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The focus of this paper is on a mathematical model that depicts the state equi-
librium of a piezoelectric structure in contact with a conductive foundation, taking
into account the presence of friction. The constitutive law governing the electro-elastic
behavior of the system is considered to be non-linear, while the contact is modelled
using Signorini’s modified contact conditions. These conditions are supplemented by
a non-local Coulomb friction law and an electrical conductivity condition that has been
regularized. A weak formulation of the model is presented as a coupled system that
relates the displacement and electric potential fields. The weak solution is shown to
be both unique and existent through the invoke of Banach fixed-point theorem and
arguments of abstract elliptic quasi-variational inequalities. Additionally, we explore
the problem’s finite element approximation and derive estimate of its associated er-
ror. In conclusion, an iterative method is introduced to solve the finite element system
resulting from the analysis, and the convergence analysis of the method is considered
under appropriate conditions.
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Introduction

Piezoelectrics are a prevalent and important type of material used in a variety of applications
in engineering and real life. Although they were discovered over 100 years ago by brothers
Pierre and Jacques Curie, scientists still find new ways to use them. The conversion of elec-
trical energy into mechanical energy and vice versa is a defining characteristic of piezoelectric
materials, which results in observed properties that exhibit electromechanical coupling.

In recent years, there has been considerable interest in mathematical investigations of con-
tact problems that involve piezoelectric materials. However, the choice of appropriate contact
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boundary conditions continues to be a significant challenge in modelling these problems. One
of the most widely used boundary conditions in both engineering and mathematical litera-
ture are the so-called Signorini conditions. They were introduced by Signorini in [1], in which
the problem of unilateral contact between a linearly elastic body and a rigid foundation is
formulated. It follows the work of Fichera [2] where the Signorini problem was solved using
arguments of elliptic variational inequalities. Several authors have been interested in ques-
tion of the existence and uniqueness of weak solutions to contact problems. More precisely,
the early attempt to study frictional contact problems within the framework of variational
inequalities was started with the monograph of Duvaut and Lions [3].

The documentation of piezoelectric modelling is very extensive; see, for instance [4–
7]. Relevant models for elastic materials with piezoelectric effects can be found in [8–10] and
the references therein. Some theoretical results for contact models with static friction taking
into account the interaction between electrical and mechanical fields have been obtained
in [11, 12], under the assumption that the foundation is electrically insulated, and in [13]
assuming that the foundation is electrically conductive. Moreover, analysis and numerical
simulation of contact with or without friction for piezoelectric materials can be found in [8,
11, 14–26] and the references therein. Several research papers have examined the topic of
static and quasi-static contact problems in thermo-viscoelasticity and thermo-piezoelectricity
involving friction. These papers can be found in [16, 23, 24, 26–29].

In this paper, we investigate a mathematical model that describes the static frictional
contact between a piezoelectric body and a conductive foundation. The body is assumed
to be electro-elastic, with a non-linear elasticity operator. In contrast to the models
discussed in [9, 10, 13, 30, 31], we assume herein that the contact is modelled using
the Signorini modified contact conditions (see [3, ch. 3, p. 147]), nonlocal Coulomb
friction law with slip dependent friction coefficient and a regularized electrical conduc-
tivity condition, taking into account the conductivity of the foundation as in [22, 26, 30],
which involve a coupling between the mechanical and the electrical unknowns. This
work is divided into two parts. The first one is devoted to the existence and uniqueness
of the solution. The second one is reserved for the numerical approximation of the variational
formulation by the finite element method combined with an iteration method. This research
stands apart from the studies referenced in [9, 13, 22, 30] by examining different bound-
ary conditions and employing a distinct approximation approach. The modified Signorini
contact conditions lead to a variational formulation which differs from the one presented
in [30] by the presence of the nondifferentiable terms and represents a new mathematical
model for piezoelectric materials. To our knowledge, this model with Signorini modified con-
tact conditions for piezoelectric materials has not been studied yet and no result has been
obtained for this type of problem. An important extention of this paper is the numerical
analysis of the model. Numerical simulations will be presented in a forthcoming work.

The outline of the paper is as follows. Basic notations and preliminary material for the
rest of the paper are recalled in Sect. 1. The mechanical problem is stated in Sect. 2. In
Sect. 3, we present the variational problem and state assumptions about the given data. The
unknowns for the variational problems are the displacement field and the electric potential. In
Sect. 4, we state and prove our main results. The proofs are based on arguments from elliptic
variational inequalities and Banach fixed-point properties of certain maps. Moreover, in
Sect. 5, we study the finite element approximation of the variational problem, and we derive
error estimates. Finally, in Sect. 6, we propose an iterative method to solve the resulting
finite element system, which converges under certain assumptions.
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1. Notations and preliminaries

In this section, we introduce the notations and various functional spaces that will play
a crucial role in formulating and analyzing the mechanical problem. For more in-depth
information, interested readers can refer to the following references: [27, 32–34].

We denote by S𝑑 the space of second order symmetric tensors on R𝑑. We define the inner
products and the corresponding norms on R𝑑 and S𝑑, that is:

u .v = 𝑢𝑖 𝑣𝑖 ; ‖v‖ = (v .v)1/2 ∀u, v ∈ R𝑑,

𝜎 : 𝜏 = 𝜎𝑖𝑗 𝜏𝑖𝑗 ; ‖𝜏‖ = (𝜏 : 𝜏 )1/2 ∀𝜎, 𝜏 ∈ S𝑑.

The summation convention over repeated indices is used, all indices take values in 1, . . . , 𝑑.
Let Ω ⊂ R𝑑 (𝑑 = 2, 3) be an open and bounded domain with a Lipschitz boundary

Γ that is divided into three open disjoint measurable parts Γ1, Γ2 and Γ3, on one hand,
and on two measurable parts Γ𝑎 and Γ𝑏, on the other hand, such that meas(Γ1) > 0 and
meas(Γ𝑎) > 0. Since the boundary is Lipschitz continuous, the unit outward normal vector 𝜈
is defined a. e. on Γ.

We use the notation 𝑢𝜈 and u𝜏 for the normal and tangential displacement that is
𝑢𝜈 = u · 𝜈 and u𝜏 = u − 𝑢𝜈𝜈. We also denote by 𝜎𝜈 and 𝜎𝜏 the normal and tangential
tress given by 𝜎𝜈 = 𝜎𝜈 · 𝜈, 𝜎𝜏 = 𝜎𝜈 − 𝜎𝜈𝜈.

We define, respectively, the positive and the negative part of 𝑣𝜈 by:

𝑣+𝜈 = max(0, 𝑣𝜈), 𝑣−𝜈 = max(−𝑣𝜈 , 0). (1)

We introduce the following functional spaces:

𝐻 = 𝐿2(Ω)𝑑, 𝐻1 = 𝐻1(Ω)𝑑, ℋ = {𝜎 = (𝜎𝑖𝑗) ; 𝜎𝑖𝑗 = 𝜎𝑗𝑖 ∈ 𝐿2(Ω)},

ℋ1 = {𝜎 ∈ ℋ ; Div 𝜎 ∈ 𝐻}, 𝒲 = {D = (D𝑖) ∈ 𝐿2(Ω)𝑑 ; divD ∈ 𝐿2(Ω)}.

These spaces are real Hilbert spaces equipped with the following inner products:

(u, v)𝐻 =

∫︁
Ω

𝑢𝑖 𝑣𝑖 𝑑x, (𝜎, 𝜏 )ℋ =

∫︁
Ω

𝜎𝑖𝑗 𝜏𝑖𝑗 𝑑x, (u, v)𝐻1 = (u, v)𝐻 + (𝜀(u), 𝜀(v))ℋ,

(𝜎, 𝜏 )ℋ1 = (𝜎, 𝜏 )ℋ + (Div𝜎,Div 𝜏 )𝐻 , (D,E)𝒲 = (D,E)𝐻 + (divD, divE)𝐿2(Ω),

with the associated norms ‖ · ‖𝐻 , ‖ · ‖𝐻1 , ‖ · ‖ℋ, ‖ · ‖ℋ1 and ‖ · ‖𝒲 , respectively.
Let 𝐻Γ = 𝐻1/2(Γ)𝑑 and let 𝛾 : 𝐻1 → 𝐻Γ be the trace map. For every element v ∈ 𝐻1,

we also use the notation v to note the trace 𝛾v of v on Γ. Let 𝐻 ′
Γ be the dual of 𝐻Γ and let

⟨·, ·⟩ denote the duality pairing between 𝐻 ′
Γ and 𝐻Γ. For every 𝜎 ∈ ℋ1, 𝜎𝜈 can be defined

as the element in 𝐻 ′
Γ which satisfying Green’s formula as follows:

⟨𝜎𝜈, 𝛾v⟩ = (𝜎, 𝜀(v))ℋ + (Div𝜎, v)𝐻 ∀v ∈ 𝐻1. (2)

Moreover, if 𝜎 is continuously differentiable on Ω, then:

⟨𝜎𝜈, 𝛾v⟩ =
∫︁
Γ

𝜎𝜈 · v 𝑑𝑎,
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for all v ∈ 𝐻1, where 𝑑𝑎 is the surface measure element. We also introduce𝐻1/2(Γ3) ⊂ 𝐿2(Γ3)
the space of normal traces on Γ3:

𝐻1/2(Γ3) =
{︀
𝑣𝜈 ∈ 𝐿2(Γ3); ∃v ∈ 𝐻1, 𝑣𝜈 = 𝛾v · 𝜈

}︀
,

and its dual 𝐻−1/2, with norms correspondingly:

‖𝑣𝜈‖𝐻1/2(Γ3) = inf
v∈𝐻1

{‖v‖𝐻1 ; 𝑣𝜈 = 𝛾v · 𝜈} ∀𝑣𝜈 ∈ 𝐻1/2(Γ3),

‖𝜎𝜈‖𝐻−1/2(Γ3) = sup
𝑣𝜈∈𝐻1/2

Γ3
,

𝑣𝜈 ̸=0
𝐻

1/2
Γ3

⟨𝜎𝜈 , 𝑣𝜈⟩
‖𝑣𝜈‖𝐻1/2(Γ3)

∀𝜎𝜈 ∈ 𝐻−1/2(Γ3), (3)

where ⟨·, ·⟩ denote the duality pairing between 𝐻−1/2(Γ3) and 𝐻
1/2(Γ3).

Bearing in mind the boundary conditions, we introduce the displacement and the electric
potential spaces:

𝑉 = {v ∈ 𝐻1 ; v = 0 on Γ1}, 𝑊 = {𝜉 ∈ 𝐻1(Ω) ; 𝜉 = 0 on Γ𝑎}.

Since meas(Γ1) > 0 and meas(Γ𝑎) > 0, Korn’s and Friedrichs –Poincaré inequalities hold:
There exists 𝑐𝐾 > 0 and 𝑐𝐹 > 0 which depends only on Ω, Γ1 and Γ𝑎 such that:

‖𝜀(v)‖ℋ ≥ 𝑐𝐾‖v‖𝐻1 ∀v ∈ 𝑉,

‖∇𝜉‖𝐻 ≥ 𝑐𝐹‖𝜉‖𝐻1(Ω) ∀𝜉 ∈ 𝑊. (4)

Therefore, the space 𝑉 equipped with the inner product (u,v)𝑉 = (𝜀(u), 𝜀(v))ℋ is a real
Hilbert space, and its associated norm ‖v‖𝑉 = ‖𝜀(v)‖ℋ is equivalent on 𝑉 to the usual norm
‖ · ‖𝐻1 . On 𝑊 , we consider the inner product: (𝜙, 𝜉)𝑊 = (∇𝜙,∇𝜉)𝐻 . It is straightforward
from (4) that ‖ · ‖𝐻1(Ω) and ‖ · ‖𝑊 are equivalent norms on 𝑊 and thus (𝑊, ‖ · ‖𝑊 ) is a real
Hilbert space. By Sobolev’s trace theorem, there exist two positive constants 𝑐0 and 𝑐1 which
depends only on Ω, Γ3, Γ1 and Γ𝑎 such that:

‖v‖𝐿2(Γ)𝑑 ≤ 𝑐0‖v‖𝑉 ∀v ∈ 𝑉, (5)

‖𝜉‖𝐿2(Γ3) ≤ 𝑐1‖𝜉‖𝑊 ∀𝜉 ∈ 𝑊. (6)

2. Physical model and its mathematical formulation

The physical setting of the contact problem is as follows. We consider a piezoelectric body
occupying, in its reference configuration, an open and bounded domain Ω with a sufficiently
smooth boundary 𝜕Ω = Γ. As outlined in the preceding section, this boundary is divided
accordingly. The body is subjected to an action of body forces of density f0 and a volume
electric charges of density 𝑞0. It is clamped on Γ1 and a surface traction of density f2 act on
Γ2. Moreover, the electric potential vanishes on Γ𝑎 and a surface electric charge of density
𝑞2 is prescribed on Γ𝑏. On Γ3 the body is in contact with friction with a conductive obsta-
cle, the so-called foundation. We model the frictional contact with the Signorini modified
contact conditions and nonlocal Coulomb’s friction law. We assume that the foundation is
electrically conductive and its potential is maintained at 𝜙𝐹 . The mechanical problem as-
sociated with the static frictional contact between a piezoelectric body and a deformable
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conductive foundation, considering that the contact is described using modified Signorini
contact conditions, can be expressed as follows:

Problem (P). Find a displacement field u : Ω → R𝑑, a stress field 𝜎 : Ω → S𝑑, an
electric potential 𝜙 : Ω → R and an electric displacement field D : Ω → R𝑑 such that:

𝜎 = F𝜀(u)−𝒫*E(𝜙) in Ω, (7)

D = 𝒫𝜀(u) + 𝛽E(𝜙) in Ω, (8)

Div𝜎 + f0 = 0 in Ω, (9)

divD = 𝑞0 in Ω, (10)

u = 0 on Γ1, (11)

𝜎𝜈 = f2 on Γ2, (12)

𝑔1(‖u‖) ≤ 𝜎𝜈(u, 𝜙) ≤ 𝑔2(‖u‖),
𝑔1(‖u‖) < 𝜎𝜈(u, 𝜙) < 𝑔2(‖u‖) ⇒ 𝑢𝜈 = 0,
𝜎𝜈 = 𝑔1(‖u‖) ⇒ 𝑢𝜈 ≥ 0,
𝜎𝜈 = 𝑔2(‖u‖) ⇒ 𝑢𝜈 ≤ 0,

⎫⎪⎪⎬⎪⎪⎭ on Γ3, (13)

‖𝜎𝜏‖ ≤ 𝜇(‖u𝜏‖)|R𝜎𝜈(u, 𝜙)|,
‖𝜎𝜏‖ < 𝜇(‖u𝜏‖)|R𝜎𝜈(u, 𝜙)| ⇒ u𝜏 = 0,

𝜎𝜏 = −𝜇(‖u𝜏‖)|R𝜎𝜈(u, 𝜙)|
u𝜏

‖u𝜏‖
⇒ u𝜏 ̸= 0,

⎫⎪⎬⎪⎭ on Γ3, (14)

𝜙 = 0 on Γ𝑎, (15)

D · 𝜈 = 𝑞𝑏 on Γ𝑏, (16)

D · 𝜈 = 𝜓(𝑢𝜈)𝜑𝐿(𝜙− 𝜙𝐹 ) on Γ3. (17)

Equations (7) and (8) represent the electro-elastic constitutive law of the material in which
F denotes the elasticity operator, assumed to be non-linear, in which E(𝜙) = −∇𝜙 is the
electric field, 𝒫 is the piezoelectric tensor verifying:

𝒫𝜎 · v = 𝜎𝒫* · v ∀𝜎 ∈ S𝑑, v ∈ R𝑑.

𝒫* is its transpose, and 𝛽 denotes the electric permittivity tensor. Equations (8), (9) and (10)
represents the equilibrium equations for the stress and electric displacement fields, respec-
tively. Relations (11) and (12) are the displacement and traction boundary conditions, re-
spectively, and (15), (16) represents the electric boundary conditions. Relations (13) embody
Signorini’s modified contact law (see [3, ch. 3, p. 147]), wherein the thresholds 𝑔1 and 𝑔2 de-
lineate critical limits for surface contact pressure, which must not be exceeded to prevent
localized crushing of the material due to excessive pressure in the contact zone. The inequal-
ity 𝑔1(‖u‖) < 𝜎𝜈 < 𝑔2(‖u‖) indicates that when the normal stress (contact pressure) remains
within a specified range, it avoids exceeding critical thresholds. As a result, the normal dis-
placement is zero, i. e., 𝑢𝜈 = 0. If the normal stress reaches the upper threshold 𝜎𝜈 = 𝑔2(‖u‖)
(which is positive), a displacement normal to the contact surface occurs, resulting in a neg-
ative value for 𝑢𝜈 (𝑢𝜈 ≤ 0). Conversely, if the contact pressure reaches the lower threshold
𝜎𝜈 = 𝑔1(‖u‖) (which is negative), a displacement normal to the contact surface occurs, re-
sulting in a positive value for 𝑢𝜈 (𝑢𝜈 ≥ 0). Relations (14) represents the Coulomb’s friction
law in which 𝜇 is the coefficient of friction and R is a regularization operator. Finally, (17)
represents the regularized electrical contact condition on Γ3, which was considered in [26],
where 𝜓 and 𝜑𝐿 are a regularization function and the truncation function, respectively,
such that:
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𝜑𝐿(𝑠) =

⎧⎪⎨⎪⎩
−𝐿, if 𝑠 < −𝐿,
𝑠, if − 𝐿 ≤ 𝑠 ≤ 𝐿,

𝐿, if 𝑠 > 𝐿.

𝜓(𝑟) =

⎧⎪⎨⎪⎩
0, if 𝑟 < 0,

𝑘𝛿𝑟, if 0 ≤ 𝑟 ≤ 1/𝛿,

𝑘, if 𝑟 > 1/𝛿,

in which 𝐿 is a large positive constant, 𝛿 > 0 denotes a small parameter and 𝑘 ≥ 0 is the
electrical conductivity coefficient.

3. Variational formulation of the problem

In order to state the unique solvability of Problem (P), we need the following hypotheses:
(H1) The elasticity operator F : Ω× S𝑑 → S𝑑 satisfy the following conditions:

(a) There exists ℳF > 0, such that:

‖F(x, 𝜉1)− F(x, 𝜉2)‖ ≤ ℳF‖𝜉1 − 𝜉2‖ ∀𝜉1, 𝜉2 ∈ S𝑑, a. e. x ∈ Ω.

(b) There exists 𝑚F > 0, such that:

(F(x, 𝜉1)− F(x, 𝜉2)) (𝜉1 − 𝜉2) ≥ 𝑚F‖𝜉1 − 𝜉2‖2 ∀𝜉1, 𝜉2 ∈ S𝑑, a. e. x ∈ Ω.

(c) The mapping x ↦→ F(x, 𝜉) is Lebesgue measurable on Ω, for all 𝜉 ∈ S𝑑.
(d) The mapping x ↦→ F(x, 0) belongs to ℋ.

(H2) The piezoelectric tensor 𝒫 = (𝑝𝑖𝑗𝑘) satisfies: 𝑝𝑖𝑗𝑘 = 𝑝𝑖𝑘𝑗 ∈ 𝐿∞(Ω).
(H3) The electric permittivity tensor 𝛽 = (𝛽𝑖𝑗) satisfies:

(a) 𝛽𝑖𝑗 = 𝛽𝑗𝑖 ∈ 𝐿∞(Ω).
(b) ∃𝑚𝛽 > 0, such that:

𝛽𝑖𝑗𝜉𝑖𝜉𝑗 ≥ 𝑚𝛽‖𝜉‖2 ∀𝜉 ∈ R𝑑, a. e. x ∈ Ω.

Notice that the above conditions allows us to define:

ℳ𝒫 = sup
𝑖𝑗

‖𝑝𝑖𝑗𝑘‖𝐿∞(Ω), ℳ𝛽 = sup
𝑖𝑗

‖𝛽𝑖𝑗‖𝐿∞(Ω).

(H4) The surface electrical conductivity function 𝜓 : Γ3 ×R→ R+ satisfy:
(a) ∃𝐿𝜓 > 0, such that:

|𝜓(·, 𝑤1)− 𝜓(·, 𝑤2)| ≤ 𝐿𝜓|𝑤1 − 𝑤2| ∀𝑤1, 𝑤2 ∈ R.

(b) ∃𝑀𝜓 > 0, such that:

|𝜓(𝑥,𝑤)| ≤𝑀𝜓 ∀𝑤 ∈ R, a. e. 𝑥 ∈ Γ3.

(c) x ↦→ 𝜓(x, 𝑤) is measurable on Γ3, for all 𝑤 ∈ R.
(d) x ↦→ 𝜓(x, 𝑤) = 0, for all 𝑤 ≤ 0.

(H5) The coefficient of friction 𝜇 : Γ3 ×R+ → R+ satisfy:
(a) ∃𝐿𝜇 > 0, such that:

|𝜇(·, 𝑤1)− 𝜇(·, 𝑤2)| ≤ 𝐿𝜇|𝑤1 − 𝑤2| ∀𝑤1, 𝑤2 ∈ R+.

(b) ∃𝜇* > 0, such that:

𝜇(x, 𝑤) ≤ 𝜇* ∀𝑤 ∈ R+, a. e. x ∈ Γ3.

(c) The mapping x ↦→ 𝜇(x, 𝑤) is measurable on Γ3, for all 𝑤 ∈ R+.
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(H6) The function 𝑔1 : Γ3 ×R+ → R− satisfies the following conditions:
(a) ∃𝐿𝑔1 > 0, such that:

|𝑔1(x, 𝑤1)− 𝑔1(x, 𝑤2)| ≤ 𝐿𝑔1|𝑤1 − 𝑤2| ∀𝑤1, 𝑤2 ∈ R+, a. e. x ∈ Γ3.

(b) ∃𝑀𝑔1 > 0, such that:

|𝑔1(x, 𝑤)| ≤𝑀𝑔1 ∀𝑤 ∈ R+, a. e. x ∈ Γ3.

(c) The mapping x ↦→ 𝑔1(x, 𝑤) is measurable on Γ3, for all 𝑤 ∈ R+.
(H7) The function 𝑔2 : Γ3 ×R+ → R+ satisfies the following conditions:

(a) ∃𝐿𝑔2 > 0, such that:

|𝑔2(x, 𝑤1)− 𝑔2(x, 𝑤2)| ≤ 𝐿𝑔2|𝑤1 − 𝑤2| ∀𝑤1, 𝑤2 ∈ R+, a. e. x ∈ Γ3.

(b) ∃𝑀𝑔2 > 0, such that:

|𝑔2(x, 𝑤)| ≤𝑀𝑔2 ∀𝑤 ∈ R+, a. e. x ∈ Γ3.

(c) The mapping x ↦→ 𝑔2(x, 𝑤) is measurable on Γ3, for al 𝑤 ∈ R+.
(H8) The body forces, the traction, the volume and surface charge densities, also the given

potential satisfy:

f0 ∈ 𝐿2(Ω)𝑑, f2 ∈ 𝐿2(Γ3)
𝑑, 𝑞0 ∈ 𝐿2(Ω), 𝑞𝑏 ∈ 𝐿2(Γ𝑏), 𝜙𝐹 ∈ 𝐿2(Γ3).

(H9) The mapping R : 𝐻
−1/2
Γ3

→ 𝐿∞(Γ3) is linear and continuous with ‖R‖ = 𝑐R.
Next, we define the elements f ∈ 𝑉 and q ∈ 𝑊 , respectively, by:

(f ,v)𝑉 =

∫︁
Ω

f0 · v 𝑑𝑥+
∫︁
Γ2

f2 · v 𝑑𝑎 ∀v ∈ 𝑉, (18)

(𝑞𝑒, 𝜉)𝑊 =

∫︁
Ω

𝑞0𝜉 𝑑𝑥−
∫︁
Γ𝑏

𝑞𝑏 𝜉 𝑑𝑎 ∀𝜉 ∈ 𝑊. (19)

We define the mappings 𝐽 : 𝑉 ×𝑊 × 𝑉 → R and 𝜒 : 𝑉 ×𝑊 ×𝑊 → R, respectively, by:

𝐽(u, 𝜙,v) =

∫︁
Γ3

𝜇(‖u𝜏‖)|R𝜎𝜈(u, 𝜙)| ‖v𝜏‖ 𝑑𝑎+
∫︁
Γ3

𝑔2(‖u‖) 𝑣−𝜈 𝑑𝑎−
∫︁
Γ3

𝑔1(‖u‖) 𝑣+𝜈 𝑑𝑎, (20)

𝜒(u, 𝜙, 𝜉) =

∫︁
Γ3

𝜓(𝑢𝜈) 𝜑𝐿(𝜙− 𝜙𝐹 ) 𝜉 𝑑𝑎. (21)

Keeping in mind assumptions (H4)–(H8) it follows that the integrals in (18)–(21) are well-
defined. Thus, according to these notations and by using a standard procedure based on
Green’s formula, we can state the variational formulation of Problem (P), in the terms of
displacement field and electric potential.

Problem (PV). Find a displacement field u ∈ 𝑉 and an electric potential 𝜙 ∈ 𝑊 such
that:

(F𝜀(u), 𝜀(v)− 𝜀(u))ℋ + (𝒫*∇𝜙, 𝜀(v)− 𝜀(u))𝐻 + 𝐽(u, 𝜙, v)− 𝐽(u, 𝜙, u)

≥ (f , v − u)𝑉 ∀v ∈ 𝑉, (22)

(𝛽∇𝜙,∇𝜉)𝐻 − (𝒫𝜀(u),∇𝜉)𝐻 + 𝜒(u, 𝜙, 𝜉) = (𝑞𝑒, 𝜉)𝑊 ∀𝜉 ∈ 𝑊. (23)
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4. Existence and uniqueness results

The following theorem establishes the existence and uniqueness of the solution to the Prob-
lem (PV).

Theorem 1. Assume that the hypotheses (H1)-(H9) hold true, there exists 𝐿* > 0 such
that if

(𝐿𝜇 + 𝜇* + 𝐿𝑔1 + 𝐿𝑔2 + 𝐿𝜓𝐿+𝑀𝜓) < 𝐿*,

then, Problem (PV) has a unique solution.

The proof of Theorem 1 will be divided into several steps. We suppose in the sequel that
the hypotheses of Theorem 1 are fulfilled. Before stating and proving our main results, we
consider the product spaces 𝑋 = 𝑉 ×𝑊 , and 𝑌 = 𝐿2(Γ3)

4, together with the inner products:

(x,y)𝑋 = (u,v)𝑉 + (𝜙, 𝜉)𝑊 , (𝜂,𝜃)𝑌 = (𝜂𝑖, 𝜃𝑖)𝐿2(Γ3), (24)

for all x = (u, 𝜙), y = (v, 𝜉) ∈ 𝑋, 𝜂 = (𝜂1, 𝜂2, 𝜂3, 𝜂4), 𝜃 = (𝜃1, 𝜃2, 𝜃3, 𝜃4) ∈ 𝑌 and the
associated norms ‖ · ‖𝑋 and ‖ · ‖𝑌 , respectively. We define the operator 𝐴 : 𝑋 ×𝑋 → 𝑋, the

functions ̃︀𝐽 , ̃︀𝜒 on 𝑋 ×𝑋 and the element f3 ∈ 𝑋 by equalities:

(𝐴x,y)𝑋 = (F𝜀(u), 𝜀(v))ℋ + (𝛽∇𝜙,∇𝜉)𝐻 + (𝒫*∇𝜙, 𝜀(v))𝐻 − (𝒫𝜀(u),∇𝜉)𝐻 , (25)̃︀𝐽(x,y) = 𝐽(u, 𝜙,v), (26)̃︀𝜒(x,y) = 𝜒(u, 𝜙, 𝜉), (27)

f3 = (f , 𝑞𝑒) ∈ 𝑋, (28)

for all x = (u, 𝜙) and y = (v, 𝜉) ∈ 𝑋. With the above notations, we get the following
equivalent problem:

Problem (̃︂PV). Find x = (u, 𝜙) ∈ 𝑋 such that:

(𝐴x,y − x)𝑋 + ̃︀𝐽(x,y)− ̃︀𝐽(x,x) + ̃︀𝜒(x,y − x) ≥ (f3,y − x)𝑋 ∀y = (v, 𝜉) ∈ 𝑋. (29)

We start with the following technical lemmas which is frequently used in what follows.

Lemma 1. The couple x = (u, 𝜙) ∈ 𝑈 is a solution to Problem (PV) if and only if it is

a solution to Problem (̃︂𝑃𝑉 ).

Proof. Let x = (u, 𝜙) ∈ 𝑋 be a solution to Problem (PV) and let y = (v, 𝜉) ∈ 𝑋. We
choose (𝜉−𝜙) as test function in (23), add the corresponding inequality to (22) and use (24)–

(28) to obtain (29). Conversely, let x = (u, 𝜙) ∈ 𝑋 be a solution to Problem (̃︁PV). We take
y = (v, 𝜙) in (29), where v is an arbitrary element of 𝑋 and obtain (22). Then for any
𝜉 ∈ 𝑊 , we take successively y = (v, 𝜙+ 𝜉), and y = (v, 𝜙− 𝜉) in (29) to obtain (23), which
concludes the proof of Lemma 1. ■

Lemma 2. The operator 𝐴 : 𝑋 → 𝑋 is strongly monotone and Lipschitz continuous.

Proof. We consider two elements x1 = (u1, 𝜙1), x2 = (u2, 𝜙2) ∈ 𝑋, from the assumpti-
ons (H1)–(H3), and (24) alongside with an algebraic manipulation similar to those used
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in [9, 30], we can easily prove that there exist 𝑚𝐴 > 0 depend only on F, 𝛽, Ω, Γ𝑎 and there
exist 𝑀𝐴 > 0 depend only on F, 𝛽 and 𝒫 such that:

(𝐴x1 − 𝐴x2,x1 − x2)𝑋 ≥ 𝑚𝐴(‖u1 − u2‖2𝑉 + ‖𝜙1 − 𝜙2‖2𝑊 ) = 𝑚𝐴‖x1 − x2‖2𝑋 , (30)

‖𝐴x1 − 𝐴x2‖𝑋 ≤𝑀𝐴‖x1 − x2‖𝑋 , (31)

for all x1, x2 ∈ 𝑋, where 𝑚𝐴 = min(𝑚F,𝑚𝛽), and 𝑀𝐴 = 4×max(ℳℱ ,ℳ𝛽,ℳ𝒫). ■
Now, let z = (𝑧1, 𝑧2, 𝑧3, 𝑧4) ∈ 𝑌 with 𝑧1 ≥ 0, 𝑧2 ≥ 0, 𝑧3 ≥ 0, and we define the functions:

𝐽z(v) =

∫︁
Γ3

𝑧1‖v𝜏‖ 𝑑𝑎+
∫︁
Γ3

𝑧2𝑣
−
𝜈 𝑑𝑎+

∫︁
Γ3

𝑧3𝑣
+
𝜈 𝑑𝑎 ∀v ∈ 𝑉, (32)

𝜒z(𝜉) =

∫︁
Γ3

𝑧4𝜉 𝑑𝑎 ∀𝜉 ∈ 𝑊. (33)

We consider the element fz ∈ 𝑋 given by:

fz = (f , 𝑞z) ∈ 𝑋,

where

(𝑞z, 𝜉)𝑊 = (𝑞𝑒, 𝜉)𝑊 − 𝜒z(𝜉) ∀𝜉 ∈ 𝑊.

It follows from (19), and (33), that 𝑞z ∈ 𝑊 . We extend the functional 𝐽z defined by (32) to

a functional ̃︀𝐽z defined on 𝑉 , that is:

̃︀𝐽z(x) = 𝐽z(u) ∀x = (u, 𝜙) ∈ 𝑋. (34)

Using the above notations and Lemma 1, we have the following intermediate problem.

Problem (PVz). Find xz = (uz, 𝜙z) ∈ 𝑋 such that:

(𝐴xz,y − xz)𝑋 + ̃︀𝐽z(y)− ̃︀𝐽z(xz) ≥ (fz,y − xz)𝑋 ∀y = (v, 𝜉) ∈ 𝑋. (35)

We have the following existence and uniqueness result.

Lemma 3. For any z = (𝑧1, 𝑧2, 𝑧3, 𝑧4) ∈ 𝑌 , suppose that the hypotheses (H1)–(H3) hold,
then:

(i) Problem (𝑃𝑉 z) has a unique solution xz = (uz, 𝜙z) ∈ 𝑋 which depends Lipschitz
continuously on z ∈ 𝑌 .
(ii) There exists a constant 𝑐2 > 0 such that the solution of Problem (𝑃𝑉 z) satisfies:

‖xz‖𝑋 ≤ 𝑐2‖fz‖𝑋 .

Proof.
(i) From Lemma 2, we have the operator 𝐴 : 𝑋 → 𝑋 is strongly monotone and Lipschitz

continuous. The functional ̃︀𝐽z given by (34) is proper, convex and Lipschitz continuous, and

therefore, ̃︀𝐽z is a fortiori lower semi continuous. Indeed, firstly, it’s quite easy to see that̃︀𝐽z is proper since ̃︀𝐽z(x) ≥ 0 for all x ∈ 𝑋. The convexity of ̃︀𝐽z follows from of the that
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of the functionals v ↦→ ‖v𝜏‖, v ↦→ 𝑣+𝜈 , and v ↦→ 𝑣−𝜈 defined in (1). Let x1 = (u1, 𝜙1),
x2 = (u2, 𝜙2) ∈ 𝑋, we have:

⃒⃒⃒ ̃︀𝐽z(x1)− ̃︀𝐽z(x2)
⃒⃒⃒
=

⃒⃒⃒⃒
⃒⃒∫︁
Γ3

𝑧1‖u1,𝜏‖ 𝑑𝑎+
∫︁
Γ3

𝑧2𝑢
−
1,𝜈 𝑑𝑎+

∫︁
Γ3

𝑧3𝑢
+
1,𝜈 𝑑𝑎

−
∫︁
Γ3

𝑧1‖u2,𝜏‖ 𝑑𝑎−
∫︁
Γ3

𝑧2𝑢
+
2,𝜈𝑑𝑎−

∫︁
Γ3

𝑧3𝑢
−
2,𝜈 𝑑𝑎

⃒⃒⃒⃒
⃒⃒

≤ ‖𝑧1‖𝐿2(Γ3)‖u1,𝜏 − u2,𝜏‖𝐿2(Γ3)𝑑 + ‖𝑧2‖𝐿2(Γ3)‖𝑢−1,𝜈 − 𝑢−2,𝜈‖𝐿2(Γ3)

+ ‖𝑧3‖𝐿2(Γ3)‖𝑢+1,𝜈 − 𝑢+2,𝜈‖𝐿2(Γ3).

Now, by (5) and (24), we find:

| ̃︀𝐽z(x1)− ̃︀𝐽z(x2)| ≤ 𝑐0
(︀
‖𝑧1‖𝐿2(Γ3) + ‖𝑧2‖𝐿2(Γ3) + ‖𝑧3‖𝐿2(Γ3)

)︀
‖x1 − x2‖𝑋 .

Thus, the functional ̃︀𝐽z is Lipschitz continuous and therefore it is i lower semi contin-
uous function. Hence, it follows from standard arguments based on variational inequalities
that there exists a unique solution: xz = (uz, 𝜙𝑧) of Problem (PVz). Following this, we
will prove that this solution depends Lipschitz continuously on z ∈ 𝑌 . Let z, z′ ∈ 𝑌 be
given, and denote the corresponding solution of the problem (35) by xz = (uz, 𝜙z), and
xz′ = (uz′ , 𝜙z′). Then, we have:

(𝐴xz,y − xz)𝑋 + ̃︀𝐽z(y)− ̃︀𝐽z(xz) ≥ (fz,y − xz)𝑋 ∀y = (v, 𝜉) ∈ 𝑋,

(𝐴xz′ ,y − xz′)𝑋 + ̃︀𝐽z′(y)− ̃︀𝐽z′(xz′) ≥ (fz′ ,y − xz′)𝑋 ∀y = (v, 𝜉) ∈ 𝑋.

We take y = xz′ in the first inequality, and y = xz in the second inequality, then we add the
obtained inequalities to find:

(𝐴xz − 𝐴xz′ ,xz − xz′)𝑋

≤ (fz − fz′ ,xz − xz′)𝑋 + ̃︀𝐽z(xz′)− ̃︀𝐽z(xz) + ̃︀𝐽z′(xz)− ̃︀𝐽z′(xz′)

≤ 𝑐0
(︀
‖𝑧1 − 𝑧′1‖𝐿2(Γ3) + ‖𝑧2 − 𝑧′2‖𝐿2(Γ3) + ‖𝑧3 − 𝑧′3‖𝐿2(Γ3)

)︀
‖uz − uz′‖𝑉

𝑐1‖𝑧4 − 𝑧′4‖𝐿2(Γ3)‖𝜙1 − 𝜙2‖𝑊 .

Therefore, it follows from (5), (6), (24), and (30), that:

‖xz − xz′‖𝑋 ≤ 𝑐3‖z− z′‖𝑌 , (36)

where 𝑐3 = 2
max(𝑐0, 𝑐1)

𝑚𝐴

, hence (i) follows.

(ii) Let z = (𝑧1, 𝑧2, 𝑧3, 𝑧4) ∈ 𝑌 , we take y = 0 in the inequality (35), one has:

(𝐴xz,xz)𝑋 + ̃︀𝐽z(xz) ≤ (fz,xz)𝑋 ∀xz ∈ 𝑋.

Or 𝑧1 > 0, 𝑧2 > 0, and 𝑧3 > 0, one has:

(𝐴xz,xz)𝑋 ≤ (fz,xz)𝑋 ∀xz ∈ 𝑋.
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According to (30), we deduce:

‖xz‖𝑋 ≤ 𝑐2‖fz‖𝑋 ,

where 𝑐2 = 1/𝑚𝐴. ■
Next, we consider the operator Λ : 𝑌 → 𝑌 defined by:

Λz = (𝜇(‖uz,𝜏‖)|R𝜎𝜈(uz, 𝜙z)|, 𝑔2(‖uz‖),−𝑔1(‖uz‖), 𝜓(𝑢z,𝜈)𝜑𝐿(𝜙z − 𝜙𝐹 )) . (37)

Using assumptions (H4)–(H7), we can easily see that operator Λ is well defined. Next, we
will prove that the operator Λ has fixed-point and to this end, we need the following result:

Lemma 4. There exist 𝐿* > 0 such that if (𝐿𝜇+𝜇*+𝐿𝑔1 +𝐿𝑔2 +𝐿𝜓𝐿+𝑀𝜓) ≤ 𝐿*, then
𝛬 has a unique fixed-point.

Proof. Let z = (𝑧1, 𝑧2, 𝑧3, 𝑧4), z
′ = (𝑧′1, 𝑧

′
2, 𝑧

′
3, 𝑧

′
4) ∈ 𝑌 . One has:

‖Λz− Λz′‖𝑌 ≤ ‖𝜇(‖uz,𝜏‖)|R𝜎𝜈(uz, 𝜙z)| − 𝜇(‖uz′,𝜏‖)|R𝜎𝜈(uz′ , 𝜙z′)|‖𝐿2(Γ3)+

+ ‖𝑔1(‖uz‖)− 𝑔1(‖uz′‖)‖𝐿2(Γ3) + ‖𝑔2(‖uz‖)− 𝑔2(‖uz′‖)‖𝐿2(Γ3)+

+ ‖𝜓(𝑢z,𝜈)𝜑𝐿(𝜙z − 𝜙𝐹 )− 𝜓(𝑢z′,𝜈)𝜑𝐿(𝜙z′ − 𝜙𝐹 )‖𝐿2(Γ3).

Therefore,

‖Λz− Λz′‖𝑌 ≤ 𝐺1 +𝐺2,

where

𝐺1 = ‖𝜇(‖uz,𝜏‖)|R𝜎𝜈(uz, 𝜙z)| − 𝜇(‖uz′,𝜏‖)|R𝜎𝜈(uz′ , 𝜙z′)|‖𝐿2(Γ3)+

+ ‖𝑔1(‖uz‖)− 𝑔1(‖uz′‖)‖𝐿2(Γ3) + ‖𝑔2(‖uz‖)− 𝑔2(‖uz′‖)‖𝐿2(Γ3).

Using (H5), (H6), (H7), (6), the properties of R, and after some algebra, we obtain:

𝐺1 ≤ 𝐿𝜇‖R𝜎𝜈(uz, 𝜙z)‖𝐿∞(Γ3)‖uz − uz′‖𝐿2(Γ3)𝑑+

+ 𝜇*meas(Γ3)
1/2‖R𝜎𝜈(uz, 𝜙z)− R𝜎𝜈(uz′ , 𝜙z′)‖𝐿∞(Γ3)+

+ 𝐿𝑔1‖uz − uz′‖𝐿2(Γ3)𝑑 + 𝐿𝑔2‖uz − uz′‖𝐿2(Γ3)𝑑 ≤
≤ 𝐿𝜇𝑐0‖R𝜎𝜈(uz, 𝜙z)‖𝐿∞(Γ3)‖uz − uz′‖𝑉+
+ 𝜇*meas(Γ3)

1/2𝑐R‖𝜎𝜈(uz, 𝜙z)− 𝜎𝜈(uz′ , 𝜙z′)‖𝐻−1/2(Γ3)+

+ 𝑐0(𝐿𝑔1 + 𝐿𝑔2)‖uz − uz′‖𝑉 ,

the 𝐻−1/2 norm, defined in (3), leads us to:

‖𝜎𝜈(u𝑧, 𝜙𝑧)− 𝜎𝜈(u𝑧′ , 𝜙𝑧′)‖𝐻−1/2(Γ3) = sup
𝑣𝜈∈𝐻1/2

Γ3
,

𝑣𝜈 ̸=0
𝐻

1/2
Γ3

⟨𝜎𝜈(u𝑧, 𝜙𝑧)− 𝜎𝜈(u𝑧′ , 𝜙𝑧′), 𝑣𝜈⟩Γ3

‖𝑣𝜈‖𝐻1/2(Γ3)

,

applying Green’s formula, for every v ∈ 𝑉 with v𝜏 = 0, we have:

‖𝜎𝜈(u𝑧, 𝜙𝑧)− 𝜎𝜈(u𝑧′ , 𝜙𝑧′)‖𝐻−1/2(Γ3) =

= sup
𝑣𝜈∈𝐻1/2

Γ3
,

𝑣𝜈 ̸=0
𝐻

1/2
Γ3

⟨F𝜀(u𝑧)− F𝜀(u𝑧′), 𝜀(v)⟩ℋ + ⟨𝒫*∇(𝜙𝑧 − 𝜙𝑧′), 𝜀(v)⟩ℋ
‖𝑣𝜈‖𝐻1/2(Γ3)

,



Analysis and numerical results for modified Signorini problem . . . 63

since fo any 𝑣𝜈 in 𝐻1/2, there exists v ∈ 𝐻1 and a constant 𝑐𝜈 > 0 (see [14]) such that:

𝑣𝜈 = 𝛾v and ‖𝑣𝜈‖𝐻1/2 ≥ 𝑐𝜈‖𝑣‖𝑉 ,

thus,

‖𝜎𝜈(u𝑧, 𝜙𝑧)− 𝜎𝜈(u𝑧′ , 𝜙𝑧′)‖𝐻−1/2(Γ3) ≤

≤ 1

𝑐𝜈
sup
𝑣∈𝑉,
𝑣 ̸=0𝑉

‖F𝜀(u𝑧)− F𝜀(u𝑧′)‖ℋ‖𝜀(v)‖ℋ + ‖𝒫*∇(𝜙𝑧 − 𝜙𝑧′)‖ℋ‖𝜀(v)‖ℋ
‖v‖𝑉

≤

≤ 1

𝑐𝜈
sup
𝑣∈𝑉,
𝑣 ̸=0𝑉

(ℳF‖u𝑧 − u𝑧′‖𝑉 +ℳ𝒫‖∇ (𝜙𝑧 − 𝜙𝑧′) ‖𝐻)
‖v‖𝑉
‖v‖𝑉

≤

≤ 1

𝑐𝜈
max (ℳF,ℳ𝒫) (‖u𝑧 − u𝑧′‖𝑉 + ‖𝜙𝑧 − 𝜙𝑧′‖𝑊 ) .

Then, it is straightforward that:

𝐺1 ≤ 𝐿𝜇𝑐0‖R𝜎𝜈(uz, 𝜙z)‖𝐿∞(Γ3)‖uz − uz′‖𝑉+

+
1

𝑐𝜈
max (ℳF,ℳ𝒫)𝜇*meas(Γ3)

1/2𝑐R (‖uz − uz′‖𝑉 + ‖𝜙z − 𝜙z′‖𝑊 )+

+ 𝑐0(𝐿𝑔1 + 𝐿𝑔2)‖uz − uz′‖𝑉 ≤
≤ 𝐶(𝐿𝜇 + 𝜇* + 𝐿𝑔1 + 𝐿𝑔2)‖xz − xz′‖𝑋 , (38)

where 𝐶 = max

(︃
‖R𝜎𝜈(uz, 𝜙z)‖𝐿∞(Γ3)𝑐0,

√
2

𝑐𝜈
max(ℳF,ℳ𝒫)𝑐Rmeas(Γ3)

1/2, 𝑐0

)︃
. Moreover,

it follows from assumption (H4), the bounds |𝜑𝐿(𝜙− 𝜙𝐹 )| ≤ 𝐿, (6), and (24) that:

𝐺2 = ‖𝜓(𝑢z,𝜈)𝜑𝐿(𝜙z − 𝜙𝐹 )− 𝜓(𝑢z′,𝜈)𝜑𝐿(𝜙z′ − 𝜙𝐹 )‖𝐿2(Γ3) ≤
≤ ‖ (𝜓(𝑢z,𝜈)− 𝜓(𝑢z′,𝜈))𝜑𝐿(𝜙z − 𝜙𝐹 )‖𝐿2(Γ3)+

+ ‖𝜓(𝑢z′,𝜈)(𝜑𝐿(𝜙z − 𝜙𝐹 )− 𝜑𝐿(𝜙z′ − 𝜙𝐹 ))‖𝐿2(Γ3) ≤
≤ 𝐶 ′(𝐿𝐿𝜓 +𝑀𝜓)‖xz − xz′‖𝑋 , (39)

where 𝐶 ′ = max(𝑐0, 𝑐1).
Now, we use the two previous inequalities (38) and (39), to find that, there exist a

constant 𝑐4 > 0, such that:

‖Λz− Λz′‖𝑌 ≤ 𝑐4(𝐿𝜇 + 𝜇* + 𝐿𝑔1 + 𝐿𝑔2 + 𝐿𝜓𝐿+𝑀𝜓)‖xz − xz′‖𝑋 ,

where 𝑐4 = max(𝐶,𝐶 ′). Finally, keeping in mind (36), we obtain

‖Λz− Λz′‖𝑌 ≤ 𝑐4𝑐3(𝐿𝜇 + 𝜇* + 𝐿𝑔1 + 𝐿𝑔2 + 𝐿𝜓𝐿+𝑀𝜓)‖z− z′‖𝑌 .

Let 𝐿* =
1

𝑐4𝑐3
, then if (𝐿𝜇+𝜇*+𝐿𝑔1 +𝐿𝑔2 +𝐿𝜓𝐿+𝑀𝜓) ≤ 𝐿* the mapping Λ is contraction

of 𝑌 . By Banach fixed-point theorem, the mapping Λ has a unique fixed-point z* on 𝑌 .
Let (𝐿𝜇 + 𝜇* + 𝐿𝑔1 + 𝐿𝑔2 + 𝐿𝜓𝐿+𝑀𝜓) ≤ 𝐿* and let z* the fixed-point of operator Λ. We
denote by (u*, 𝜙*) the solution of Problem (PVz) for z = z*. Using (35) and (37), it is
easy to see that (u*, 𝜙*) is a solution of Problem (PV). This proves the existence part of
Theorem 1. The uniqueness of the solution results from the uniqueness of the fixed-point of
the operator Λ. ■
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5. Finite element setting and discrete variational problem

This section is devoted to studying the finite element approximation of Problem (PV) and
deriving an error estimate of the approximate solution. First, we consider the following
finite-dimensional spaces 𝑉 ℎ ⊂ 𝑉 and 𝑊 ℎ ⊂ 𝑊 defined by:

𝑉 ℎ = {vℎ ∈ 𝒞(Ω)𝑑,vℎ|Ω𝑒 ∈ P1(Ω
𝑒); Ω𝑒 ∈ 𝒯 ℎ,vℎ = 0 on Γ1},

𝑊 ℎ = {𝜓ℎ ∈ 𝒞(Ω)𝑑, 𝜓ℎ|Ω𝑒 ∈ P1(Ω
𝑒); Ω𝑒 ∈ 𝒯 ℎ, 𝜓ℎ = 0 on Γ𝑎}.

Approximating the spaces 𝑉 and 𝑊 , where ℎ > 0 is the parameter of discretization. Here
Ω is assumed to be a polygonal domain, 𝒯 ℎ denotes a finite element triangulation of Ω that
are compatible with the partition of the boundary, and we denote by P1(Ω

𝑒) the space of
polynomials of global degree less or equal to one in an element Ω𝑒 of the triangulation. Thus,
the discrete approximation of Problem (PV) is the following:

Problem (PVℎ). Find a discrete displacement field uℎ ∈ 𝑉 ℎ and a discrete electric
potential 𝜙ℎ ∈ 𝑊 ℎ, such that:

(F𝜀(uℎ), 𝜀(vℎ − uℎ))ℋ + (𝒫*∇𝜙ℎ, 𝜀(vℎ − uℎ))𝐻 + 𝐽(uℎ, 𝜙ℎ,vℎ)− 𝐽(uℎ, 𝜙ℎ,uℎ) ≥

≥ (f ,vℎ − uℎ)𝑉 ∀vℎ ∈ 𝑉 ℎ, (40)

(𝛽∇𝜙ℎ,∇𝜉ℎ)𝐻 − (𝒫𝜀(uℎ),∇𝜉ℎ)𝐻 + 𝜒(uℎ, 𝜙ℎ, 𝜉ℎ) = (𝑞, 𝜉ℎ)𝑊 ∀𝜉ℎ ∈ 𝑊 ℎ. (41)

Applying Theorem 1, for the case when 𝑉 and 𝑊 are replaced by 𝑉 ℎ and 𝑊 ℎ, respectively,
we find that Problem (PVℎ) have a unique solution (uℎ, 𝜙ℎ) ∈ 𝑉 ℎ × 𝑊 ℎ. We have the
following convergence result:

Theorem 2. Let us denote by (u, 𝜙) and (uℎ, 𝜙ℎ), the solutions to Problems (PV)
and (𝑃𝑉 ℎ), respectively. Under the hypotheses of Theorem 1, with the same value of 𝐿*,
the following error estimates are obtained:

‖u− uℎ‖𝑉 + ‖𝜙− 𝜙ℎ‖𝑊 ≤

≤ 𝐶 inf
(vℎ,𝜉ℎ)∈𝑉 ℎ×𝑊ℎ

{︂
‖u− vℎ‖𝑉 + ‖𝜙− 𝜉ℎ‖𝑊 + ‖u− vℎ‖𝐿2(Γ3)𝑑 + ‖𝜙− 𝜉ℎ‖𝐿2(Γ3)+

+
(︁
‖F𝜀(u)‖1/2ℋ + ‖𝒫*∇𝜙‖1/2𝐻 + ‖f‖1/2𝑉

)︁
‖u− vℎ‖1/2𝑉 +

+
(︀
‖𝜇(u𝜏 )‖𝐿2(Γ3)‖R𝜎𝜈(u, 𝜙)‖𝐿∞(Γ3) + (𝑀𝑔1 +𝑀𝑔2)meas(Γ3)

1/2
)︀1/2 ‖u− vℎ‖1/2

𝐿2(Γ3)𝑑

}︂
, (42)

where 𝐶 > 0 independent of ℎ.

Proof. We replace 𝜉 by 𝜉ℎ in (23) then we subtract (41) from the resulting equation, to get:(︀
𝛽∇(𝜙− 𝜙ℎ),∇𝜉ℎ

)︀
𝐻
−(𝒫𝜀(u−uℎ),∇𝜉ℎ)𝐻+𝜒(u, 𝜙, 𝜉ℎ)−𝜒(uℎ, 𝜙ℎ, 𝜉ℎ) = 0 ∀𝜉ℎ ∈ 𝑊. (43)

and it follows that for all 𝜉ℎ ∈ 𝑊 ℎ:(︀
𝛽∇(𝜙− 𝜙ℎ),∇(𝜉ℎ − 𝜙)

)︀
𝐻
+
(︀
𝛽∇(𝜙− 𝜙ℎ),∇(𝜙− 𝜙ℎ)

)︀
𝐻
−

−
(︀
𝒫𝜀(u− uℎ),∇(𝜉ℎ − 𝜙)

)︀
𝐻
−
(︀
𝒫𝜀(u− uℎ),∇(𝜙− 𝜙ℎ)

)︀
𝐻
+

+ 𝜒(u, 𝜙, 𝜉ℎ − 𝜙) + 𝜒(u, 𝜙, 𝜙− 𝜙ℎ)− 𝜒(uℎ, 𝜙ℎ, 𝜉ℎ − 𝜙)− 𝜒(uℎ, 𝜙ℎ, 𝜙− 𝜙ℎ) = 0.
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Hence, for all 𝜉ℎ ∈ 𝑊 ℎ, we have:(︀
𝒫𝜀(u− uℎ),∇(𝜙− 𝜙ℎ)

)︀
𝐻
= (𝛽∇(𝜙− 𝜙ℎ),∇(𝜙− 𝜙ℎ))𝐻−

− (𝛽∇(𝜙− 𝜙ℎ),∇(𝜙− 𝜉ℎ))𝐻 + (𝒫𝜀(u− uℎ),∇(𝜙− 𝜉ℎ))𝐻+

+ 𝜒(u, 𝜙, 𝜙− 𝜙ℎ)− 𝜒(uℎ, 𝜙ℎ, 𝜙− 𝜙ℎ) + 𝜒(u, 𝜙, 𝜉ℎ − 𝜙)− 𝜒(uℎ, 𝜙ℎ, 𝜉ℎ − 𝜙). (44)

Next, choosing v = uℎ ∈ 𝑉 ℎ in (22), we obtain:(︀
F𝜀(u), 𝜀(u− uℎ)

)︀
ℋ +(𝒫*∇𝜙, 𝜀(u−uℎ))𝐻 ≤ 𝐽(u, 𝜙,uℎ)− 𝐽(u, 𝜙,u)+ (f ,u−uℎ)𝑉 . (45)

In addition, the formula (40) can be rewritten as:

− (F𝜀(uℎ), 𝜀(u− uℎ))ℋ − (𝒫*∇𝜙ℎ, 𝜀(u− uℎ))𝐻 ≤
≤ (F𝜀(uℎ), 𝜀(vℎ − u))ℋ + (𝒫*∇𝜙ℎ, 𝜀(vℎ − u))𝐻+

+ 𝐽(uℎ, 𝜙ℎ,vℎ)− 𝐽(uℎ, 𝜙ℎ,uℎ) + (f ,uℎ − vℎ)𝑉 ∀vℎ ∈ 𝑉 ℎ. (46)

Now, we use the two inequalities (45) and (46) to get:

(F𝜀(u)− F𝜀(uℎ), 𝜀(u− uℎ))ℋ + (𝒫*∇(𝜙− 𝜙ℎ), 𝜀(u− uℎ))𝐻 ≤
≤ (F𝜀(u)− F𝜀(uℎ), 𝜀(u− vℎ))ℋ + (F𝜀(u), 𝜀(vℎ − u))ℋ + (𝒫*∇𝜙ℎ, 𝜀(vℎ − u))𝐻+

+ 𝐽(u, 𝜙,uℎ)− 𝐽(u, 𝜙,u) + 𝐽(uℎ, 𝜙ℎ,vℎ)− 𝐽(uℎ, 𝜙ℎ,uℎ) + (f ,u− vℎ)𝑉 .

Replacing now (44) in (46), we obtain:

(F𝜀(u)− F𝜀(uℎ), 𝜀(u− uℎ))ℋ + (𝛽∇(𝜙− 𝜙ℎ),∇(𝜙− 𝜙ℎ))𝐻 ≤
≤ (F𝜀(u)− F𝜀(uℎ), 𝜀(u− vℎ))ℋ + (F𝜀(u), 𝜀(vℎ − u))ℋ + (𝒫*∇𝜙ℎ, 𝜀(vℎ − u))𝐻+

+ (𝛽∇(𝜙− 𝜙ℎ),∇(𝜙− 𝜉ℎ))𝐻 − (𝒫𝜀(u− uℎ),∇(𝜙− 𝜉ℎ))𝐻 − (f ,vℎ − u)𝑉+

+ 𝐽(u, 𝜙,uℎ)− 𝐽(u, 𝜙,u) + 𝐽(uℎ, 𝜙ℎ,vℎ)− 𝐽(uℎ, 𝜙ℎ,uℎ)−
− 𝜒(u, 𝜙, 𝜙− 𝜙ℎ) + 𝜒(uℎ, 𝜙ℎ, 𝜙− 𝜙ℎ)− 𝜒(u, 𝜙, 𝜉ℎ − 𝜙) + 𝜒(uℎ, 𝜙ℎ, 𝜉ℎ − 𝜙).

Then, keeping in mind assumptions (H1)(𝑐), (H3)(𝑐) and the previous inequality, it’s follows
that:

𝑚F‖u− uℎ‖2𝑉 +𝑚𝛽‖𝜙− 𝜙ℎ‖2𝑊 ≤ ℐ1 + ℐ2 + ℐ3 + ℐ4 + ℐ5, (47)

where

ℐ1=(F𝜀(u)−F𝜀(uℎ), 𝜀(u−vℎ))ℋ+(𝛽∇(𝜙−𝜙ℎ),∇(𝜙−𝜉ℎ))𝐻−(𝒫𝜀(u−uℎ),∇(𝜙−𝜉ℎ))𝐻 ,
ℐ2=(F𝜀(u), 𝜀(vℎ − u))ℋ + (𝒫*∇𝜙ℎ, 𝜀(vℎ − u))𝐻 + 𝐽(u, 𝜙,vℎ)− 𝐽(u, 𝜙,u)− (f ,vℎ − u)𝑉 ,

ℐ3=𝐽(u, 𝜙,u
ℎ)− 𝐽(uℎ, 𝜙ℎ,uℎ) + 𝐽(uℎ, 𝜙ℎ,u)− 𝐽(u, 𝜙,u),

ℐ4=𝐽(u
ℎ, 𝜙ℎ,vℎ)− 𝐽(u, 𝜙,vℎ) + 𝐽(u, 𝜙,u)− 𝐽(uℎ, 𝜙ℎ,u),

ℐ5=𝜒(u
ℎ, 𝜙ℎ, 𝜙− 𝜙ℎ)− 𝜒(u, 𝜙, 𝜙− 𝜙ℎ) + 𝜒(uℎ, 𝜙ℎ, 𝜉ℎ − 𝜙)− 𝜒(u, 𝜙, 𝜉ℎ − 𝜙).

Let’s us now evaluate the five terms of the right-hand side of (47). For the first term, and
by using the properties of the operators F, 𝛽 and ℰ , we have:

|ℐ1|≤‖F𝜀(u)−F𝜀(uℎ)‖ℋ‖𝜀(u−vℎ)‖ℋ+
(︀
‖𝛽∇(𝜙−𝜙ℎ)‖𝐻+‖𝒫𝜀(u−uℎ)‖𝐻

)︀
‖∇(𝜙−𝜉ℎ)‖𝐻≤

≤max (ℳF,ℳ𝛽,ℳ𝒫)
(︀
‖u−uℎ‖𝑉 ‖u−vℎ‖𝑉 +

(︀
‖𝜙− 𝜙ℎ‖𝑊+‖u−uℎ‖𝑉

)︀
‖𝜙−𝜉ℎ‖𝑊

)︀
. (48)
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Concerning the second term of the right-hand side of (47), we use (H1)(𝑏), (H2)(𝑏), (H3)(𝑏),
(H6)(𝑏) and (H7)(𝑏), we find that:

|ℐ2|=
⃒⃒(︀
F𝜀(u), 𝜀(vℎ−u)

)︀
ℋ+
(︀
𝒫*∇𝜙ℎ, 𝜀(vℎ−u)

)︀
𝐻
+𝐽(u, 𝜙,vℎ)−𝐽(u, 𝜙,u)−(f ,vℎ−u)𝑉

⃒⃒
≤

≤ ‖F𝜀(u)‖ℋ‖u− vℎ‖𝑉 + ‖𝒫*∇𝜙‖𝐻‖u− vℎ‖𝑉 + ‖f‖𝑉 ‖u− vℎ‖𝑉+
+ ‖𝜇(u𝜏 )‖𝐿2(Γ3)‖R𝜎𝜈(u, 𝜙)‖𝐿∞(Γ3)‖u− vℎ‖𝐿2(Γ3)𝑑+

+ (𝑀𝑔1 +𝑀𝑔2)meas(Γ3)
1/2‖u− vℎ‖𝐿2(Γ3)𝑑 . (49)

About the third term of (47), using (H5)(𝑏), (𝑐), (H6)(𝑐), and (H7)(𝑐) to obtain:

|ℐ3| =
⃒⃒
𝐽(u, 𝜙,uℎ)− 𝐽(uℎ, 𝜙ℎ,uℎ) + 𝐽(uℎ, 𝜙ℎ,u)− 𝐽(u, 𝜙,u)

⃒⃒
≤

≤

⃒⃒⃒⃒
⃒⃒∫︁
Γ3

(𝜇(‖u𝜏‖)|R𝜎𝜈(u, 𝜙)− 𝜇(‖uℎ𝜏‖)|R𝜎𝜈(uℎ, 𝜙ℎ))(‖uℎ𝜏‖ − ‖u𝜏‖) 𝑑𝑎

⃒⃒⃒⃒
⃒⃒+

+

⃒⃒⃒⃒
⃒⃒∫︁
Γ3

(︀
𝑔2(‖u‖)− 𝑔2(‖uℎ‖

)︀
(𝑢ℎ−𝜈 − 𝑢−𝜈 ) 𝑑𝑎+

∫︁
Γ3

(︀
𝑔1(‖u‖)− 𝑔1(‖uℎ‖)

)︀
(𝑢+𝜈 − 𝑢ℎ+𝜈 ) 𝑑𝑎

⃒⃒⃒⃒
⃒⃒ ≤

≤
(︀
𝑐20‖R𝜎𝜈(u, 𝜙)‖𝐿∞(Γ3)𝐿𝜇 +max (ℳF,ℳ𝒫)𝜇*𝑐R + 𝑐20 (𝐿𝑔1 + 𝐿𝑔2)

)︀
‖u− uℎ‖2𝑉+

+
1

𝑐𝜈
max (ℳF,ℳ𝒫)𝜇*𝑐R𝑐0‖𝜙− 𝜙ℎ‖𝑊‖u− uℎ‖𝑉 . (50)

Analogously, for the fourth term, we have:

|ℐ4| =
⃒⃒
𝐽(uℎ, 𝜙ℎ,vℎ)− 𝐽(u, 𝜙,vℎ) + 𝐽(u, 𝜙,u)− 𝐽(uℎ, 𝜙ℎ,u)

⃒⃒
≤

≤
∫︁
Γ3

|R𝜎𝜈(u, 𝜙)|
⃒⃒
𝜇(‖uℎ𝜏‖)− 𝜇(‖u𝜏‖)

⃒⃒ ⃒⃒
‖vℎ𝜏‖ − ‖u𝜏‖

⃒⃒
𝑑𝑎+

+

∫︁
Γ3

𝜇(‖uℎ𝜏‖)
⃒⃒
|R𝜎𝜈(uℎ, 𝜙ℎ)| − |R𝜎𝜈(u, 𝜙)|

⃒⃒ ⃒⃒
‖vℎ𝜏‖ − ‖u𝜏‖

⃒⃒
𝑑𝑎+

+

∫︁
Γ3

⃒⃒
𝑔2(‖uℎ‖)− 𝑔2(‖u‖)

⃒⃒ ⃒⃒
𝑣ℎ−𝜈 − 𝑢−𝜈

⃒⃒
𝑑𝑎+

+

∫︁
Γ3

⃒⃒
𝑔1(‖uℎ‖)− 𝑔1(‖u‖)

⃒⃒ ⃒⃒
𝑣ℎ+𝜈 − 𝑢+𝜈

⃒⃒
𝑑𝑎,

|ℐ4|≤
(︀
𝑐0‖R𝜎𝜈(u, 𝜙)‖𝐿∞(Γ3)𝐿𝜇+max(ℳF,ℳ𝒫)𝜇*𝑐R+𝑐0(𝐿𝑔1+𝐿𝑔2)

)︀
‖u−uℎ‖𝑉 ‖u−vℎ‖𝐿2(Γ3)𝑑+

+
1

𝑐𝜈
max (ℳF,ℳ𝒫)𝜇*𝑐R‖𝜙− 𝜙ℎ‖𝑊‖u− vℎ‖𝐿2(Γ3)𝑑 . (51)

Concerning the the last term of the right-hand side of (47), using (H4)(𝑏), (𝑐), the bounds
|𝜑𝐿(𝜙− 𝜙𝐹 )| ≤ 𝐿, and the Lipschitz continuity of the function 𝜑𝐿, we have:

|ℐ5| =
⃒⃒
𝜒(uℎ, 𝜙ℎ, 𝜙− 𝜙ℎ)− 𝜒(u, 𝜙, 𝜙− 𝜙ℎ) + 𝜒(uℎ, 𝜙ℎ, 𝜉ℎ − 𝜙)− 𝜒(u, 𝜙, 𝜉ℎ − 𝜙)

⃒⃒
≤

≤

⃒⃒⃒⃒
⃒⃒∫︁
Γ3

(︀
𝜓(𝑢ℎ𝜈)𝜑𝐿(𝜙

ℎ − 𝜙𝐹 )− 𝜓(𝑢𝜈)𝜑𝐿(𝜙− 𝜙𝐹 )
)︀
(𝜙− 𝜙ℎ) 𝑑𝑎

⃒⃒⃒⃒
⃒⃒+

+

⃒⃒⃒⃒
⃒⃒∫︁
Γ3

(︀
𝜓(𝑢ℎ𝜈)𝜑𝐿(𝜙

ℎ − 𝜙𝐹 )− 𝜓(𝑢𝜈)𝜑𝐿(𝜙− 𝜙𝐹 )
)︀
(𝜉ℎ − 𝜙) 𝑑𝑎

⃒⃒⃒⃒
⃒⃒ ≤

≤𝑀𝜓𝑐
2
1‖𝜙− 𝜙ℎ‖2𝑊 + 𝐿𝐿𝜓𝑐0𝑐1‖u− uℎ‖𝑉 ‖𝜙− 𝜙ℎ‖𝑊+

+𝑀𝜓𝑐1‖𝜙− 𝜙ℎ‖𝑊‖𝜉ℎ − 𝜙‖𝐿2(Γ3) + 𝐿𝐿𝜓𝑐0‖u− uℎ‖𝑉 ‖𝜉ℎ − 𝜙‖𝐿2(Γ3). (52)
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Applying Young’s inequality:

𝑎𝑏 ≤ 𝜂𝑎2 +
1

4𝜂
𝑏2,

and using (47)–(52), we find that:

‖u− uℎ‖2𝑉 + ‖𝜙− 𝜙ℎ‖2𝑊 ≤

≤ 𝐶
{︁
‖u− vℎ‖2𝑉 + ‖𝜙− 𝜉ℎ‖2𝑊 + ‖u− vℎ‖2𝐿2(Γ3)𝑑

+ ‖𝜙− 𝜉ℎ‖2𝐿2(Γ3)
+

+ (‖F𝜀(u)‖ℋ + ‖𝒫*∇𝜙‖𝐻 + ‖f‖𝑉 ) ‖u− vℎ‖𝑉+
+
(︀
‖𝜇(u𝜏 )‖𝐿2(Γ3)‖R𝜎𝜈(u, 𝜙)‖𝐿∞(Γ3)+(𝑀𝑔1+𝑀𝑔2)meas(Γ3)

1/2
)︀
‖u−vℎ‖𝐿2(Γ3)𝑑

}︀
, (53)

where 𝐶 is a positive constant independent of ℎ, and consequently the inequality (42)
holds. ■

Theorem 3. Under the hypothesis of Theorem 1, and in addition, assume that:

𝜎𝜏 ∈ 𝐿2(Γ3)
𝑑, and 𝜎𝜈 ∈ 𝐿2(Γ3).

Then, there exists a constant 𝐶 independent of ℎ such that:

‖u− uℎ‖𝑉 + ‖𝜙− 𝜙ℎ‖𝑊 ≤

≤ 𝐶 inf
(vℎ,𝜉ℎ)∈𝑉 ℎ×𝑊ℎ

{︂
‖u− vℎ‖𝑉 + ‖𝜙− 𝜉ℎ‖𝑊 + ‖u− vℎ‖𝐿2(Γ3)𝑑 + ‖𝜙− 𝜉ℎ‖𝐿2(Γ3)+

+
(︀
‖𝜎𝜏‖𝐿2(Γ3)𝑑 + ‖𝜎𝜈‖𝐿2(Γ3) + ‖𝜇(u𝜏 )‖𝐿2(Γ3)‖R𝜎𝜈(u, 𝜙)‖𝐿∞(Γ3) +

+(𝑀𝑔1 +𝑀𝑔2)meas(Γ3)
1/2
)︀1/2 ‖u− vℎ‖1/2

𝐿2(Γ3)𝑑

}︂
, (54)

where 𝐶 > 0 independent of ℎ.

Proof. We start by making an approximation of the term ℐ2, under the added regularity of
𝜎𝜏 ∈ 𝐿2(Γ3)

𝑑, and 𝜎𝜈 ∈ 𝐿2(Γ3). Thus, from (2), the constitutive law (7), and the boundary
conditions (11), (12), we get:

|ℐ2|=

⃒⃒⃒⃒
⃒⃒(︀𝒫*∇(𝜙−𝜙ℎ), 𝜀(u−vℎ)

)︀
𝐻
+

∫︁
Γ3

𝜎𝜏 ·(vℎ𝜏−u𝜏 )𝑑𝑎+

∫︁
Γ3

𝜎𝜈(𝑣
ℎ
𝜈−𝑢𝜈)𝑑𝑎+𝐽(u,𝜙,vℎ)−𝐽(u,𝜙,u)

⃒⃒⃒⃒
⃒⃒≤

≤ ‖𝒫*∇
(︀
𝜙− 𝜙ℎ

)︀
‖𝐻‖𝜀(u− vℎ)‖ℋ +

(︀
‖𝜎𝜏‖𝐿2(Γ3)𝑑 + ‖𝜎𝜈‖𝐿2(Γ3)

)︀
‖u− vℎ‖𝐿2(Γ3)𝑑+

+
(︀
‖R𝜎𝜈(u, 𝜙)‖𝐿∞(Γ3)‖𝜇(‖u𝜏‖)‖𝐿2(Γ3) + (𝑀𝑔1 +𝑀𝑔2)meas(Γ3)

1/2
)︀
‖u− vℎ‖𝐿2(Γ3)𝑑 ,

subsequently, through the utilization of Young’s inequality, we obtain:

|ℐ2| ≤ 𝜂‖𝜙− 𝜙ℎ‖2𝑊 +
1

4𝜂
‖u− vℎ‖2𝑉 +

(︀
‖𝜎𝜏‖𝐿2(Γ3)𝑑 + ‖𝜎𝜈‖𝐿2(Γ3)

)︀
‖u− vℎ‖𝐿2(Γ3)𝑑+

+
(︀
‖R𝜎𝜈(u, 𝜙)‖𝐿∞(Γ3)‖𝜇(‖u𝜏‖)‖𝐿2(Γ3) + (𝑀𝑔1 +𝑀𝑔2)meas(Γ3)

1/2
)︀
‖u− vℎ‖𝐿2(Γ3)𝑑 .

So, using this inequality and the same arguments used in the proof of Theorem 2, we conclude
that the estimation (55) is verified, which concludes the proof.
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In order to evaluate the errors arising from approximating the finite element spaces 𝑉 ℎ

and 𝑊 ℎ, it is necessary to introduce an extra assumption regarding the smoothness of the
solution:

u ∈ 𝐻2(Ω)𝑑, u|Γ3 ∈ 𝐻2 (Γ3)
𝑑 , 𝜙 ∈ 𝐻2(Ω), 𝜙|Γ3 ∈ 𝐻2 (Γ3) .

Denoting Πℎu and Πℎ𝜙 the standard finite element interpolation operators of u and 𝜙,
respectively, then we have the interpolation error estimate (cf. [35]):⃦⃦

u− Πℎu
⃦⃦
𝑉
≤ 𝐶ℎ|u|𝐻2(Ω)𝑑 , (55)⃦⃦

𝜙− Πℎ𝜙
⃦⃦
𝑊

≤ 𝐶ℎ|𝜙|𝐻2(Ω). (56)

where |.|𝐻2(Ω)𝑑 is the semi-norm over 𝐻2(Ω)𝑑. The restriction of the partitions 𝜏ℎ on Γ̄3

induces a regular family of finite-element partitions of Γ̄3. So, we also have the interpolation
error estimate: ⃦⃦

u− Πℎu
⃦⃦
𝐿2(Γ3)

𝑑 ≤ 𝐶ℎ2|u|𝐻2(Γ3)
𝑑 , (57)⃦⃦

𝜙− Πℎ𝜙
⃦⃦
𝐿2(Γ3)

≤ 𝐶ℎ2|𝜙|𝐻2(Γ3). (58)

Hence, by (54) and (55)–(58), we have the following error estimate:

‖u− uℎ‖𝑉 + ‖𝜙− 𝜙ℎ‖𝑊 ≤

≤ 𝐶ℎ

{︂
|u|𝐻2(Ω)𝑑 + |𝜙|𝐻2(Ω) + ℎ|u|𝐻2(Γ3)𝑑 + ℎ|𝜙|𝐻2(Γ3)+

+

(︂
‖𝜎𝜏‖𝐿2(Γ3)𝑑 + ‖𝜎𝜈‖𝐿2(Γ3) + ‖R𝜎𝜈(u, 𝜙)‖𝐿∞(Γ3)‖𝜇(‖u𝜏‖)‖𝐿2(Γ3)+

+ (𝑀𝑔1 +𝑀𝑔2)meas(Γ3)
1/2

)︂1/2

|u|1/2
𝐻2(Γ3)𝑑

}︂
.

6. Iteration method

In this section, we propose an iterative method which is useful for solving Problem (PVℎ)
and it is based on the method of successive approximations by a fixed-point iteration
method [36]. This iteration method consists of the following procedure:
Let xℎ𝑛 = (uℎ𝑛, 𝜙

ℎ
𝑛) ∈ 𝑋ℎ = 𝑉 ℎ ×𝑊 ℎ be the 𝑛-th approximation of the solution to Prob-

lem (PVℎ). We seek for the weak solution xℎ𝑛+1 = (uℎ𝑛+1, 𝜙
ℎ
𝑛+1) ∈ 𝑋ℎ of the linear problem.(︀

xℎ𝑛+1,y
ℎ − xℎ𝑛+1

)︀
𝑋
+ 𝜌 ̃︀𝐽(xℎ𝑛,yℎ)− 𝜌 ̃︀𝐽(xℎ𝑛,xℎ𝑛+1) + 𝜌̃︀𝜒(xℎ𝑛,yℎ − xℎ𝑛+1) ≥

≥
(︀
xℎ𝑛,y

ℎ − xℎ𝑛+1

)︀
𝑋
− 𝜌

(︀
𝐴xℎ𝑛 − f3,y

ℎ − xℎ𝑛+1

)︀
𝑋

∀yℎ ∈ 𝑋ℎ, (59)

where 𝜌 > 0 is a constant.
We have the following result.

Lemma 5. There exists a unique solution xℎ𝑛+1 = (uℎ𝑛, 𝜙
ℎ
𝑛) ∈ 𝑉 ℎ ×𝑊 ℎ, satisfying (59).

Proof. Let us write the variational inequality (59) in the form:{︂
Find zℎ ∈ 𝑋ℎ such that:
𝑏(zℎ,yℎ − zℎ) + 𝜑(yℎ)− 𝜑(zℎ) ≥ (𝐺,yℎ − zℎ)𝑋 ∀yℎ ∈ 𝑋ℎ,

(60)
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where zℎ = xℎ𝑛+1 and

𝑏(zℎ,yℎ − zℎ) = (xℎ𝑛+1,y
ℎ − xℎ𝑛+1)𝑋 , 𝜑(yℎ) = 𝜌 ̃︀𝐽(xℎ𝑛,yℎ), 𝜑(zℎ) = 𝜌 ̃︀𝐽(xℎ𝑛,xℎ𝑛+1),

(𝐺,yℎ − zℎ)𝑋 = (xℎ𝑛,y
ℎ − xℎ𝑛+1)𝑋 − 𝜌(𝐴xℎ𝑛 − f3,y

ℎ − xℎ𝑛+1)𝑋 − 𝜌̃︀𝜒(xℎ𝑛,yℎ − xℎ𝑛+1).

Since 𝑏(zℎ,yℎ) is a continuous and 𝑋ℎ-elliptic bilinear from, 𝜑(zℎ) is a proper, convex and
lower semi-continuous function and 𝐺 is linear and continuous functional, we deduce that
the variational inequality (60) has a unique solution (see [36]). ■

Theorem 4. Let xℎ and xℎ𝑛+1 be the solutions of (40), (41) and (59), respectively. Under
the assumptions of Theorem 1, with the same value of 𝐿*, xℎ𝑛+1 converges strongly to xℎ

in 𝑋ℎ for:

0 < 𝜌 <
2(𝑚𝐴 − 𝛼)

𝑀2
𝐴 − 𝛼2

.

Proof. In the first phase of our demonstration, we will show that the solution of (59), xℎ𝑛+1,
weakly converges to xℎ, the solution of (PVℎ). In order to do this, we consider xℎ𝑛+1 and xℎ𝑛+2

as two successive solutions of the variational inequality (59):(︀
xℎ𝑛+1,y

ℎ − xℎ𝑛+1

)︀
𝑋
+ 𝜌 ̃︀𝐽(xℎ𝑛,yℎ)− 𝜌 ̃︀𝐽(xℎ𝑛,xℎ𝑛+1)𝑋 + 𝜌̃︀𝜒(xℎ𝑛,yℎ − xℎ𝑛+1) ≥

≥
(︀
xℎ𝑛,y

ℎ − xℎ𝑛+1

)︀
𝑋
− 𝜌

(︀
𝐴xℎ𝑛 − f3,y

ℎ − xℎ𝑛+1

)︀
𝑋
, (61)(︀

xℎ𝑛+2,y
ℎ − xℎ𝑛+2

)︀
𝑋
+ 𝜌 ̃︀𝐽(xℎ𝑛+1,y

ℎ)− 𝜌 ̃︀𝐽(xℎ𝑛+1,x
ℎ
𝑛+2) + 𝜌̃︀𝜒(xℎ𝑛+1,y

ℎ − xℎ𝑛+2) ≥
≥
(︀
xℎ𝑛+1,y

ℎ − xℎ𝑛+2

)︀
𝑋
− 𝜌

(︀
𝐴xℎ𝑛+1 − f3,y

ℎ − xℎ𝑛+2

)︀
𝑋
. (62)

By adding the inequalities resulting from yℎ=xℎ𝑛+2 and yℎ=xℎ𝑛+1 in (61) and (62), respec-
tively, we obtain:(︀

xℎ𝑛+2 − xℎ𝑛+1,x
ℎ
𝑛+2 − xℎ𝑛+1

)︀
𝑋
≤

≤ 𝜌
(︁ ̃︀𝐽(xℎ𝑛,xℎ𝑛+2)− ̃︀𝐽(xℎ𝑛+1,x

ℎ
𝑛+2) + ̃︀𝐽(xℎ𝑛+1,x

ℎ
𝑛+1)− ̃︀𝐽(xℎ𝑛,xℎ𝑛+1)

)︁
+

+ 𝜌
(︀̃︀𝜒(xℎ𝑛,xℎ𝑛+2 − xℎ𝑛+1)− ̃︀𝜒(xℎ𝑛+1,x

ℎ
𝑛+2 − xℎ𝑛+1)

)︀
+

+
(︀
xℎ𝑛+1 − xℎ𝑛 − 𝜌(𝐴xℎ𝑛+1 − 𝐴xℎ𝑛),x

ℎ
𝑛+2 − xℎ𝑛+1

)︀
𝑋
.

Then, it follows that:
‖xℎ𝑛+2 − xℎ𝑛+1‖2𝑋 ≤ 𝜌𝒮1 + 𝒮2, (63)

where

𝒮1 = ̃︀𝐽(xℎ𝑛,xℎ𝑛+2)− ̃︀𝐽(xℎ𝑛,xℎ𝑛+1) + ̃︀𝐽(xℎ𝑛+1,x
ℎ
𝑛+1)− ̃︀𝐽(xℎ𝑛+1,x

ℎ
𝑛+2)+

+ ̃︀𝜒(xℎ𝑛,xℎ𝑛+2)− ̃︀𝜒(xℎ𝑛,xℎ𝑛+1) + ̃︀𝜒(xℎ𝑛+1,x
ℎ
𝑛+1)− ̃︀𝜒(xℎ𝑛+1,x

ℎ
𝑛+2),

𝒮2 =
(︀
xℎ𝑛+1 − xℎ𝑛 − 𝜌

(︀
𝐴xℎ𝑛+1 − 𝐴xℎ𝑛

)︀
,xℎ𝑛+2 − xℎ𝑛+1

)︀
𝑋
.

From algebraic manipulations similar to those in the proof of Theorem 2, we obtain:

𝒮1 ≤ 𝜌𝛼‖xℎ𝑛+2 − xℎ𝑛+1‖𝑋‖xℎ𝑛+1 − xℎ𝑛‖𝑋 . (64)

On the other hand, using Cauchy – Schwarz inequality, we get:

𝒮2 ≤ ‖xℎ𝑛+1 − xℎ𝑛 − 𝜌
(︀
𝐴xℎ𝑛+1 − 𝐴xℎ𝑛

)︀
‖𝑋‖xℎ𝑛+2 − xℎ𝑛+1‖𝑋 ,
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and since, we have:

‖xℎ𝑛+1 − xℎ𝑛 − 𝜌
(︀
𝐴xℎ𝑛+1 − 𝐴xℎ𝑛

)︀
‖2𝑋 =

=
(︀
xℎ𝑛+1 − xℎ𝑛 − 𝜌

(︀
𝐴xℎ𝑛+1 − 𝐴xℎ𝑛

)︀
, xℎ𝑛+1 − xℎ𝑛 − 𝜌

(︀
𝐴xℎ𝑛+1 − 𝐴xℎ𝑛

)︀)︀
𝑋
=

= ‖xℎ𝑛+1 − xℎ𝑛‖2𝑋 − 2𝜌
(︀
xℎ𝑛+1 − xℎ𝑛, 𝐴x

ℎ
𝑛+1 − 𝐴xℎ𝑛

)︀
+ 𝜌2‖𝐴xℎ𝑛+1 − 𝐴xℎ𝑛‖2𝑋 ,

moreover by using (30), and (31), we obtain:

‖xℎ𝑛+1−xℎ𝑛−𝜌
(︀
𝐴xℎ𝑛+1 − 𝐴xℎ𝑛

)︀
‖2𝑋 ≤ ‖xℎ𝑛+1−xℎ𝑛‖2𝑋−2𝜌𝑚𝐴‖xℎ𝑛+1−xℎ𝑛‖2𝑋+𝜌2𝑀2

𝐴‖xℎ𝑛+1−xℎ𝑛‖2𝑋 ,

then, we have:

‖xℎ𝑛+1 − xℎ𝑛 − 𝜌
(︀
𝐴xℎ𝑛+1 − 𝐴xℎ𝑛

)︀
‖𝑋 ≤

√︁
1− 2𝜌𝑚𝐴 + 𝜌2𝑀2

𝐴 ‖xℎ𝑛+1 − xℎ𝑛‖𝑋 .

Hence, using the above inequality, we find that:

𝒮2 ≤
√︁

1− 2𝜌𝑚𝐴 + 𝜌2𝑀2
𝐴 ‖xℎ𝑛+2 − xℎ𝑛+1‖𝑋‖xℎ𝑛+1 − xℎ𝑛‖𝑋 . (65)

Combining (63), (64), and (65), we obtain:

‖xℎ𝑛+2 − xℎ𝑛+1‖𝑋 ≤ 𝜆(𝜌)‖xℎ𝑛+1 − xℎ𝑛‖𝑋 ,

where 𝜆(𝜌) = 𝜌𝛼 +
√︀
1− 2𝜌𝑚𝐴 + 𝜌2𝑀2

𝐴. i. e.,

‖xℎ𝑛+1 − xℎ𝑛‖𝑋 ≤ 𝜆(𝜌)𝑛+1‖xℎ1 − xℎ0‖𝑋 .

We can choose 𝜌 such that:

0 < 𝜌 <
2(𝑚𝐴 − 𝛼)

𝑀2
𝐴 − 𝛼2

for
𝛼

𝑚𝐴

< 1,

we obtain 𝜆(𝜌) < 1. Then, we deduce that (xℎ𝑛) is a Cauchy sequence. Hence (xℎ𝑛) is bounded
in 𝑋ℎ, so there exist x* ∈ 𝑋, and a subsequence still denoted by (xℎ𝑛), such that:

xℎ𝑛 ⇀ x* weakly in 𝑋ℎ, as 𝑛→ +∞. (66)

Next, we proof that x* is a solution of (PVℎ). Since the trace map 𝛾 :𝑉×𝑊→𝐿2(Γ3)
𝑑×𝐿2(Γ3)

is a compact operator, from the weak convergence xℎ𝑛 ⇀ x* in 𝑋ℎ, we obtain the convergence
xℎ𝑛 → x* strongly in 𝐿2(Γ3)

𝑑 × 𝐿2(Γ3). From (59), we have:

𝜌
(︀
𝐴xℎ𝑛,y

ℎ − xℎ𝑛+1

)︀
𝑋
+ 𝜌 ̃︀𝐽(xℎ𝑛,yℎ)− 𝜌 ̃︀𝐽(xℎ𝑛,xℎ𝑛+1) + 𝜌̃︀𝜒(xℎ𝑛,yℎ − xℎ𝑛+1) ≥

≥
(︀
xℎ𝑛 − xℎ𝑛+1,y − xℎ𝑛+1

)︀
𝑋
+ 𝜌(f3,y

ℎ − xℎ𝑛+1)𝑋 .

Now, from (66), the properties of R, 𝜓, 𝑔1, 𝑔2 and 𝜑𝐿, we have:

̃︀𝐽(xℎ𝑛,yℎ)− ̃︀𝐽(xℎ𝑛,xℎ𝑛+1) → ̃︀𝐽(x*,yℎ)− ̃︀𝐽(x*,x*),̃︀𝜒(xℎ𝑛,yℎ − xℎ𝑛+1) → ̃︀𝜒(x*,yℎ − x*),
(xℎ𝑛,y

ℎ − xℎ𝑛+1)𝑋 − (xℎ𝑛+1,y
ℎ − xℎ𝑛+1)𝑋 → (x*,yℎ − x*)𝑋 − (x*,yℎ − x*)𝑋 ,

(f3,y
ℎ − xℎ𝑛+1) → (f3,y

ℎ − x*)𝑋 ,

⎫⎪⎪⎬⎪⎪⎭ as 𝑛→ +∞.
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Then, we find that:

lim sup
𝑛→+∞

𝜌(𝐴xℎ𝑛,x
ℎ
𝑛+1 − yℎ)𝑋 ≤ 𝜌(f3,x

* − yℎ) + 𝜌 ̃︀𝐽(x*,yℎ)− 𝜌 ̃︀𝐽(x*,x*) + 𝜌̃︀𝜒(x*,yℎ − x*),

or

lim sup
𝑛→+∞

𝜌(𝐴xℎ𝑛,x
ℎ
𝑛+1 − x*)𝑋 = lim sup

𝑛→+∞
𝜌(𝐴xℎ𝑛,x

ℎ
𝑛+1 − yℎ)𝑋 + lim sup

𝑛→+∞
𝜌(𝐴xℎ𝑛,y

ℎ − x*)𝑋 ≤

≤ lim sup
𝑛→+∞

𝜌(𝐴xℎ𝑛,x
ℎ
𝑛+1 − yℎ)𝑋 + lim sup

𝑛→+∞
𝜌‖𝐴xℎ𝑛‖𝑋‖yℎ − x*‖𝑋 ≤

≤ 𝜌
(︀
f3,x

* − yℎ
)︀
+ 𝜌 ̃︀𝐽(x*,yℎ)− 𝜌 ̃︀𝐽(x*,x*) + 𝜌̃︀𝜒(x*,yℎ − x*)+

+ lim sup
𝑛→+∞

𝜌‖𝐴xℎ𝑛‖𝑋‖yℎ − x*‖𝑋 ,

for all yℎ = (vℎ, 𝜉ℎ) ∈ 𝑋ℎ. Note that ‖𝐴xℎ𝑛‖𝑋 is bounded, and we may then substitute
yℎ = x* into the previous inequality to obtain:

lim sup
𝑛→+∞

𝜌(𝐴xℎ𝑛,x
ℎ
𝑛+1 − x*)𝑋 ≤ 0.

Furthermore, we use the pseudo-monotonicity of the operator 𝐴 to conclude:

𝜌(𝐴x*,x* − yℎ)𝑋 ≤ lim inf
𝑛→+∞

𝜌(𝐴xℎ𝑛,x
ℎ
𝑛+1 − yℎ)𝑋 .

Hence, we have:

(𝐴x*,yℎ − x*)𝑋 + ̃︀𝐽(x*,y)− ̃︀𝐽(x*,x*) + ̃︀𝜒(x*,yℎ − x*) ≥ (f3,y
ℎ − x*)𝑋 ∀x* ∈ 𝑋ℎ.

From (72), we find that x* is a solution of Problem (PVℎ), and from the uniqueness of the
solution to this variational inequality we obtain x* = xℎ. We conclude that xℎ = (uℎ, 𝜙ℎ)
is the unique weak limit in 𝑋ℎ = 𝑉 ℎ ×𝑊 ℎ of any subsequence of the sequence (xℎ𝑛) and
therefore, we find that the whole sequence (xℎ𝑛) converges weakly to element xℎ.

In the second phase of our demonstration, we will proof that xℎ𝑛+1, the solution of (59),
converges strongly to xℎ the solution of (PVℎ) as 𝑛→ +∞.
(i) The couple xℎ = (uℎ, 𝜙ℎ) is a solution of (PVℎ) if only if

(𝐴xℎ,yℎ − xℎ)𝑋 + ̃︀𝐽(xℎ,yℎ)− ̃︀𝐽(xℎ,xℎ) + ̃︀𝜒(xℎ,yℎ − xℎ) ≥ (f3,y
ℎ − xℎ)𝑋 , (67)

for all yℎ = (vℎ, 𝜉ℎ) ∈ 𝑋ℎ.
(ii) The couple xℎ𝑛+1 = (uℎ𝑛+1, 𝜙

ℎ
𝑛+1) is a solution of (59) if only if

(xℎ𝑛+1,y
ℎ − xℎ𝑛+1)𝑋 + 𝜌 ̃︀𝐽(xℎ𝑛,yℎ)− 𝜌 ̃︀𝐽(xℎ𝑛,xℎ𝑛+1) + 𝜌̃︀𝜒(xℎ𝑛,yℎ − xℎ𝑛+1) ≥

≥ (xℎ𝑛,y
ℎ − xℎ𝑛+1)𝑋 − 𝜌(𝐴xℎ𝑛 − f3,y

ℎ − xℎ𝑛+1)𝑋 ∀yℎ ∈ 𝑋ℎ. (68)

Multiplying both sides of the inequality (67) by 𝜌, then taking yℎ = xℎ𝑛+1 in (67), yℎ = xℎ

in (68) and adding the obtained inequalities, we get:

(xℎ𝑛+1 − xℎ𝑛,x
ℎ − xℎ𝑛+1)𝑋 + 𝜌(𝐴xℎ − 𝐴xℎ𝑛,x

ℎ
𝑛+1 − xℎ)𝑋+

+ 𝜌

[︂ ̃︀𝐽(xℎ𝑛,xℎ)− ̃︀𝐽(xℎ𝑛,xℎ𝑛+1) + ̃︀𝐽(xℎ,xℎ𝑛+1)− ̃︀𝐽(xℎ,xℎ)]︂+
+ 𝜌

[︂̃︀𝜒(xℎ𝑛,xℎ − xℎ𝑛+1) + ̃︀𝜒(xℎ,xℎ𝑛+1 − xℎ)

]︂
≥ 0. (69)

The inequality (69), can be rewritten as follows:
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(xℎ𝑛+1 − xℎ,xℎ𝑛+1 − xℎ)𝑋 ≤ 𝒢1 + 𝒢2, (70)

where

𝒢1=𝜌

[︂̃︀𝐽(x𝑛,xℎ)− ̃︀𝐽(xℎ𝑛,xℎ𝑛+1)+ ̃︀𝐽(xℎ,x𝑛+1)− ̃︀𝐽(xℎ,xℎ)+̃︀𝜒(xℎ𝑛,xℎ−xℎ𝑛+1)+̃︀𝜒(xℎ,xℎ𝑛+1−xℎ)

]︂
,

𝒢2=
(︀
xℎ𝑛 − xℎ − 𝜌(𝐴xℎ − 𝐴xℎ𝑛),x

ℎ
𝑛+1 − xℎ

)︀
𝑋
.

One has:
𝒢1 ≤ 𝜌𝛼‖xℎ𝑛+1 − xℎ‖𝑋‖xℎ𝑛 − xℎ‖𝑋 . (71)

Moreover, it follows from (30), (31) and Cauchy Schwarz inequality that:

𝒢2 ≤
√︁

1− 2𝜌𝑚𝐴 + 𝜌2𝑀2
𝐴‖x

ℎ
𝑛+1 − xℎ‖𝑋‖xℎ𝑛 − xℎ‖𝑋 . (72)

Then, in virtue of (70), (71), and (72), we get:

‖xℎ𝑛+1 − xℎ‖2𝑋 ≤ 𝜆(𝜌)‖xℎ𝑛+1 − xℎ‖𝑋‖xℎ𝑛 − xℎ‖𝑋 .

Next, we use the triangular inequality to conclude that:

‖xℎ𝑛+1 − xℎ‖2𝑋 ≤ 𝜆(𝜌)‖xℎ𝑛+1 − xℎ‖𝑋(‖xℎ𝑛 − xℎ𝑛+1‖𝑋 + ‖xℎ𝑛+1 − xℎ‖𝑋) ≤
≤ 𝜆(𝜌)‖xℎ𝑛+1 − xℎ‖2𝑋 + 𝜆(𝜌)‖xℎ𝑛 − xℎ𝑛+1‖𝑋‖xℎ𝑛+1 − xℎ‖𝑋 .

Hence, we have:

‖xℎ𝑛+1 − xℎ‖𝑋 ≤ 𝜆(𝜌)

1− 𝜆(𝜌)
‖xℎ𝑛+1 − xℎ𝑛‖𝑋 .

Finally, from the above inequality, letting 𝑛→ +∞, we obtain xℎ𝑛 → xℎ. ■

Conclusion

The presented paper outlines a model that deals with the static process of frictional contact
between an electrically conductive foundation and a piezoelectric body, where the electro-
elastic constitutive law is considered to be nonlinear. The model used in this study incor-
porated Signorini modified contact conditions and Coulomb’s friction law, while also taking
into account the electrical conductivity condition. By applying the theory of variational in-
equalities and a fixed-point theorem, the existence of a unique weak solution for the problem
was established. Additionally, a finite element method was utilized to approximate the so-
lution, and an iteration method was proposed to numerically solve the problem, with its
convergence being established.
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Аннотация

В статье основное внимание уделяется математической модели, которая описывает состо-
яние равновесия пьезоэлектрической структуры, находящейся в контакте с проводящим осно-
ванием, с учетом трения. Основной закон, регулирующий электроупругое поведение системы,
считается нелинейным, а контакт моделируется с использованием модифицированных кон-
тактных условий Синьорини. Эти условия дополняются нелокальным законом трения Кулона
и регуляризованным условием электропроводности. Слабая формулировка модели представ-
лена как связанная система, которая связывает поля смещения и электрического потенциала.
Показано, что слабое решение существует и единственно, при этом используются теоремы Ба-
наха о неподвижной точке и аргументов абстрактных эллиптических квазивариационных нера-
венств. Кроме того, исследовано конечно-элементное приближение задачи и выведена оценка
связанной с ним погрешности. Представлен итерационный метод для решения системы конеч-
ных элементов, полученной в результате анализа, и рассмотрен анализ сходимости метода при
соответствующих условиях.

Ключевые слова: пьезоэлектрическое тело, проводящее основание, модифицированные кон-
тактные условия Синьорини, закон трения Кулона, квазивариационное неравенство, банахова
неподвижная точка, итерационный метод.
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