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Для четырехугольного оболочечного элемента дискретизации, матрица подат-
ливости которого скомпонована на основе смешанного варианта МКЭ, использова-
ны бикубические функции формы для аппроксимации вектора перемещения и би-
линейные функции для тензора второго ранга (деформаций и искривлений). На ос-
нове координатных преобразований получены новые аппроксимирующие выраже-
ния для искомых компонент тензора внутренней точки конечного элемента через
узловые значения компонент тензоров узловых точек. На примерах расчета пока-
зана эффективность использования разработанных аппроксимирующих функций
искомых величин.
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Введение

В последние годы наметилась устойчивая тенденция ко все более широкому внедрению
в авиационную, строительную и машиностроительную отрасли конструктивных элемен-
тов из оболочек и их фрагментов. Особенно широко тонкостенные элементы использу-
ются в авиастроении из-за ограничений веса конструкций летательных аппаратов [1, 2].
Геометрия оболочечных объектов становится гораздо более сложной, пологие оболочки
все чаще уступают оболочкам, как правило, эллипсоидального типа со значительной
кривизной поверхности. В этой связи возникает необходимость совершенствования ме-
тодов численного анализа напряженно-деформированного состояния (НДС) оболочек
эллипсоидального типа на основе современных научных достижений, новых, перспек-
тивных тензорно-векторных форм интерполяционной процедуры.

Постановка задач прочности инженерных сооружений предполагает построение ма-
тематической модели физического процесса деформирования твердого тела под дейст-
вием заданной нагрузки как системы дифференциальных или интегральных уравнений
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при различных краевых и начальных условиях. Теория деформирования твердого тела
в настоящее время достаточно развита [3, 4]. Однако уравнения теории оказываются во
многих случаях существенно сложными, а их решение для инженерной практики ока-
залось возможным только в некоторых простых случаях. Поэтому актуальной задачей
стала разработка приближенных методов для конструкций различного назначения как
в задачах прочности [5–11], так и в задачах устойчивости [12–15]. Во многих случаях
решения актуальных задач получались на основе численных методов расчета.

Среди численных методов особенно широкое распространение получил метод конеч-
ных элементов (МКЭ) [1, 2]. Этот метод используется в расчетах прочности трехмерных
объектов [16–20], пластин, в том числе и композитных [21–27]. Широкое использование
получил этот метод и в задачах прочности и устойчивости оболочек [28–33] с реали-
зацией в криволинейных системах координат при аппроксимации компонент векторов
перемещений как в декартовой системе координат.

Конечно-элементный анализ процессов деформирования строительных и машино-
строительных конструкций на современном уровне развития методов расчета является
неотъемлемой частью этапов проектирования, строительства и реконструкции объек-
тов строительной и машиностроительной индустрии. Практически все созданные к на-
стоящему времени вычислительные комплексы, базирующиеся на МКЭ, реализуют об-
щепринятую процедуру интерполяции отдельной компоненты через узловые значения
только этой же компоненты. Такой подход приводит к необходимости чрезмерного сгу-
щения сетки элементов дискретизации, что в свою очередь вызывает накопление по-
грешности вычислений. Кроме того, в криволинейной системе координат такая форма
интерполяции приводит к появлению в МКЭ проблемы учета смещения конечного эле-
мента как твердого тела. Поэтому в криволинейных системах координат достаточно
актуальной задачей является создание вычислительных алгоритмов МКЭ, основанных
на использовании тензорно-векторной формы интерполяционной процедуры, при кото-
рой выполняется интерполяция тензорных величин первого и второго рангов. Тензорно-
векторная форма интерполяционной процедуры особенно востребована при реализации
МКЭ в смешанной формулировке, когда искомыми параметрами одновременно высту-
пают компоненты тензора деформаций и компоненты вектора перемещения.

В статье представлен конечно-элементный алгоритм расчета оболочек эллипсои-
дального типа при реализации смешанной формулировки МКЭ. В качестве искомых уз-
ловых параметров выступают компоненты тензоров деформаций и искривлений в точке
срединной поверхности, а также компоненты вектора перемещения и их частные произ-
водные первого порядка. Матрица податливости четырехугольного конечного элемента
(КЭ) была скомпонована при использовании двух вариантов интерполяционной проце-
дуры:

– традиционная интерполяционная процедура применена непосредственно для каж-
дой компоненты тензора деформации вектора перемещения внутренней точки ко-
нечного элемента через узловые значения этой же компоненты;

– традиционная интерполяционная процедура применена для тензора второго ранга
и вектора перемещения точки срединной поверхности через соответствующие тен-
зоры деформаций, искривлений и векторы перемещения узловых точек, и только
после координатных преобразований определялись аппроксимирующие выраже-
ния для компонент тензоров и вектора перемещения.

Корректность и высокая точность конечно-элементных решений по разработанному
алгоритму была доказана на примерах расчета эллиптического кольца, подвергающе-
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гося растяжению, при различных значениях параметров эллипса, а также на примерах
расчета эллиптического цилиндра со значительной кривизной срединной поверхности
при двух вариантах опирания: шарнирном и пружинном. Доказано, что применение
разработанной тензорно-векторной формы интерполяционной процедуры в смешанной
формулировке МКЭ позволяет учесть смещения оболочечной конструкции эллипсои-
дального типа как абсолютно твердого тела.

1. Геометрия срединной поверхности оболочки

и интерполяционная процедура

Оболочка эллипсоидального типа, т. е. оболочка, поперечное сечение которой представ-
ляет собой в общем случае эллипс, может быть задана в декартовой системе координат
вектор-функцией вида

R0 = 𝑥i+ 𝑟 sin 𝜃j+ 𝑟 cos 𝜃k,

где 𝜃 — угловая координата, отсчитываемая от вертикальной оси против хода часо-
вой стрелки; 𝑟 = 𝑟(𝑥, 𝜃) — функция, которая зависит от типа поверхности конкретной
оболочки, например:

– для эллипсоида [33]

𝑟 = 𝑏𝑐

√
𝑎2 − 𝑥2

𝑎
√
𝑐2 sin2 𝜃 + 𝑏2 cos2 𝜃

(𝑎, 𝑏, 𝑐 — параметры эллипсоида);
– для эллиптического цилиндра

𝑟 =
𝑏𝑐√

𝑐2 sin2 𝜃 + 𝑏2 cos2 𝜃

(𝑏, 𝑐 — параметры эллипса поперечного сечения);
– для эллиптического конуса

𝑟 =
𝑏𝑐(𝑎− 𝑥)

𝑎
√
𝑐2 sin2 𝜃 + 𝑏2 cos2 𝜃

(𝑎, 𝑏, 𝑐 — параметры эллиптического конуса).
Используя деривационные формулы, можно определить ковариантные векторы ба-

зиса в произвольной точке срединной поверхности эллипсоидальной оболочки

a0
1 = R0

,𝑥, a0
2 = R0

,𝜃, a0 =
a0
1 × a0

2

|a0
1 × a0

2|
. (1)

Дифференцируя (1) по 𝑥 и 𝜃, можно получить производные векторов локального базиса,
которые могут быть представлены в матричной форме

{a0
,𝑥}

3×1

= [𝑑𝑥]
3×3

{a0}
3×1

, {a0
,𝜃}

3×1

= [𝑑𝜃]
3×3

{a0}
3×1

,

где {a0
,𝑥}

𝑇
= {a0

1,𝑥 a0
2,𝑥 a0

,𝑥}; {a0
,𝜃}

𝑇
= {a0

1,𝜃 a0
2,𝜃 a0

,𝜃}; {a0}𝑇 = {a0
1 a0

2 a0}.
Под действием внешней нагрузки точка 𝑇 0 срединной поверхности эллипсоидальной

оболочки займет актуальное положение 𝑇 , а точка 𝑇 0𝜁 , определяемая вектор-функцией
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R0𝜁 = R0 + 𝜁a0 (𝜁 — расстояние вдоль перпендикуляра к касательной, проведенной
к срединной поверхности в точке 𝑇 0), переместится в точку 𝑇 𝜁 . Векторы перемещений
точек 𝑇 0 и 𝑇 0𝜁 определяются выражениями

v = 𝑣1a0
1 + 𝑣2a0

2 + 𝑤a0 = {a0}
1×3

𝑇 {𝑊}
3×1

, V = v + 𝜁
(︀
a− a0

)︀
,

где a = (a1×a2)/|a1×a2| — орт нормали к срединной поверхности в точке 𝑇 актуального
состояния эллипсоидальной оболочки (a1 = a0

1 + v,𝑥; a2 = a0
2 + v,𝜃).

Вектор-функция точки 𝑇 𝜁 может быть задана выражением

R𝜁 = R0𝜁 +V = R0𝜁 + v + 𝜁∆a,

где ∆a = a− a0.
Векторы базиса исходного и актуального состояний в точках 𝑇 0𝜁 и 𝑇 𝜁 могут быть

определены по формулам

g0
1 = R0𝜁

,𝑥 , g1 = R𝜁
,𝑥 = g0

1 + v,𝑥 + 𝜁∆a,𝑥, g2 = R𝜁
,𝜃 = g0

2 + v,𝜃 + 𝜁∆a,𝜃. (2)

Для получения соотношений Коши в точке 𝑇 𝜁 можно воспользоваться соотношени-
ями механики сплошных сред [4] при использовании гипотезы Кирхгофа –Лява [3]

𝜀𝜁𝛼𝛽 = 0.5(𝑔𝛼𝛽 − 𝑔0𝛼𝛽) =
1

2
(g0

𝛼 · v,𝛽 + g0
𝛽 · v,𝛼) = 𝜀𝛼𝛽 + 𝜁κ𝛼𝛽, (3)

где 𝑔0𝛼𝛽 = g0
𝛼 · g0

𝛽, 𝑔𝛼𝛽 = g𝛼 · g𝛽, 𝜀𝛼𝛽, κ𝛼𝛽 — деформации и искривления в точке 𝑇
срединной поверхности оболочки эллипсоидального типа (𝛼, 𝛽 = 1, 2).

На основе гипотезы Кирхгофа деформации (3) могут быть представлены матричным
выражением

{𝜀𝜁𝛼𝛽}
3×1

= [𝑍]
3×6

{𝜀κ𝛼𝛽}
6×1

, (4)

где {𝜀κ𝛼𝛽}
1×6

𝑇 = {𝜀11𝜀222𝜀12κ11κ222κ12} — строка деформаций и искривлений в точке 𝑇

срединной поверхности оболочки эллипсоидального типа.
Вышеупомянутые деформации 𝜀𝛼𝛽 и искривления κ𝛼𝛽 в точке 𝑇 срединной поверх-

ности эллипсоидальной оболочки наряду с компонентами вектора перемещения 𝑣1, 𝑣2, 𝑣
и их производными выбираются в качестве узловых неизвестных четырехугольного эле-
мента дискретизации. Искомые узловые варьируемые параметры могут быть представ-
лены в матричной форме следующим образом:

{𝑊𝑦}
1×36

𝑇 = {{𝑣1𝐺}
1×12

𝑇{𝑣2𝐺}
1×12

𝑇{𝑤𝐺}
1×12

𝑇}, {𝜀κ𝑦}
1×24

𝑇 = {{𝜀𝛼𝛽𝑦}
1×12

𝑇{κ𝛼𝛽𝑦}
1×12

𝑇}, (5)

где

{𝜀𝛼𝛽𝑦}
1×12

𝑇 = {𝜀𝑖11𝜀
𝑗
11𝜀

𝑘
11𝜀

𝑙
11𝜀

𝑖
22 . . . 𝜀

𝑙
222𝜀

𝑖
12 . . . 2𝜀

𝑙
12},

{κ𝛼𝛽𝑦}
1×12

𝑇 = {κ𝑖
11κ

𝑗
11κ𝑘

11κ𝑙
11κ𝑖

22 . . .κ𝑙
222κ𝑖

12 . . . 2κ𝑙
12}, {𝑞𝐺}

1×12

𝑇
= {𝑞𝑖𝑞𝑗𝑞𝑘𝑞𝑙𝑞𝑖,𝑥 . . . 𝑞𝑙,𝑥𝑞𝑖,𝜃 . . . 𝑞𝑙,𝜃}.

Здесь 𝑖, 𝑗, 𝑘 и 𝑙 — узлы, расположенные в вершинах четырехугольного конечного эле-
мента; нижние индексы 𝑥 и 𝜃 после запятой обозначают операцию дифференцирования
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по соответствующей глобальной координате 𝑥 и 𝜃; под буквой 𝑞 понимается компонента
вектора перемещения 𝑣1, 𝑣2 или 𝑤.

В качестве аппроксимирующих функций для деформаций 𝜀𝛼𝛽 и искривлений κ𝛼𝛽

срединной поверхности эллипсоидальной оболочки были использованы билинейные
функции локальных координат 𝜉, 𝜂 (−1 ≤ 𝜉, 𝜂 ≤ 1)

𝜀𝛼𝛽 = {𝜙}
1×4

𝑇

⎧⎪⎪⎨⎪⎪⎩
𝜀𝑖𝛼𝛽
𝜀𝑗𝛼𝛽
𝜀𝑘𝛼𝛽
𝜀𝑙𝛼𝛽

⎫⎪⎪⎬⎪⎪⎭
4×1

, κ𝛼𝛽 = {𝜙}
1×4

𝑇

⎧⎪⎪⎨⎪⎪⎩
κ𝑖

𝛼𝛽

κ𝑗
𝛼𝛽

κ𝑘
𝛼𝛽

κ𝑙
𝛼𝛽

⎫⎪⎪⎬⎪⎪⎭
4×1

. (6)

Компонента вектора перемещения точки срединной поверхности и ее производные
аппроксимируется посредством произведений полиномов Эрмита третьего порядка [33]

𝑞 = {𝜓}
1×12

𝑇 {𝑞𝐿}
12×1

, 𝑞,𝛼 = {𝜓,𝛼}
1×12

𝑇 {𝑞𝐿}
12×1

, 𝑞,𝛼𝛽 = {𝜓,𝛼𝛽}
1×12

𝑇 {𝑞𝐿}
12×1

, (7)

где {𝑞𝐿}
1×12

={𝑞𝑖𝑞𝑗𝑞𝑘𝑞𝑙𝑞𝑖,𝜉 . . . 𝑞𝑙,𝜉𝑞𝑖,𝜂 . . . 𝑞𝑙,𝜂}; {𝜓}
1×12

𝑇 ={ℎ1(𝜉)ℎ1(𝜂)
...ℎ2(𝜉)ℎ1(𝜂)

...ℎ2(𝜉)ℎ2(𝜂)
...ℎ1(𝜉)ℎ2(𝜂)

...

...ℎ3(𝜉)ℎ1(𝜂)
...ℎ4(𝜉)ℎ1(𝜂)

...ℎ4(𝜉)ℎ2(𝜂)
...ℎ3(𝜉)ℎ2(𝜂)

...ℎ1(𝜉)ℎ3(𝜂)
...ℎ2(𝜉)ℎ3(𝜂)

...ℎ2(𝜉)ℎ4(𝜂)
...ℎ1(𝜉)ℎ4(𝜂)};

ℎ1, ℎ2, ℎ3, ℎ4 — полиномы Эрмита третьей степени; {𝜓,𝛼}
1×12

𝑇 = {𝜓,𝜉}
1×12

𝑇 𝜉,𝛼 + {𝜓,𝜂}
1×12

𝑇𝜂,𝛼;

{𝜓,𝛼𝛽}
1×12

𝑇={{𝜓,𝜉𝜉}
1×12

𝑇 𝜉,𝛼𝜉,𝛽+{𝜓,𝜉𝜂}
1×12

𝑇 𝜉,𝛼𝜂,𝛽+{𝜓,𝜉}
1×12

𝑇 𝜉,𝛼𝛽+{𝜓,𝜂𝜉}
1×12

𝑇𝜂,𝛼𝜉,𝛽+{𝜓,𝜂𝜂}
1×12

𝑇𝜂,𝛼𝜂,𝛽+{𝜓,𝜂}
1×12

𝑇𝜂,𝛼𝛽}.

Для компонент вектора перемещений внутренней точки конечного элемента можно
на основе (5) и (7) сформировать матричное соотношение

{𝑊}
3×1

= [𝐴1]
3×36

{𝑊𝑦}
36×1

. (8)

Столбец деформаций и искривлений в произвольной точке срединной поверхности
выражается через узловые значения этих величин на основе (5) и (6) матричным вы-
ражением

{𝜀κ𝛼𝛽}
6×1

= [𝐻1]
6×24

{𝜀κ𝑦}
24×1

.

На основании (2)–(4) столбец деформаций и искривлений можно представить через
узловые величины векторов перемещений

{𝜀κ𝑘
𝛼𝛽}

6×1

= [𝜇]
6×3

{𝑊}
3×1

= [𝜇]
6×3

[𝐴1]
3×36

{𝑊𝑦}
36×1

= [𝐵1]
6×36

{𝑊𝑦}
36×1

,

где [𝜇]
6×3

— матрица дифференциальных операторов.

Аппроксимирующие выражения (6), (7) отражают традиционную для МКЭ форму
интерполяционной процедуры, суть которой состоит в том, что каждая искомая ком-
понента аппроксимируется через узловые значения этой же компоненты.

Однако, если тензоры деформаций и искривлений, а также вектор перемещения
(тензор первого ранга) интерполировать не по отдельным их компонентам, а как тен-
зорные величины (каковыми они по своей сути и являются), то необходимо применять
интерполяционную процедуру для тензоров и векторов, суть которой состоит в исполь-
зовании аппроксимирующих выражений следующего вида:



Модернизация аппроксимации искомых величин смешанного МКЭ. . . 81

𝜀̃𝛼𝛽 = {𝜙}
1×4

𝑇 {𝜀̃𝑦}
4×1

, κ̃𝛼𝛽 = {𝜙}
1×4

𝑇 {κ̃𝑦}
4×1

, v = {𝜓}
1×12

𝑇 {v𝐿
𝑦 }

12×1

, {v𝐿
𝑦 }

12×1

= [𝑃𝑅]
12×12

{v𝐺
𝑦 }

12×1

, (9)

где

{𝜀̃𝑦}
1×4

𝑇 = {𝜀̃ 𝑖
𝛼𝛽𝜀̃

𝑗
𝛼𝛽𝜀̃

𝑘
𝛼𝛽𝜀̃

𝑙
𝛼𝛽}, {κ̃𝑦}

1×4

𝑇 = {κ̃𝑖
𝛼𝛽κ̃

𝑗
𝛼𝛽κ̃

𝑘
𝛼𝛽κ̃𝑙

𝛼𝛽},

{v𝐿
𝑦 }

1×12

𝑇
= {v𝑖v𝑗v𝑘v𝑙v𝑖

,𝜉v
𝑗
,𝜉v

𝑘
,𝜉v

𝑙
,𝜉v

𝑖
,𝜂v

𝑗
,𝜂v

𝑘
,𝜂v

𝑙
,𝜂}, {v𝐺

𝑦 }
1×12

𝑇
= {v𝑖v𝑗v𝑘v𝑙v𝑖

,𝛼v
𝑗
,𝛼v

𝑘
,𝛼v

𝑙
,𝛼v

𝑖
,𝛽v

𝑗
,𝛽v

𝑘
,𝛽v

𝑙
,𝛽}.

Вектор перемещения (8) внутренней точки конечного элемента и его частные про-
изводные можно представить выражениями

v = {𝜓}
1×12

𝑇 [𝑃𝑅]
12×12

[𝑙]
12×36

{𝑊𝑦}
36×1

, v,𝛼 = {𝜓,𝛼}
1×12

𝑇 [𝑃𝑅]
12×12

[𝑙]
12×36

{𝑊𝑦}
36×1

,

v,𝛼𝛽 = {𝜓,𝛼𝛽}
1×12

𝑇 [𝑃𝑅]
12×12

[𝑙]
12×36

{𝑊𝑦}
36×1

,
(10)

где [𝑙]
12×36

— матрица, элементами которой являются строки векторов узловых точек

конечного элемента [33].
Входящие в левые части (9) тензоры деформаций и искривлений в точке, при-

надлежащей внутренней области четырехугольного конечного элемента, могут быть
представлены компонентами диадных произведений векторов локального базиса дан-
ной точки:

𝜀̃𝛼𝛽 = 𝜀11a
01 · a01 + 𝜀22a

02 · a02 + 2𝜀12a
01 · a02 = {ã0𝑤}

1×3

𝑇 {𝜀𝛼𝛽}
3×1

,

κ̃𝛼𝛽 = κ11a
01 · a01 + κ22a

02 · a02 + 2κ12a
01 · a02 = {ã0𝑤}

1×3

𝑇 {κ𝛼𝛽}
3×1

,

где {ã0𝑤}
3×1

— диадные произведения контравариантных векторов a0𝛼.

Тензоры деформаций и искривлений в узловых точках 𝜀𝜌𝛼𝛽 (𝜌 = 𝑖, 𝑗, 𝑘, 𝑙), входящие
в правую часть (9), также могут быть представлены компонентами диадных произве-
дений узловых векторов локального базиса

{𝜀̃𝛼𝛽𝑦}
4×1

= [𝐿]
4×12

{𝜀𝛼𝛽𝑦}
12×1

, {κ̃𝛼𝛽𝑦}
4×1

= [𝐿]
4×12

{κ𝛼𝛽𝑦}
12×1

, (11)

где

[𝐿]
4×12

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

{ã0𝑖}
1×3

𝑇 {∅}
1×3

{∅}
1×3

{∅}
1×3

{∅}
1×3

{ã0𝑗}
1×3

𝑇 {∅}
1×3

{∅}
1×3

{∅}
1×3

{∅}
1×3

{ã0𝑘}
1×3

𝑇 {∅}
1×3

{∅}
1×3

{∅}
1×3

{∅}
1×3

{ã0𝑙}
1×3

𝑇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

{𝜀𝛼𝛽𝑦}
1×12

𝑇 =
{︀
{𝜀𝑖11𝜀𝑖222𝜀𝑖12}{𝜀

𝑗
11𝜀

𝑗
222𝜀

𝑗
12}{𝜀𝑘11𝜀𝑘222𝜀𝑘12}{𝜀𝑙11𝜀𝑙222𝜀𝑙12}

}︀
,

{κ𝛼𝛽𝑦}
1×12

𝑇 =
{︀
{κ𝑖

11κ𝑖
222κ𝑖

12}{κ
𝑗
11κ

𝑗
222κ

𝑗
12}{κ𝑘

11κ𝑘
222κ𝑘

12}{κ𝑙
11κ𝑙

222κ𝑙
12}

}︀
.
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Для преобразования матриц [𝑙]
12×36

и [𝐿]
4×12

формируются следующие матричные соот-

ношения:

{a0𝜌}
3×1

= [𝑑𝜌]
3×3

{a0}
3×1

, {a0𝑤𝜌}
3×1

= [𝑑𝑤𝜌]
3×3

{a0𝑤}
3×1

, {ã0𝑤𝜌}
3×1

= [𝐷𝜌]
3×3

{ã0𝑤}
3×1

, (12)

где {a0𝜌}
1×3

𝑇
— строка векторов ковариантного базиса 𝜌-й узловой точки конечного эле-

мента (𝜌 = 𝑖, 𝑗, 𝑘, 𝑙); {a0}
1×3

𝑇
— строка векторов ковариантного базиса внутренней точки

конечного элемента; {a0𝑤𝜌}
1×3

𝑇
— строка векторов контравариантного базиса 𝜌-й узло-

вой точки (𝜌 = 𝑖, 𝑗, 𝑘, 𝑙); {a0𝑤}
1×3

𝑇
— строка векторов контравариантного базиса внутрен-

ней точки конечного элемента; {ã0𝑤𝜌}
1×3

𝑇
= {a01𝜌a01𝜌...a02𝜌a02𝜌...a01𝜌a02𝜌} – строка диадных

произведений векторов контравариантного базиса узловой точки конечного элемента;

{ã0𝑤}
1×3

𝑇
= {a01a01...a02a02...a01a02}— строка диадных произведений контравариантных ком-

понент внутренней точки конечного элемента.
С учетом (12) входящую в (11) матрицу [𝐿] можно преобразовать к виду

[𝐿]
4×12

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

{ã0𝑤}
1×3

𝑇
[𝐷𝑖]
3×3

𝑇
0 0 0

0 {ã0𝑤}
1×3

𝑇
[𝐷𝑗]
3×3

𝑇
0 0

0 0 {ã0𝑤}
1×3

𝑇
[𝐷𝑘]
3×3

𝑇
0

0 0 0 {ã0𝑤}
1×3

𝑇
[𝐷𝑙]
3×3

𝑇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (13)

При учете (13) аппроксимирующие выражения для тензоров деформаций и искрив-
лений (9) срединной поверхности четырехугольного КЭ могут быть представлены в раз-
вернутом виде

{ã0𝑤}
1×3

𝑇

⎧⎨⎩
𝜀11
𝜀22
2𝜀12

⎫⎬⎭
3×1

= {ã0𝑤}
1×3

𝑇
[︂
𝜙1[𝐷

𝑇 ]
3×3

𝑖
𝜙2[𝐷

𝑇 ]
3×3

𝑗
𝜙3[𝐷

𝑇 ]
3×3

𝑘
𝜙4[𝐷

𝑇 ]
3×3

𝑙
]︂
{𝜀𝛼𝛽𝑦}
12×1

, (14)

{ã0𝑤}
1×3

𝑇

⎧⎨⎩
κ11

κ22

2κ12

⎫⎬⎭
3×1

= {ã0𝑤}
1×3

𝑇
[︂
𝜙1[𝐷

𝑇 ]
3×3

𝑖
𝜙2[𝐷

𝑇 ]
3×3

𝑗
𝜙3[𝐷

𝑇 ]
3×3

𝑘
𝜙4[𝐷

𝑇 ]
3×3

𝑙
]︂
{κ𝛼𝛽𝑦}

12×1

. (15)

Из (14) и (15) можно получить необходимые аппроксимирующие выражения для
каждой компоненты тензора деформаций

{𝜀𝛼𝛽}
3×1

= [ℎ]
3×12

{𝜀𝛼𝛽𝑦}
12×1

, {κ𝛼𝛽}
3×1

= [ℎ]
3×12

{κ𝛼𝛽𝑦}
12×1

. (16)

Как следует из (16), каждая компонента тензора деформаций и тензора искривле-
ний срединной поверхности четырехугольного КЭ является функцией узловых значе-
ний всех компонент тензора деформаций, в то время как при реализации общеприня-
того в МКЭ подхода (6) каждая компонента тензора деформаций является функцией
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узловых значений только этой же самой компоненты. Следует особо подчеркнуть, что
в аппроксимирующих выражениях (16), в отличие от (6), присутствуют параметры ис-
пользуемой системы криволинейных координат.

Компоненты тензоров деформаций и искривлений во внутренней точке конечного
элемента {𝜀κ𝛼𝛽}

6×1

через их узловые значения можно представить матричным выражением

{𝜀κ𝛼𝛽}
6×1

= [𝐻2]
6×24

{𝜀κ𝑦}
24×1

, (17)

где {𝜀κ𝛼𝛽}
1×6

𝑇 = {𝜀11𝜀222𝜀12κ11κ222κ12}, {𝜀κ𝑦}
1×24

𝑇 = {{𝜀𝛼𝛽𝑦}
1×12

𝑇{κ𝛼𝛽𝑦}
1×12

𝑇}.

Используя соотношения (12) для преобразования элементов матрицы [𝑙]
12×36

в (10),

можно столбец перемещений {𝑊}
3×1

внутренней точки конечного элемента представить

матричным выражением
{𝑊}
3×1

= [𝐴2]
3×36

{𝑊𝑦}
36×1

. (18)

Более подробный вывод аппроксимирующих выражений для компонент вектора пе-
ремещения и их частных производных первого порядка по глобальным криволинейным
координатам изложен в [33].

С другой стороны, деформации и искривления в точке срединной поверхности обо-
лочки при использовании (2)–(4) определяются матричными соотношениями

{𝜀κ𝑘
𝛼𝛽}

6×1

= [𝜇]
6×3

{𝑊}
3×1

= [𝜇]
6×3

[𝐴2]
3×36

{𝑊𝑦}
36×1

= [𝐵2]
6×36

{𝑊𝑦}
36×1

, (19)

где [𝜇]
6×3

— матрица дифференциальных операторов.

2. Матрица податливости четырехугольного конечного

элемемента

Смешанный функционал для оболочки при учете гипотезы Кирхгофа записывается
выражением

𝐹𝑆 =

∫︁
𝑉

{𝑆}
1×6

𝑇 {𝜀κ𝑘
𝛼𝛽}

6×1

𝑑𝑉 − 1

2

∫︁
𝑉

{𝑆}
1×6

𝑇 {𝜀κ𝛼𝛽}
6×1

𝑑𝑉 − 1

2

∫︁
𝐹

{𝑊}
1×3

𝑇 {𝑃}
6×1

𝑑𝐹.

где {𝑆}
1×6

𝑇 = {𝑁11𝑁22𝑁12𝑀11𝑀22𝑀12} — строка усилий моментов в точке срединной

поверхности; {𝜀κ𝛼𝛽}
1×6

𝑇 = {𝜀11𝜀222𝜀12κ11κ222κ12} — строка деформаций и искривлений

срединной поверхности в точке, компоненты которой определяются через компоненты

матрицы-строки {𝑆} (приведено ниже); {𝜀κ𝑘
𝛼𝛽}

1×6

𝑇
— строка деформаций и искривлений

срединной поверхности, компоненты которой определяются соотношениями (19).
Усилия в сечении оболочки определяются выражениями

{𝑁}
3×1

=

ℎ/2∫︁
−ℎ/2

{𝜎}
3×1

𝑑𝜁 =

ℎ/2∫︁
−ℎ/2

[𝐶]
3×3

{𝜀}
3×1

𝑑𝜁 =

ℎ/2∫︁
−ℎ/2

[𝐶]
3×3

[𝑍]
3×6

{𝜀κ𝛼𝛽}
6×1

𝑑𝜁, (20)

где [𝐶] — матрица закона Гука, определяемая в [4].
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После интегрирования (20) получаем

{𝑁}
3×1

= [𝛼]
3×6

{𝜀κ𝛼𝛽}
6×1

,

где {𝑁}
1×3

𝑇 = {𝑁11𝑁22𝑁12}.

Моменты в сечении оболочки определяются выражениями

{𝑀}
3×1

=

ℎ/2∫︁
−ℎ/2

{𝜎}
3×1

𝜁𝑑𝜁 =

ℎ/2∫︁
−ℎ/2

[𝐶]
3×3

[𝑍]
3×6

{𝜀𝛼𝛽}
6×1

𝜁𝑑𝜁 = [𝛽]
3×6

{𝜀κ𝛼𝛽}
6×1

.

На основе полученных формул формируется соотношение

{𝑆}
6×1

= [𝜔]
6×6

{𝜀κ𝛼𝛽}
6×1

. (21)

С учетом (21) функционал запишется, как

𝐹𝑆 =

∫︁
𝑉

{𝜀κ𝛼𝛽}
1×6

𝑇 [𝜔]
6×6

{𝜀κ𝑘
𝛼𝛽}

6×1

𝑑𝑉 − 1

2

∫︁
𝑉

{𝜀κ𝛼𝛽}
1×6

𝑇 [𝜔]
6×6

{𝜀κ𝛼𝛽}
6×1

𝑑𝑉 − 1

2

∫︁
𝐹

{𝑊}
1×3

𝑇 {𝑃}
3×1

𝑑𝐹. (22)

С учетом аппроксимирующих выражений (17)–(19) функционал (22) запишется сле-
дующим образом:

𝐹𝑆 = {𝜀κ𝑦}
1×24

𝑇

∫︁
𝑉

[𝐻𝛾]
24×6

[𝜔]
6×6

[𝐵𝛾]
6×6

𝑑𝑉 {𝑊𝑦}
36×1

−1

2
{𝜀κ𝑦}
1×24

𝑇

∫︁
𝑉

[𝐻𝛾]
24×6

[𝜔]
6×6

[𝐻𝛾]
6×24

𝑑𝑉 {𝜀κ𝑦}
24×1

−

−1

2
{𝑊𝑦}
1×36

𝑇

∫︁
𝐹

[𝐴𝛾]
𝑇

36×3

{𝑃}
3×1

𝑑𝐹, 𝛾 = 1, 2.

(23)

Выполняя последовательную минимизацию функционала (23) по {𝜀κ}𝑇 и {𝑊𝑦}𝑇 ,
можно получить систему матричных уравнений⎧⎨⎩

𝜕𝐹𝑆/𝜕{𝜀κ𝑦}𝑇 = [𝑀𝑄]
24×36

{𝑊𝑦}
36×1

− [𝑌 ]
24×24

{𝜀κ𝑦}
24×1

= 0,

𝜕𝐹𝑆/𝜕{𝑊𝑦}𝑇 = [𝑀𝑄]
36×24

{𝜀κ𝑦}
24×1

−{𝑅}
36×1

= 0.
(24)

Преобразуя первое уравнение системы (24) к виду

{𝜀κ𝑦}
24×1

= [𝑌 ]
24×24

−1 [𝑀𝑄]
24×36

{𝑊𝑦}
36×1

и подставляя его во вторую систему уравнений (24), можно получить матричное соот-
ношение

[𝑀𝑄]
36×24

𝑇 [𝑌 ]
24×24

−1 [𝑀𝑄]
24×36

{𝑊𝑦}
36×1

= {𝑅}
36×1

или в более компактном виде
[𝐾]
24×36

{𝑊𝑦}
36×1

= {𝑅}
36×1

,

где [𝐾] — матрица податливости используемого четырехугольного КЭ.
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Корректность и высокая точность вычислений искомых прочностных параметров
НДС-оболочек при использовании разработанного алгоритма подтверждаются конкрет-
ными примерами расчета.

Пример 1. С целью сравнения точности вычисления контролируемых прочностных
параметров НДС-оболочек, полученных на основе использования разработанного эле-
мента дискретизации в смешанной формулировке и конечного элемента с аналогичным
набором узловых варьируемых параметров, скомпонованного на основе метода переме-
щений, выполнен расчет эллиптического цилиндра с 𝑏/𝑐 = 4 (см. рисунок). Физические
и геометрические исходные данные: 𝑞 = 0.2 Н/см, 𝐸 = 2 · 107 Н/см2, 𝜈 = 0.3 (коэф-
фициент поперечной деформации), ℎ = 0.2 см, 𝐿 = 1.0 см, большая полуось эллипса
𝑏 = 30 см, малая полуось эллипса 𝑐 = 7.5 см. Моделирование кольца осуществлялось

Расчетная схема оболочки в форме эллиптического цилиндра с шарнирным опиранием
The design scheme of the shell in the form of an elliptical cylinder with a hinged support

Т а б л и ц а 1. Значения нормальных напряжений 𝜎𝜃𝜃 и моментов 𝑀𝜃𝜃 в точках приложения
вертикальной нагрузки и в точках шарнирного опирания
Table 1. Values of normal stresses 𝜎𝜃𝜃 and moments 𝑀𝜃𝜃 at the points of application of the vertical
load and at the points of articulation

Координаты точек
𝑥, см; 𝜃, рад

Напряжения 𝜎𝜃𝜃, Н/см
2,

моменты 𝑀𝜃𝜃, Н·см Сетка узлов дискретизации

Смешанная формулировка при общепринятой аппроксимации искомых величин

41×2 61×2 81×2 91×2 101×2

𝑥 = 0.0;
𝜃 = 0.0

𝜎𝑖𝑛
𝜃𝜃 172.2 218.9 236.9 237.4 237.3

𝜎𝑜𝑢𝑡
𝜃𝜃 −173.8 −219.1 −236.5 −237.1 −236.9

𝑀𝜃𝜃 −1.153 −1.460 −1.578 −1.582 −1.580

𝑥 = 0.0;
𝜃 = 𝜋

𝜎𝑖𝑛
𝜃𝜃 −42.8 160.4 235.3 236.6 236.1

𝜎𝑜𝑢𝑡
𝜃𝜃 44.6 −159.7 −234.9 −236.2 −235.7

𝑀𝜃𝜃 0.291 −1.067 −1.568 −1.576 −1.573

В формулировке метода перемещений при общепринятой аппроксимации искомых величин

81×2 161×2 241×2 321×2 401×2

𝑥 = 0.0;
𝜃 = 0.0

𝜎𝑖𝑛
𝜃𝜃 151.5 197.1 228.1 235.54 237.1

𝜎𝑜𝑢𝑡
𝜃𝜃 −153.9 −198.0 −228.0 −235.2 −236.8

𝑀𝜃𝜃 −1.018 −1.317 −1.520 −1.569 −1.580

𝑥 = 0.0;
𝜃 = 𝜋

𝜎𝑖𝑛
𝜃𝜃 −2.59 72.6 197.70 228.0 234.8

𝜎𝑜𝑢𝑡
𝜃𝜃 2.54 −71.5 −197.1 −228.6 −234.3

𝑀𝜃𝜃 0.017 −0.48 −1.316 −1.519 −1.564
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одним рядом элементов дискретизации. При формировании матрицы податливости КЭ
в смешанной формулировке и матрицы его жесткости в формулировке метода переме-
щений использовалась стандартная для МКЭ интерполяционная процедура (6), (7).

Результаты расчетов сведены в табл. 1, в которой приведены значения нормаль-
ных напряжений 𝜎𝜃𝜃 и изгибающих моментов 𝑀𝜃𝜃 в точках приложения вертикальной
распределенной нагрузки 1, 2 и в точках шарнирного опирания 3, 4 в зависимости от
степени сгущения сетки узлов дискретизации. Выбранная расчетная схема оболочки
предполагает равенство напряжений 𝜎𝜃𝜃 и моментов 𝑀𝜃𝜃 в точках 1, 2 и 3, 4.

Анализируя численные значения напряжений и моментов, приведенных в табл. 1,
можно отметить, что по мере сгущения сетки узлов дискретизации оболочки просле-
живается сходимость вычислительного процесса, однако скорость сходимости при ис-
пользовании КЭ в смешанной формулировке существенно выше, чем при использова-
нии КЭ в формулировке метода перемещений. Так, например, при применении разра-
ботанного смешанного конечно-элементного алгоритма в решении данной задачи для
достижения приемлемой погрешности вычислений контролируемых параметров НДС
оказалось вполне достаточным разбиение рассчитываемой оболочки на 90 конечных
элементов. Для достижения аналогичного уровня точности вычислений при реализа-
ции МКЭ в форме метода перемещений понадобилось существенно большее (в 4 раза)
число элементов дискретизации, равное 400.

Пример 2. Выполнен расчет оболочки, рассмотренной в примере 1, при установле-
нии в точках 3, 4 вместо стержней пружинных опор.

Т а б л и ц а 2. Значения нормальных напряжений 𝜎𝜃𝜃 и моментов 𝑀𝜃𝜃 при пружинном
опирании
Table 2. Values of normal stresses 𝜎𝜃𝜃 and moments 𝑀𝜃𝜃 for the case of spring support

Координаты точек
𝑥, см; 𝜃, рад

Напряжения 𝜎𝜃𝜃, Н/см
2,

моменты 𝑀𝜃𝜃, Н·см
Величина жесткого смещения, м
0.00 0.05 0.15 0.30

Первый вариант расчета

𝑥 = 0.0;
𝜃 = 0.0

𝜎𝑖𝑛
𝜃𝜃 237.4 237.4 237.4 237.4

𝜎𝑜𝑢𝑡
𝜃𝜃 −237.0 −237.0 −237.0 −237.0

𝑀𝜃𝜃 −1.581 −1.581 −1.581 −1.581

𝑥 = 0.0;
𝜃 = 𝜋

𝜎𝑖𝑛
𝜃𝜃 237.4 237.4 237.4 237.4

𝜎𝑜𝑢𝑡
𝜃𝜃 −237.0 −237.0 −237.0 −237.0

𝑀𝜃𝜃 −1.581 −1.581 −1.581 −1.581

Второй вариант расчета

𝑥 = 0.0;
𝜃 = 0.0

𝜎𝑖𝑛
𝜃𝜃 237.3 188.0 178.4 175.4

𝜎𝑜𝑢𝑡
𝜃𝜃 −236.9 −188.8 −179.4 −176.5

𝑀𝜃𝜃 −1.580 −1.256 −1.193 −1.173

𝑥 = 0.0;
𝜃 = 𝜋

𝜎𝑖𝑛
𝜃𝜃 236.1 107.4 82.4 74.6

𝜎𝑜𝑢𝑡
𝜃𝜃 −235.7 −106.1 −80.9 −73.0

𝑀𝜃𝜃 −1.573 −0.712 −0.544 −0.492

Третий вариант расчета

𝑥 = 0.0;
𝜃 = 0.0

𝜎𝑖𝑛
𝜃𝜃 237.1 200.6 195.8 194.4

𝜎𝑜𝑢𝑡
𝜃𝜃 −236.8 −201.3 −196.6 −195.3

𝑀𝜃𝜃 −1.580 −1.340 −1.308 −1.299

𝑥 = 0.0;
𝜃 = 𝜋

𝜎𝑖𝑛
𝜃𝜃 234.8 78.0 57.4 51.4

𝜎𝑜𝑢𝑡
𝜃𝜃 −234.3 −76.8 −56.1 −50.1

𝑀𝜃𝜃 −1.564 −0.516 −0.379 −0.338
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Результаты расчетов оболочки при пружинном опирании сведены в табл. 2, в кото-
рой представлены значения напряжений 𝜎𝜃𝜃 и моментов 𝑀𝜃𝜃 в зависимости от величи-
ны смещения оболочки как твердого тела. Расчеты оболочки при пружинном опирании
проводились в трех вариантах при двух видах интерполяции искомых величин: тензор-
но-векторной (9)–(15) и стандартной (6), (7). В первом и втором вариантах реализована
смешанная формулировка МКЭ при тензорно-векторной и стандартной интерполяцион-
ной процедурах соответственно. В третьем варианте использована формулировка МКЭ
в форме метода перемещений при стандартной интерполяции искомых величин. В пер-
вом варианте оболочка разбивалась на 50 КЭ, во втором и третьем — на 90 и 400 КЭ
соответственно.

Анализ данных табл. 2 показывает, что в первом варианте напряжения и моменты
не меняют своих значений при всех величинах жестких смещений. Во втором варианте
контролируемые параметры НДС меняют свои значения тем существеннее, чем больше
величина жесткого смещения. Аналогичная картина наблюдается и в третьем варианте
расчета. Наиболее значительные погрешности вычислений во втором и третьем вари-
антах фиксируются в точках пружинного опирания. Так, во втором варианте значения
напряжений и моментов в этих точках уменьшились примерно в 3 раза при величине
жесткого смещения 0.15 м, а в третьем варианте — в 4.5 раза. При увеличении жесткого
смещения до 0.3 м погрешность второго и третьего вариантов возросла еще в большей
степени.

Заключение

На основании анализа результатов представленных выше расчетов можно сформули-
ровать следующие выводы:

1. Разработанный конечно-элементный алгоритм расчета оболочек в смешанной фор-
мулировке позволяет с высокой степенью точности вычислять необходимые проч-
ностные параметры оболочек, в том числе со значительной кривизной срединной
поверхности.

2. Скорость сходимости вычислительного процесса разработанного конечно-элемент-
ного алгоритма в смешанной формулировке в 4 раза больше по сравнению с ал-
горитмом, скомпонованным на основе МКЭ в форме метода перемещений.

3. Использование тензорно-векторной формы интерполяционной процедуры в раз-
работанном алгоритме МКЭ позволяет получать корректные значения контро-
лируемых прочностных параметров НДС-оболочек, допускающих смещения как
абсолютно твердых тел при заданных внешних нагрузках.

Список литературы

[1] Yanhui Y., Dong L., Ziyan H., Zijian L. Optimization of preform shapes by RSM and FEM
to improve deformation homogeneity in aerospace forgings. Chinese Journal of Aeronautics.
2010; 23(2):260–267. DOI:10.1016/S1000-9361(09)60214-4.

[2] Jiapeng T., Ping X., Baoyuan Z., Bifu H. A finite element parametric modeling
technique of aircraft wing structures. Chinese Journal of Aeronautics. 2013; 26(5):1202–1210.
DOI:10.1016/j.cja.2013.07.019.

[3] Новожилов В.В. Теория тонких оболочек. СПб.: Издательство Санкт-Петербургского
университета; 2010: 380.



88 Ю.В. Клочков, А.П. Николаев, В.А. Пшеничкина и др.

[4] Седов Л.И. Механика сплошной среды Т. 1. М.: Наука; 1976: 536.

[5] Ubaydulloev M.N., Serazutdinov M.N. Simulation and calculation of stress-strain state
of thin-walled structures strengthened under load. Lecture Notes in Mechanical Engineering.
2022: 332–340.

[6] Leonetti L., Magisano D., Madeo A., Garcea G., Kiendl J., Reali A. A simplified
Kirchhoff –Love large deformation model for elastic shells and its effective isogeometric
formulation. Computer Methods in Applied Mechanics and Engineering. 2019; (354):369–396.
DOI:10.1016/j.cma.2019.05.025.

[7] Magisano D., Liang K., Garcea G., Leonetti L., Ruess M. An efficient mixed variational
reduced-order model formulation for nonlinear analyses of elastic shells. International Journal
for Numerical Methods in Engineering. 2018; 113(4):634–655. DOI:10.1002/nme.5629.

[8] Постнов В.А., Хархурим И.Я. Метод конечных элементов в расчетах судовых конст-
рукций. Л.: Судостроение; 1974: 344.

[9] Urnev A.S., Chernyatin A.S., Matvienko Y.G., Razumovskii I.A. Experimental and
numerical sizing of delamination defects in layered composite materials. Inorganic Materials.
2019; 55(15):1516–1522. DOI:10.1134/S0020168519150147.

[10] Bakulin V.N. A model for analyzing the stress-strain state of three-layer cylindrical shells
with rectangular cutouts. Izvestiya Rossiiskoi Akademii Nauk. Mechanics of a Rigid Body.
2022; (1):122–132.

[11] Sultanov L.U. Analysis of finite elasto-plastic strains: integration algorithm and
numerical examples. Lobachevskii Journal of Mathematics. 2018; 39(9):1478–1483.
DOI:10.1134/S1995080218090056. Available at: https://www.scopus.com/inward/record.

uri?eid=2-s2.0-85059692523&doi=10.1134$%$2fS1995080218090056&partnerID=40&md5=

f3b5a84e237de1f5f0cada857269fdec.

[12] Storozhuk E.A. Stress-strain state and stability of a flexible circular cylindrical shell
with transverse shear strains. International Applied Mechanics. 2021; 57(5):554–567.
DOI:10.1007/s10778-021-01106-1.

[13] Zheleznov L.P., Kabanov V.V., Boiko D.V. Nonlinear deformation and stability of
discrete-reinforced elliptical cylindrical composite shells under torsion and internal pressure.
Russian Aeronautics. 2018; 61(2):175–182. DOI:10.3103/S1068799818020046.

[14] Paimushin V.N., Gazizullin R.K., Polyakova N.V., Shishov M.A. Sandwich shells with
composite facings and a transversally flexible core: refined equations and buckling modes of
specimens under four-point bending tests. Advanced Structured Materials. 2021; (141):391–411.
DOI:10.1007/978-3-030-54928-2_29.

[15] Postnov V.A. Use of Tikhonov’s regularization method for solving identification problem for
elastic systems. Mechanics of Solids. 2010; 1(45):51–56. DOI:10.3103/S0025654410010085.

[16] Yakupov S.N., Kiyamov H.G., Yakupov N.M.Modeling a synthesized element of complex
geometry based upon three-dimensional and two-dimensional finite elements. Lobachevskii
Journal of Mathematics. 2021; 42(9):2263–2271.

[17] Klochkov Yu.V., Nikolaev A.P., Fomin S.D., Vakhnina O.V., Sobolevskaya T.A.,

Klochkov M.Yu. A finite elemental algorithm for calculating the arbitrarily loaded shell using
three-dimensional finite elements. ARPN Journal of Engineering and Applied Sciences. 2020;
15(13):1472–1481.

[18] Klochkov Yu., Nikolaev A., Vakhnina O., Sobolevskaya T., Klochkov M. Physically
nonlinear shell deformation based on three-dimensional finite elements. Magazine of Civil
Engineering. 2022; 5(113):11314. DOI:10.34910/MCE.113.14.

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059692523&doi=10.1134$%$2fS1995080218090056&partnerID=40&md5=f3b5a84e237de1f5f0cada857269fdec
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059692523&doi=10.1134$%$2fS1995080218090056&partnerID=40&md5=f3b5a84e237de1f5f0cada857269fdec
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059692523&doi=10.1134$%$2fS1995080218090056&partnerID=40&md5=f3b5a84e237de1f5f0cada857269fdec


Модернизация аппроксимации искомых величин смешанного МКЭ. . . 89

[19] Dmitriev A., Lalin V., Melnikov A. Validation of computational procedures for the
progressive collapse analysis of reinforced concrete structures. Proceedings of EECE 2020:
Energy, Environmental and Construction Engineering. St. Petersburg, Russia, Cham: Springer;
2021; (150):215–224. DOI:10.1007/978-3-030-72404-7_22.

[20] Jurayev D., Vatin N., Sultanov T., Mirsaidov M. Spatial stress-strain state of Earth
dams. Magazine of Civil Engineering. 2023; 2(118):11810. DOI:10.34910/MCE.118.10.

[21] Lei Zh., Gillot F., Jezeguel L. Developments of the mixed grid isogeometric Reissner –
Mindlin shell: serendipity basis and modified reduced. International Journal of Mechanical
Sciences. 2015; (54):105–119.

[22] Lalin V.V., Rybakov V.A., Ivanov S.S., Azarov A.A. Mixed finite-element method
in V.I. Slivker’s semi-shear thin-walled bar theory. Magazine of Civil Engineering. 2019;
5(89):79–93. DOI:10.18720/MCE.89.7.

[23] Postnov V.A., Tumashik G.A., Moskvina I.V. On the stability of the reinforced
cylindrical shell. Strength and Ductility Problems. 2007; (69):18–23.

[24] Agapov V. The family of multilayered finite elements for the analysis of plates and
shells of variable thickness. E3S Web of Conferences. 2018 Topical Problems of Archi-
tecture, Civil Engineering and Environmental Economics, TPACEE 2018. 2019; (91):02013.
DOI:10.1051/e3sconf/20199102013.

[25] Tyukalov Yu.Ya. Finite element model of Reisner’s plates in stresses. Civil Engineering
Journal. 2019; 89(5):61–78. DOI:10.18720/MCE.89.6.

[26] Kirichevsky R.V., Skrynnykova A.V. The effect of approximating functions in the
construction of the stiffness matrix of the finite element on the convergence rate of the finite
element method. Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika.
2019; (57):26–37.

[27] Agapov V., Golovanov R. Comparative analysis of the simplest finite elements of plates in
bending. Advances in Intelligent Systems and Computing. 2018; (692):1009–1016.

[28] Maslennikov A.M., Kobelev E.A., Maslennikov N.A. Solution of stability problems by
the finite element method. Bulletin of Civil Engineers. 2020; 2(79):68–74.

[29] Lalin V.V., Yavarov A.V., Orlova E.S., Gulov A.R. Application of the finite element
method for the solution of stability problems of the Timoshenko beam with exact shape
functions. Power Technology and Engineering. 2019; 4(53):449–454.

[30] Jeon H.-M., Lee P.-S., Bathe K.-J. The MITC3 shell finite element enriched by
interpolation covers. Computers and Structures. 2014; (134):128–142.

[31] Ko Y., Lee P.-S., Bathe K.-J. A new 4-node MITC element for analysis of two-dimensional
solids and its formulation in a shell element. Computers and Structures. 2017; (192):34–49.
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Abstract

For a quadrangular shell discretization element, the compliance matrix of which is composed
on the basis of a mixed version of the FEM, bicubic shape functions are used to approximate the
displacement vector and bilinear functions for the second-rank tensor (deformations and curvatures).
Based on the coordinate transformations, new approximating expressions are obtained for the
desired components of the tensor for the internal point of the finite element through the nodal
values of the components of the nodal point tensors.

The efficiency of the developed approximating functions of the sought quantities is shown
numerically.

Keywords: thin shell, quadrangular finite element in mixed formulation, tensor vector interpola-
tion.
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