—l - ufv+
hi 4 hi—y R hi—q hi
+a(x)———+ f(z,u;) =0, i=1,2,...,N—1, uy = Ao, uy = A1, (35)

hi—1

where h; = ;41 — x; and ax(z) = (a(z) £ |a(x)])/2. The nodes x;, i = 0,..., N, of the
layer-resolving grid are obtained explicitly using layer-damping transformation (34)), namely,

T = Tgiobat(th, T, a1,m2,02), ©=0,1,...,N, h=1/N.

For estimating the accuracy of the numerical algorithm, the following characteristic is
introduced based on the double-mesh principle:

N,
Tie = max |ult — uy "

’ 0<i<N

. t=0,1,...,

where u* = uN (x;) when upwind scheme is used, with N; number of mesh points. In

i
addition, one more characteristic,
N, N, -
dUt7E:Og23{Vt’uiJ:l_uit‘7 Z:071,...,Nt_1

is introduced, related to the jump of the numerical solution at the neighboring nodes.

The characteristic 7. is applied to estimate the order of accuracy of the numerical solu-
tion:

51 = 10g2<7‘t75/7}+1’5), t = O, 1, ey

and, consequently, du, . to estimate the order of numerical-solution jump in the neighboring
nodes

fs =logy(dure/dusr ), t=0,1,...

Note that if a solution to has neither boundary nor interior layers, then for the
numerical solution of this problem the value (5, is close to [y, while 33 is close to 1 through
the use of a stable scheme of order [y on the uniform grid x; = ih.

Theorem 2.1. If z; =2 gopar(1/N,m1, @1,12,02), 1=0,1,..., N, where Zgopar(§,71,a1,12,02)
0,1] — [0,1] is a coordinate transformation defined through (30) and with 1> 2, n>1,
then

luN — u(xs,e,p)| < M/N, i=0,...,N,

i —

where M is independent of N.

This theorem is proved similarly to [4, sect. 7.4.1 and 7.4.2] for a semi-linear problem
with one small parameter € on the grid obtained using the same basic transformation (30)).

2.2. Numerical examples
2.2.1. Example 1

For our first numerical experiment we consider the following problem:

—eu" 4+ p(r —22°) +u =0.1exp(x), 0<az<1,
u(0,e) = 0.05, wu(l,e) = 0.15,
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with 1 > e¥/2. For this problem, a(0) = 0, a’(0) > 0, a(1) = —1, ¢(z) = 1, and thus
estimates are as follows:

a1/2 Q2

€ N 1
(81/2 + x)oq—i—i (M +1-— x)cm-‘ri

]u(i)(x,e,u)\gM(le ), O0<i<n+l O<z<l,

for arbitrary a; > 0 and as > 0. This singularity is eliminated up to n by coordinate
transformation with 1, = e'/2, 1, = p.

Figure [1] and Table [I| show the numerical solution and values of the characteristics
and (3 for ¢ = 107%, u = 102 calculated using difference scheme on the grid x; =
Zgiobat (1/N, M1, 01,12, a2), © = 0,1,..., N, where xgopar(§,m1,01,72,a2) : [0,1] — [0,1] is a
coordinate transformation (34) with i, = /2 = 1073, a; = 1/20, 1y = u = 1072, ay = 1/20.
Figure [2 shows the coordinate transformation zgopei(§, 71, a1, 12, az).

Table[2|shows the values of characteristics 3; and 33 of the numerical solution for e =107%,
p = 1073, calculated with difference scheme (35)) on the grid ; = zgopar(i/N, 11, a1, M2, az),
i = 0,1,...,N, where Zgopa(&,m,a1,m2,a2) @ [0,1] — [0,1] is a coordinate transforma-
tion with g = e/2 =104, a4y = 1/20, o = o = 1073, ay = 1/20.

— 76 72 -"‘l
S s ] N =160,c=10"% u =10 g
K
S~—"
3
0.20
0.15 4 . - ]
0.10 A /‘
0.05 1 i
0 0.2 0.4 0.6 0.8 1.0
x

Fig. 1. Example 1

Table 1. Order of solution convergence and solution jump for e = 1076, = 1072

t N r 51 du 53
160 0.0038 | 0.000000 | 0.008802 | 0.837976
320 | 0.00216 | 0.819031 | 0.004384 | 1.00558
640 | 0.00117 | 0.881370 | 0.002206 | 0.990747
1280 | 0.000607 | 0.945925 | 0.001105 | 0.997741

2560 | 0.00031 | 0.972436 | 0.000553 | 0.999506

5120 | 0.000156 | 0.985953 | 0.000276 | 0.999899

| O x| W N~
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T able 2. Order of solution convergence and solution jump for e = 1078, y = 1073

0.8 1

0.6 1

0.4 1

0.2 1

1« Global

T
0

T T
0.2 0.4

T T
0.6 0.8

Fig. 2. Example 1

t N r Bl du 63

4| 160 | 0.001611 | 0.676430 | 0.026067 | 0.991273
5| 320 | 0.000916 | 0.814067 | 0.012987 | 1.005161
6 | 640 | 0.000491 | 0.898392 | 0.006485 | 1.001811
7 | 1280 | 0.000256 | 0.941229 | 0.003240 | 1.001279
8 | 2560 | 0.000130 | 0.972124 | 0.001619 | 1.000632
9 | 5120 | 0.000066 | 0.985845 | 0.000809 | 1.000304

1.2-!

u(w,n)

0.8 1

0.6 1

0.4 1

0.2 1

0.0 1

—0.2

1.0-:\

N =160, e = 10710, s = 104

T
0.2

T
0.4

T
0.6

Fig. 3. Example 2

T
0.8



122 V. D. Liseikin

Table 3. Order of solution convergence and solution jump for e = 10719, y = 10~*

t N r 51 du B3
160 0.0126 | 0.000000 | 0.008802 | 1.47946
320 | 0.00398 | 1.662363 | 0.004384 | 1.19617
640 | 0.000989 | 2.008477 | 0.002206 | 1.08667
1280 | 0.000247 | 2.001993 | 0.001105 | 1.04041

2560 | 6.16e-05 | 2.002023 | 0.000553 | 1.01946

5120 | 1.54e-05 | 2.003634 | 0.000276 | 1.08059

S| O | W N~

2.2.2. Example 2

For the second numerical experiment we consider the problem:

—eu” + px(1l —x)u' +u =exp(—Hz), 0<x<1,
u(0,e) = 1.2, wu(l,e) =—-0.2.

For this problem, a(0) = 0, a(1) = 0, and so estimates are as follows:

€a1/2 €a2/2

(51/2 + l»)aﬁ—i + (51/2 + 1 — x)oag—i—i

for arbitrary a; > 0 and as > 0.

This singularity is eliminated up to n by coordinate transformation with m, = e'/2,

_ 1/2
Mo =&/

Figure |3| and Table |3] show the numerical solution and values of characteristics [
and B3 for ¢ = 107 x4 = 107* calculated using difference scheme (35) on the grid
T = Tgiobat(1/N, 1, a1, 12, a2), © = 0,1, ..., N, where Zgopar(§, 71, a1,m2,a2) : [0,1] — [0,1] is
a coordinate transformation (34) with 1, = ¢'/2 = 107°, a; = 1/20, 1, = 107, ay = 1/20.

Conclusion

The paper addresses a semi-linear singularly perturbed problem with two small parameters
and turning points. Estimates of solution derivatives and construction of layer-resolving grids
based on layer-eliminating coordinate transformations are described. The convergence of
numerical solutions obtained using an upwind scheme on the layer-resolving grids is analysed.
Theoretical results are confirmed by numerical experiments.
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AnnHorarus

PaCCManI/IBaeTCH JABYXTOYE€YIHAA HOI[yJ'[I/IHefIHaH KpaeBad 3aa9a C ABYMA MAJIbIMU TTapaMeTpa-
MI U TOYKAMHU OBOPOTA. Jl0Ka3bIBAIOTCS OIEHKU TPOU3BOHBIX PEIEHUS 3aJ1a9i, Ha OCHOBE KOTO-
PBIX CTPOSTCS KOOPAWHATHBIE NPeobpa30BaHUs, YCTPAHAIONINE CJIOU. AHAIUIUPYETCS CXOTUMOCTH
YUCAEHHOTO Pellenns 3aJadi C ITOMOIIBIO CXeMBI ¢ HATPABJAEHHBLIMH PA3HOCTAMH HA TOJYIeHHBIX
CeTKaX. qI/IC.HeHHbIMI/I pacHeTaMu IMOATBEPXKIACHA PABHOMEPDHad CXOAUMOCTD PCIICHUA A4 PA3SHBIX
3HaYeHn! MaJIbIX MapaMeTpPOB K TOYHOMY PeIIeHuIo.

Karouesvie caosa: ajalruBHas cerka, CJIOU CTEIEHHOIO Tulla, 'mbpu/iHble NOrPAHUYHbIE CJIOH,
CXeMa C HallPaBJEHHBIMUW PA3HOCTAMM.
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