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The focus of this paper is on a mathematical model that depicts the state equi-
librium of a piezoelectric structure in contact with a conductive foundation, taking
into account the presence of friction. The constitutive law governing the electro-elastic
behavior of the system is considered to be non-linear, while the contact is modelled
using Signorini’s modified contact conditions. These conditions are supplemented by
a non-local Coulomb friction law and an electrical conductivity condition that has been
regularized. A weak formulation of the model is presented as a coupled system that
relates the displacement and electric potential fields. The weak solution is shown to
be both unique and existent through the invoke of Banach fixed-point theorem and
arguments of abstract elliptic quasi-variational inequalities. Additionally, we explore
the problem’s finite element approximation and derive estimate of its associated er-
ror. In conclusion, an iterative method is introduced to solve the finite element system
resulting from the analysis, and the convergence analysis of the method is considered
under appropriate conditions.
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Introduction

Piezoelectrics are a prevalent and important type of material used in a variety of applications
in engineering and real life. Although they were discovered over 100 years ago by brothers
Pierre and Jacques Curie, scientists still find new ways to use them. The conversion of elec-
trical energy into mechanical energy and vice versa is a defining characteristic of piezoelectric
materials, which results in observed properties that exhibit electromechanical coupling.

In recent years, there has been considerable interest in mathematical investigations of con-
tact problems that involve piezoelectric materials. However, the choice of appropriate contact
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boundary conditions continues to be a significant challenge in modelling these problems. One
of the most widely used boundary conditions in both engineering and mathematical litera-
ture are the so-called Signorini conditions. They were introduced by Signorini in [1], in which
the problem of unilateral contact between a linearly elastic body and a rigid foundation is
formulated. It follows the work of Fichera [2] where the Signorini problem was solved using
arguments of elliptic variational inequalities. Several authors have been interested in ques-
tion of the existence and uniqueness of weak solutions to contact problems. More precisely,
the early attempt to study frictional contact problems within the framework of variational
inequalities was started with the monograph of Duvaut and Lions [3].

The documentation of piezoelectric modelling is very extensive; see, for instance [4-
7]. Relevant models for elastic materials with piezoelectric effects can be found in [8+10] and
the references therein. Some theoretical results for contact models with static friction taking
into account the interaction between electrical and mechanical fields have been obtained
in |11, 12], under the assumption that the foundation is electrically insulated, and in |13]
assuming that the foundation is electrically conductive. Moreover, analysis and numerical
simulation of contact with or without friction for piezoelectric materials can be found in [8,
11} [14H26] and the references therein. Several research papers have examined the topic of
static and quasi-static contact problems in thermo-viscoelasticity and thermo-piezoelectricity
involving friction. These papers can be found in |16} 23, 24, [26-29].

In this paper, we investigate a mathematical model that describes the static frictional
contact between a piezoelectric body and a conductive foundation. The body is assumed
to be electro-elastic, with a non-linear elasticity operator. In contrast to the models
discussed in [9, |10, |13, |30, 31], we assume herein that the contact is modelled using
the Signorini modified contact conditions (see [3, ch. 3, p. 147]), nonlocal Coulomb
friction law with slip dependent friction coefficient and a regularized electrical conduc-
tivity condition, taking into account the conductivity of the foundation as in [22, 26, 30|,
which involve a coupling between the mechanical and the electrical unknowns. This
work is divided into two parts. The first one is devoted to the existence and uniqueness
of the solution. The second one is reserved for the numerical approximation of the variational
formulation by the finite element method combined with an iteration method. This research
stands apart from the studies referenced in [9, 13, [22, |30] by examining different bound-
ary conditions and employing a distinct approximation approach. The modified Signorini
contact conditions lead to a variational formulation which differs from the one presented
in [30] by the presence of the nondifferentiable terms and represents a new mathematical
model for piezoelectric materials. To our knowledge, this model with Signorini modified con-
tact conditions for piezoelectric materials has not been studied yet and no result has been
obtained for this type of problem. An important extention of this paper is the numerical
analysis of the model. Numerical simulations will be presented in a forthcoming work.

The outline of the paper is as follows. Basic notations and preliminary material for the
rest of the paper are recalled in Sect. Il The mechanical problem is stated in Sect. [2| In
Sect. [3 we present the variational problem and state assumptions about the given data. The
unknowns for the variational problems are the displacement field and the electric potential. In
Sect. [4], we state and prove our main results. The proofs are based on arguments from elliptic
variational inequalities and Banach fixed-point properties of certain maps. Moreover, in
Sect. [5l, we study the finite element approximation of the variational problem, and we derive
error estimates. Finally, in Sect. [6, we propose an iterative method to solve the resulting
finite element system, which converges under certain assumptions.
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1. Notations and preliminaries

In this section, we introduce the notations and various functional spaces that will play
a crucial role in formulating and analyzing the mechanical problem. For more in-depth
information, interested readers can refer to the following references: |27, 32-34).

We denote by $¢ the space of second order symmetric tensors on R?. We define the inner
products and the corresponding norms on R¢ and $¢, that is:

1/2
u.v=uuv; |[v]=w.v)'/? vu, veR?
1/2
oc:T=0,1; ||T|=(:7) 2 Vo, T e S
The summation convention over repeated indices is used, all indices take values in 1,...,d.

Let © € R? (d = 2, 3) be an open and bounded domain with a Lipschitz boundary
I' that is divided into three open disjoint measurable parts I'y, I'y and I'3, on one hand,
and on two measurable parts I', and I'y, on the other hand, such that meas(I';) > 0 and
meas(I';) > 0. Since the boundary is Lipschitz continuous, the unit outward normal vector v
is defined a.e. on I'.

We use the notation u, and u, for the normal and tangential displacement that is
u, = u-v and u, = u — u,v. We also denote by ¢, and o, the normal and tangential
tress given by 0, = ov -v, o0, = oV — o,V.

We define, respectively, the positive and the negative part of v, by:

v = max(0, v,), v, = max(—uv,, 0). (1)

We introduce the following functional spaces:
H= L2(Q)d, H1 = HI(Q>d, H = {0’ = (Oij) y Oij = 04 € LZ(Q)},
H,={o cH; Divec H}, W={D = (D,) € L*(Q)¢; divD € L*(Q)}.

These spaces are real Hilbert spaces equipped with the following inner products:

(u, V) = / s vsdx, (o, Ty = / oy g dx, (W, V) = (0, V) + (e(u), €(v))s
Q 0
(0-7 7-)7'[1 = <U7 T)’H + (DiVO’, Div T)H7 (D7 E)W = (DaE)H + (le D; div E)L2(Q);

with the associated norms || - ||g, || - [l || - |, || - |3, and || - ||, respectively.

Let Hr = HY*(I")? and let v : H; — Hp be the trace map. For every element v € Hj,
we also use the notation v to note the trace yv of v on I'. Let H{. be the dual of Hr and let
(-,+) denote the duality pairing between H{. and Hr. For every o € Hi, ov can be defined
as the element in H{. which satisfying Green’s formula as follows:

(ov, W) = (0, e(V))y + (Dive, v)g Vv € H;. (2)

Moreover, if o is continuously differentiable on €2, then:

(ov,yv) = /0'1/ -vda,
r
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for all v € Hy, where da is the surface measure element. We also introduce H'/%(T'3) C L*(T'3)
the space of normal traces on I's:

HY(I'5) = {v, € L’(T3); IveH, v,=9v-v},
and its dual H~/2, with norms correspondingly:

lowllgmqeyy = inf (vl s v=av-w} Vo, € HYATY),

Vo, € HY(Ty), (3)

oy, VU
||Uu||H—1/2(r3) = sup ”<||V’—V>
'UuGHrl‘g2, Uy H1/2(F3)

vw#0 12
Hrg

where (-, -) denote the duality pairing between H~/2(I'3) and H/2(T'3).
Bearing in mind the boundary conditions, we introduce the displacement and the electric
potential spaces:

V={veH;v=0onT}, W={ecH(Q); ¢=0o0n I,}.

Since meas(I';) > 0 and meas(I';) > 0, Korn’s and Friedrichs - Poincaré inequalities hold:
There exists cx > 0 and cp > 0 which depends only on €2, I'y and I';, such that:

leW)llw = cxllvllm Vv eV,
IVElln > crléllme VEEW. (4)

Therefore, the space V' equipped with the inner product (u,v)y = (e(u), e(v))y is a real
Hilbert space, and its associated norm ||v||y = ||e(V)|| is equivalent on V' to the usual norm
| - lz,- On W, we consider the inner product: (¢,&)w = (Ve, V&) y. It is straightforward
from (4)) that || - ||41 (@) and || - ||y are equivalent norms on W and thus (W, || - ||w) is a real
Hilbert space. By Sobolev’s trace theorem, there exist two positive constants ¢y and ¢; which
depends only on 2, I'3, I'; and I', such that:

IVlle2ys < collvllv - Vv eV, (5)
1€ll2rs) < elléllw V€ € W. (6)

2. Physical model and its mathematical formulation

The physical setting of the contact problem is as follows. We consider a piezoelectric body
occupying, in its reference configuration, an open and bounded domain €2 with a sufficiently
smooth boundary 92 = I'. As outlined in the preceding section, this boundary is divided
accordingly. The body is subjected to an action of body forces of density f; and a volume
electric charges of density qg. It is clamped on I'y and a surface traction of density f, act on
['s. Moreover, the electric potential vanishes on I', and a surface electric charge of density
@ is prescribed on I'y,. On I's the body is in contact with friction with a conductive obsta-
cle, the so-called foundation. We model the frictional contact with the Signorini modified
contact conditions and nonlocal Coulomb’s friction law. We assume that the foundation is
electrically conductive and its potential is maintained at ¢r. The mechanical problem as-
sociated with the static frictional contact between a piezoelectric body and a deformable
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conductive foundation, considering that the contact is described using modified Signorini
contact conditions, can be expressed as follows:

Problem (P). Find a displacement field u : Q — RY, a stress field o : Q — 8¢, an
electric potential ¢ : Q — R and an electric displacement field D : Q — R¢ such that:

o =Fe(u) — PE(p) in €, (7)
D = Pe(u) + BE(p) in Q, (8)
Dive + £, =0 in €, (9)
divD = ¢ in Q, (10)
u=0 on Iy, (11)
ov = f, on I'y, (12)

91(|lu]]) < 0v(u, ) < g2([[ul),

g1([lul]) < ou(u, ) < g2(llul]) = u, =0,
o, = gi([lul]) = w, =0,

Oy = g2<||U||) = Uy, < 07

lo-| < p(l[ur )| Ra (u, @),

o+l < pllurl)[Rey (u, )] = u- =0, on T, (14)

on I's, (13)

or = —u(|[u-|)[Roy(u, )| TR # 0,

=0 on Iy, (15)

D-v=g on I'y, (16)

D v =1(u,)oL(p — ¢r) on I';. (17)
Equations and represent the electro-elastic constitutive law of the material in which
& denotes the elasticity operator, assumed to be non-linear, in which E(p) = —Vy is the

electric field, P is the piezoelectric tensor verifying:
Po-v=0cP v Voec8 veR:

P is its transpose, and 3 denotes the electric permittivity tensor. Equations , @ and
represents the equilibrium equations for the stress and electric displacement fields, respec-
tively. Relations and are the displacement and traction boundary conditions, re-
spectively, and , represents the electric boundary conditions. Relations embody
Signorini’s modified contact law (see |3} ch. 3, p. 147]), wherein the thresholds g; and go de-
lineate critical limits for surface contact pressure, which must not be exceeded to prevent
localized crushing of the material due to excessive pressure in the contact zone. The inequal-
ity ¢1(|Jul|) < o, < g2(||u]) indicates that when the normal stress (contact pressure) remains
within a specified range, it avoids exceeding critical thresholds. As a result, the normal dis-
placement is zero, i.e., u, = 0. If the normal stress reaches the upper threshold o, = g»(||ul|)
(which is positive), a displacement normal to the contact surface occurs, resulting in a neg-
ative value for u, (u, < 0). Conversely, if the contact pressure reaches the lower threshold
o, = g1(]|Jul]) (which is negative), a displacement normal to the contact surface occurs, re-
sulting in a positive value for u, (u, > 0). Relations represents the Coulomb’s friction
law in which p is the coefficient of friction and R is a regularization operator. Finally, ((17))
represents the regularized electrical contact condition on I's, which was considered in [26],
where 1 and ¢ are a regularization function and the truncation function, respectively,
such that:
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—L, ifs<—L, 0, if r <0,
or(s) =1 s, if —L<s<IL, P(r) =< kor, if0<r<1/§,
L, if s> L. k, if r > 1/0,

in which L is a large positive constant, 6 > 0 denotes a small parameter and k > 0 is the
electrical conductivity coefficient.

3. Variational formulation of the problem

In order to state the unique solvability of Problem (P), we need the following hypotheses:
(Hy) The elasticity operator § : Q x $¢ — §¢ satisfy the following conditions:
(a) There exists Mg > 0, such that:

IF(x, 1) — F(x, &)l < Mgllér — &al| V&1, & €87, ae. xeQ.
(b) There exists mg > 0, such that:
(F(x,&1) — F(x, &) (€1 — &) > mz[lé1 — & VE€1,& €8% ae.x Q.

(c) The mapping x — F(x, £) is Lebesgue measurable on 2, for all £ € $7.
(d) The mapping x — F(x,0) belongs to H.
(Hy) The piezoelectric tensor P = (p;;i) satisfies: pijx = pi; € L>(Q).
(Hs) The electric permittivity tensor 3 = (f;;) satisfies:
(a) Bij = Bji € L>(Q2).
(b) Img > 0, such that:
Bi&i&; > mgll€l]? VE € R’ a.e.x €.

Notice that the above conditions allows us to define:

Mp = sup ||pijillL~), Mp = sup||BillL=@).
iJ v

(Hy) The surface electrical conductivity function 9 : I's x R — R, satisfy:
(a) 3Ly > 0, such that:

|w('7w1) - ¢(7w2)| < Lz/)|w1 - w2| le, wy € R.
(b) 3My > 0, such that:
[Y(x,w)| < My, YweR, a.e.xels.

(¢) x +— (x,w) is measurable on I's, for all w € R.
(d) x = ¢(x,w) =0, for all w <0.

(Hs) The coefficient of friction p : I's x Ry — R satisfy:
(a) 3L, > 0, such that:

(e w1) = p( wa)| < Lyfwy — wa| - Vs, wy € Ry
(b) Ju* > 0, such that:
p(x,w) < p* Ywe Ry, a.e. x €l

(¢) The mapping x — u(x,w) is measurable on I's, for all w € R,.
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; . ' sati . :
(Hg) The function ¢; : I's x Ry — R_ satisfies the following conditions
(a) 3L, > 0, such that:

|91(%,w1) — g1(x,wa)| < Ly, |wy — wy| Vwi,wa € Ry, ace. x €T3,
(b) 3M,, > 0, such that:
g (x,w)] < M, VYweR,;, ae.xel.
(c) The mapping x +— ¢g1(x,w) is measurable on I's, for all w € R,.

(H7) The function g9 : I's x Ry — R, satisfies the following conditions:
(a) 3Ly, > 0, such that:

|g2(x, w1) — go(x, w2)| < Ly, |wy —wa| Vwy,we € Ry, ace. x €5,
(b) 3M,, > 0, such that:
|g2(x,w)| < M, YweR;, a.e.xel}.

(c) The mapping x + go(x,w) is measurable on I's, for al w € R;.
(Hg) The body forces, the traction, the volume and surface charge densities, also the given
potential satisfy:

fo € L*()%, £, € L*(T3)%, qo € L*(Q), g € L*(Ts), ¢r € L*(T3).

(Hg) The mapping R : H;l/z — L>(T'3) is linear and continuous with ||R|| = cg.

3

Next, we define the elements f € V and q € W, respectively, by:

f = [ fy-vd fy-vda V V. 18

(f,v)y Q/va—l—/mgva vev, (18)

(@e;)w = [ @€dr — | @p&da YE€W. (19)
[ ]

We define the mappings J : V x W xV — R and x: V x W x W — R, respectively, by:

J(u,0,v) = / w1 DIRay (u, )] (vl da + / ga(|[ul) v; da — / gi(|[ul) vf da,  (20)

s s T's

X, p,€) = / b(u) bile — or) € da. (21)

Keeping in mind assumptions (Hy)-(Hs) it follows that the integrals in (L8)—(21) are well-
defined. Thus, according to these notations and by using a standard procedure based on
Green’s formula, we can state the variational formulation of Problem (P), in the terms of
displacement field and electric potential.

Problem (PV). Find a displacement field u € V' and an electric potential ¢ € W such
that:

(Fe(u), e(v) —e(u))y + (PVyp, e(v) —e()u + J(u, ¢, v) = J(u, ¢, u)
>, v—u)y Vvvev, (22)
BV, V&) — (Pe(u), VE)u + x(u,9,) = (¢, w  VEEW. (23)
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4. Existence and uniqueness results

The following theorem establishes the existence and uniqueness of the solution to the Prob-
lem (PV).

Theorem 1. Assume that the hypotheses (Hy)-(Hg) hold true, there exists L* > 0 such
that if

(Lu + M* + Lgl + ng + LwL + Mw) < L*’
then, Problem (PV) has a unique solution.
The proof of Theorem [1| will be divided into several steps. We suppose in the sequel that

the hypotheses of Theorem [1] are fulfilled. Before stating and proving our main results, we
consider the product spaces X = V x W, and Y = L?(I'3)*, together with the inner products:

(X7 Y)X = (u? V)V + ((707 €)W7 (77, O)Y = (Uu ei)LQ(Fg)a (24)

for all x = (u, ), y = (v,§) € X, n = (m,n2,73.7), 6 = (01,02,03,04) € Y and the
associated norms || - || x and || - ||y, respectively. We define the operator A : X x X — X the
functions J, Y on X x X and the element f3 € X by equalities:

(A%, y)x = (Fe(u),e(v))n + (BVe, VEu + (PVe,e(v))n — (Pe(u), VEu, (25
J(x,y) = J(u,¢,v), (26)
X(x,y) = x(u,¢,8), (27)

fs = (f, ) € X, (28)

for all x = (u,p) and y = (v,£) € X. With the above notations, we get the following
equivalent problem:
Problem (PV). Find x = (u,¢) € X such that:

(Ax,y =x)x +J(x,y) = T, %) +X(x,y =x) = (f,y =x)x Yy =(v,§) € X. (29)
We start with the following technical lemmas which is frequently used in what follows.

Lemma 1. The couple x = (u, ) € U is a solution to Problem (PV) if and only if it is
a solution to Problem (PV).

Proof. Let x = (u,p) € X be a solution to Problem (PV) and let y = (v,&) € X. We
choose (£ —¢) as test function in , add the corresponding inequality to and use ([24])—
to obtain (29). Conversely, let x = (u,¢) € X be a solution to Problem (13\7) We take
y = (v,p) in , where v is an arbitrary element of X and obtain . Then for any
¢ € W, we take successively y = (v,p+¢), and y = (v,p —§) in to obtain (23)), which
concludes the proof of Lemma [1] |

Lemma 2. The operator A : X — X is strongly monotone and Lipschitz continuous.

Proof. We consider two elements x; = (uy, 1), X2 = (uz,p2) € X, from the assumpti-
ons (Hy)-(Hs), and alongside with an algebraic manipulation similar to those used
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in [9, 30], we can easily prove that there exist m4 > 0 depend only on &, 3, €2, ', and there
exist M4 > 0 depend only on &, 3 and P such that:

(Ax; — Axa, X1 — Xa)x > ma(flur — usly + o1 — @2llfy) = mallx1 — x2|%, (30)
|Ax) — Axo||x < Mal[x; — xol|x, (31)
for all x;, xo € X, where m4 = min(mg, mg), and My = 4 X max(Mzg, Mg, Mp). [ |

Now, let z = (21, 22, 23, 24) € Y with z; > 0, 20 > 0, 23 > 0, and we define the functions:

J.(v) = /z1||VTH da + /zzv; da + /z;;vj da Vv eV, (32)
I's s I's

w©) = [agda vgew (3)
T's

We consider the element f, € X given by:
fz = (f7 qz) € X7

where

(qZ7§)W = <Qe7€)W - Xz(g) vf eWw.

It follows frorB , and 7 that ¢, € W. We extend the functional J, defined by to
a functional .J, defined on V, that is:

Jo(x) = Jy(u) Vx=(u,p) € X. (34)

Using the above notations and Lemma [I} we have the following intermediate problem.
Problem (PV?). Find x, = (ug, ¢,) € X such that:

(sz,y - XZ)X + Jz<y) - Jz(xz> > (fmy - XZ)X vy = (V7£) € X. (35)
We have the following existence and uniqueness result.

Lemma 3. For any z = (z1, 22, 23, 24) € Y, suppose that the hypotheses (H,)—(Hs) hold,
then:
(i) Problem (PV?*) has a unique solution X, = (Ug,¢,) € X which depends Lipschitz
continuously on z € Y.
(i) There exists a constant co > 0 such that the solution of Problem (PV?*) satisfies:

[1%al[x < callfallx

Proof.

(i) From Lemmal[2] we have the operator A : X — X is strongly monotone and Lipschitz
continuous. The functional jz given by is proper, convex and Lipschitz continuous, and
therefore, J, is a fortiori lower semi continuous. Indeed, firstly, it’s quite easy to see that
J, is proper since jz(x) > 0 for all x € X. The convexity of J, follows from of the that
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of the functionals v — ||v.||, v — o}

S, and v — v, defined in ([1)). Let x; = (u, 1),
X3 = (g, p2) € X, we have:

jz(xl) — jz(xz)’ = /zl|]u17THda+/zguiyda%—/z;;ufyda

'3 I's I's

—/leugyTHda—/zguiuda—/zguly da

I's I's I's

IA

21/l z2@p) lun s — 2l 2rgye + 22/l 2y lur, — ua, L2y

+ llzsll 2oy llut, — w3, | z2ary)-
Now, by and , we find:
| Ja(x1) — Jo(x2)| < co (121l r2rs) + 22l 2me) + 23l 220y)) %1 — %2 x-

Thus, the functional jz is Lipschitz continuous and therefore it is i lower semi contin-
uous function. Hence, it follows from standard arguments based on variational inequalities
that there exists a unique solution: x, = (ug,¢.) of Problem (PV?). Following this, we
will prove that this solution depends Lipschitz continuously on z € Y. Let z, 2/ € Y be
given, and denote the corresponding solution of the problem by x, = (U, ¢s), and
Xy = (Ug, @y ). Then, we have:

(sz,y - Xz)X + L(y> - :fz(xz) Z (fzay - XZ)X vY = (V,f) S X;
(AXZ/,y — Xz/)X -+ er(y) — Jz/(XZ/) > (fz/,y — Xz’)X Vy = (V,g) e X.

We take y = x,/ in the first inequality, and y = x, in the second inequality, then we add the
obtained inequalities to find:

(Ax, — AXy, X, — Xy ) x
S (fz - fz/axz - Xz’)X + :fz(xz/) - jz(xz) + :fz/(xz) - L/(Xz’)

< ¢ (HZ1 — 2 llz2s) + 122 = 2l 2y + |23 — Z:’),HLQ(FS)) [u, —uy|lv

cillza — 22||L2(r3)||s01 — pallw-
Therefore, it follows from , @, , and , that:
%2 — Xz || x < csl|z — 2|y, (36)

max(co, ¢1)

where ¢3 = 2 , hence (i) follows.

ma
(ii) Let z = (21, 22, 23, 24) € Y, we take y = 0 in the inequality , one has:

(A%, X,)x + J(%,) < (£, %,)x  Vx, € X.
Or z; >0, z5 > 0, and z3 > 0, one has:

(Ax,,%,)x < (f,,%x,)x Vx, € X.
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According to (30]), we deduce:

[1%zl[x < callfallx,

where ¢o = 1/my. [ ]
Next, we consider the operator A : Y — Y defined by:
Az = (p([[ugr|)Row (az, @2)], g2(llusll), —g1(luzl)), ¥ (uzw)dr(es — 0r)) . (37)

Using assumptions (Hy)—(H7), we can easily see that operator A is well defined. Next, we
will prove that the operator A has fixed-point and to this end, we need the following result:

Lemma 4. There exist L* > 0 such that if (L, + ps + Lg, + Ly, + Ly L+ My) < L*, then
A has a unique fixed-point.

Proof. Let z = (21, 29, 23, 24), 2’ = (21, 25, 24, 24) € Y. One has:

1Az — AZ ||y < ||p([[ug ) IRow (g, 02)| = pll[ 0w 1) [Row (War, 02| 22(r5)+
+ llg1(luall) = gr(llas (Dl z2rs) + g2(lluall) — g2(llua [l 22y +
+ |9 (tg) DL (02 — 0F) — V(Ug )DL (0w — SOF)HLQ(Fs)'

Therefore,
||AZ — AZ/HY S G1 + Gg,

where

Gy = [[u([uz- ) [Row (g, 02)| = p(luz - ) [Row (e, o) [l 20y +
+ g1 (lvall) = g1 (lwsr D1 22rg) + g2 (vall) = g2 (lfva D1 22rs)-

Using (Hs), (Hg), (H7), @, the properties of R, and after some algebra, we obtain:

G1 < Lu||Roy (Ug, ©2)|| oo (rs) [0z — W || p2rg)e +
+ u*meas(F3)1/2||Ral,(uz, ¢z) — Roy (uy, 902’)||L°°(F3)+
+ Ly, vz = [ L2(rgye + Lgol[uz — vpr{| p2(ryye <
< LMCOHRUV(um SOZ)HLOO(F:;)HU-Z — Uylv+
+ pmeas(Ts) 2 er |0y (Wss 0) = 00 (War, 90) | 1720+
+co(Lg, + Lgy) [0z — uzllv,

the H~1/2 norm, defined in (3), leads us to:

o,(ua — 0,\ua v
o (uz, 0.) = 00 (War, 02) | -1y = SUD (o,(us,0.) — 0u(Ws, 0ar), )1y
weH?, vl g2 ry)

w#0 12
Hy!

I

applying Green’s formula, for every v € V with v, = 0, we have:

HJV(um SOZ) - JV(qu SOZ’)”H*U?(Fg) =
oy (BE() — Belus)e(v)uc+ (P V(. — o) v
v, EHE2, [vull r1r2(ry)

v #0 19
Hré

)
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since fo any v, in H'/2, there exists v € H; and a constant ¢, > 0 (see [14]) such that:
vy =7v and v [l = ellolly,
thus,

||UV<uz7 902> - UV(uz’7 902’)HH—1/2(I‘3) <

< 1 Sup [Fe(u.) — Fe(w)||ulle(V)lln + [PV (o, — v)llulle(v)]n <
Cy vev, Iv]|v
v#£0y
< — sup (Mgljw, —w|lv + Mp||V (0. — ) ||1) <
Cu veV. vl
v#£0y
1
< - max (Mg, Mp) ([u. —uxlly + [l — pllw) -

Then, it is straightforward that:
Gl < L/.LCOHR‘O-Z/(uZ7 QOZ)HLOO(IB)HUZ - uz'||V+

1
+ — max (Mg, Mp) pmeas(I3) e (|0, — uyllv + [0z — 0ollw) +

+co(Lg + Lg,)[[uz — ugfly <
< CO(Lyy A+ o+ Lgy + Ly )% = X x, (38)

2
where C' = max | ||Ro, (U, 04)|| 1o 1) Co, — max(Mg, Mp)crmeas(I's)/2, ¢y |. Moreover,
Cy

it follows from assumption (Hy), the bounds |¢r (¢ — ¢r)| < L, (6)), and that:

Gy = H¢(uz,u)¢L(S@z - SOF) - w(UZ’,V)¢L(90z’ - SOF)HLQ(F:a) <
< N (W(uap) = ¥(uww) 1(0a — 0F) |12+
+ 19 (uar 0 ) (D102 — pF) — Pz — 0F))llL2ry) <
< C'(LLy + My)|%x, — x4 || x, (39)
where C" = max(co, ¢1).

Now, we use the two previous inequalities and , to find that, there exist a
constant ¢4 > 0, such that:

Az — Az'|ly < es(Ly + pe + Ly, + Ly + Ly L+ My)|Ixz — Xz x,
where ¢4 = max(C,C"). Finally, keeping in mind , we obtain
Az — AZ'[ly < cacs(Ly+ pu + Ly, + Lg, + Ly L + My)||z — 2'||y.

1
Let L* = —, then if (L, + p. + Ly, + Ly, + Ly L+ My) < L* the mapping A is contraction

cyc

of Y. By éa?ﬁach fixed-point theorem, the mapping A has a unique fixed-point z* on Y.
Let (L, + ps + Ly, + Ly, + Ly L + M) < L* and let z* the fixed-point of operator A. We
denote by (u*,¢*) the solution of Problem (PV?#) for z = z*. Using and (37), it is
easy to see that (u*, *) is a solution of Problem (PV). This proves the existence part of
Theorem [} The uniqueness of the solution results from the uniqueness of the fixed-point of
the operator A. [ |
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5. Finite element setting and discrete variational problem

This section is devoted to studying the finite element approximation of Problem (PV) and
deriving an error estimate of the approximate solution. First, we consider the following
finite-dimensional spaces V" C V and W C W defined by:

Vh={v"e C(ﬁ)d,vfﬂe cP(Q);Q°eT" vl =0o0onT,},

W = {y" € C(Q)%, e € P1(Q9);Q° € T" 9" =0 on T, }.
Approximating the spaces V' and W, where h > 0 is the parameter of discretization. Here
() is assumed to be a polygonal domain, 7" denotes a finite element triangulation of Q) that
are compatible with the partition of the boundary, and we denote by P;(2¢) the space of
polynomials of global degree less or equal to one in an element €2¢ of the triangulation. Thus,
the discrete approximation of Problem (PV) is the following:

Problem (PV"). Find a discrete displacement field u" € V" and a discrete electric
potential " € W' such that:

(g&'( ) (Vh —u ))'H + (P*v§0h7 €<Vh - uh))H + ‘](uh7 Qoha Vh) - J(uh’ Soh7 uh) >
> (f,vh —u")y Wh'evh (40)
(BV", VE ) i — (Pe(u"), VE" ) i + x(u", 9", ") = (¢.6"w V" e W, (41)

Applying Theorem , for the case when V and W are replaced by V" and W", respectively,
we find that Problem (PV") have a unique solution (u”, ¢") € V" x Wh We have the
following convergence result:

Theorem 2. Let us denote by (u,¢) and (0, "), the solutions to Problems (PV)
and (PV"), respectively. Under the hypotheses of Theorem |1, with the same value of L*,
the following error estimates are obtained:

o —uly + [l — " [lw <

: h h h h
L R (T [ PR P D PSR PR P

+(IB@I + 1P Velly? + 1117 fha = v* /2
() 2 IR (W, @) ey + (My, + My, )meas(I's)/2) " u — v@[127 )d} (42)
where C' > 0 independent of h.
Proof. We replace ¢ by &7 in then we subtract from the resulting equation, to get:
(BV (e —¢"),VE") ,,—(Pe(u—u"), Ve y+x(u, 0, —x(u", " ") =0 veh e W (43)
and it follows that for all &* € Wh:

(BV(p— "), V(" =), + (BV(e—¢"), V(g
- ('PE(U - uh)’ v(gh - @)) - ( ( uh)v ( )) +
+x(u,0,8" — o) + x(u, 0,0 — ") — x(u
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Hence, for all £&" € W, we have:
(Pe(u—u"), V(g —¢"), =BV —¢"), V(e —¢")n—
—(BV(p = ¢"), V(e —="))u + (7’6(11— u"), V(e —€")u+
+x(w o0 —¢") = x(u", 0" 0 — ")+ x(u,0,€" =) = x(u", " " — ). (44)
Next, choosing v = u” € V" in (22)), we obtain:
(Fe(u),e(u - uh))H +(P*Vp,e(u—u")y < J(u,p,u") - J(u,p,u)+ (f,u—u")y. (45)
In addition, the formula can be rewritten as:
— (Fe(u"), e(u—u"))y — (P*Ve" e(u—u"))y <
< (Fe(u"), e(v" — )y + (P*Ve" e(v" —u))y+
+ J(u" " V) — T o u") + (F,u vy Wt e VI (46)
Now, we use the two inequalities and to get:
(Fe(u) — Fe(u"),e(u—u"))y + (PV(p - ") e(u—u"))y <
< (Fe(u) — Fe(u"), e(u —v*))y + (35( ), e(v" — U—))H +(P*Ve" e(v" —u))ut
+ J(u, o, u") — J(u,@,u) + J(u", " vh) — J@", 0" u") + (F,a - vy
Replacing now in , we obtain:
(Fe(u) — Fe(u"), e(u—u")y + (BV(p - ¢"), V(e — ¢")u <
< (Fe(u) — Fe(u"),e(u—v"))y + (Fe(u), e(v" —u))y + (PVe", e(v" —u))n+
+(BV (o —¢"), V(e —&"))u — (7’6(11 —u"), V(p— 5 )a — (£, v —a)y+
—|—J(u’gp’uh) - J(ua%u) +J(u v90 vV )_ J(u 790 »u )_
—x(w, 0,0 — ")+ x(u", " 0 — ") = x(w, 0, " = @) + x(u", ", " — ).

Then, keeping in mind assumptions (H;)(c), (Hs)(¢) and the previous inequality, it’s follows
that:

mgllu— w3+ malle — "% < T+ T+ T + Th + Is, (47)
where
IF(SE(U) Fe(u"), e(u—v")y+(BV(p—¢"), V(e—£&"))u—(Pe(u—u"), V(p—E"))u,
=(Fe(u),e(v" - u))% + (P V" (v =)y + J(u, 0, v") = J(u, 0, u) = (£,v" =)y,

I3=J(u790>11h) J(u", " ") + J(u", ¢ ,U)—J(u,%U),

Iy=J(u", " v") = J(u,0,v") + J(u, 0, u) = J(u", ", u),

Iy=x(u", ¢", 0 — ") = x(u, 0,0 — ") + x(u", ", €" — ) = x(u,0,€" — ).

Let’s us now evaluate the five terms of the right-hand side of (47). For the first term, and

by using the properties of the operators &, B and &, we have:

IZ1| < [|Fe(w) = Fe (") [xlle(@—v") [+ 18V (0 =" | a+ | Pe(a—u")u) [V(e—€") | <
<max (Mg, Mp, Mp) ([u—u"(lv[[u=v"[lv+(ll¢ — ¢"llw+u—u"(lv) g —&"[lw) . (48)
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Concerning the second term of the right-hand side of ([47)), we use (Hy)(b), (Ha)(b), (Hs)(b),
(Hg)(b) and (H7)(b), we find that:

|Ig|—}(§s (Vh—u)) +('P*V<ph,s(vh—u))H+J(u,<p,vh)—J(u,gp,u)—(f,vh—u)v|§
< ||Fe(u )HHHU- V!l + [PVl ulla = v*y + [[fllv]lu = v*{lv+
+ lp(ue) |2 [Row (W, ) || oo gy It = v || p2rgya+
+ (M, + M92)meas(f‘3)1/2]\u - VhHLQ(F3)d.

(49)
About the third term of ([47), using (Hs)(b), (¢), (He)(c), and (Hz)(c) to obtain:
|I3| = ‘J(u7 2 uh) - ‘](uha SDh: uh) + ‘]<uh7 g0h7 11) - J(ua ‘2 Ll)| <
< /(M(HHTIDIR%(m ) = p(utDIRa, (", ") (0} = [u-|) da| +
I's
+ /(92(\!11\!)—92(!!uh\\)( - V)da+/(gl(HuH)—gl(HuhH)) () —uy*) da| <
F3 FS
< (|IRay (0, )| oo(rg) Ly + max (Mg, Mp) pacr + ¢ (Lgy + Lg,)) lu — a7
1
+ — max (Mg, Mp) puercollp — ¢"llwlu —u*|lv. (50)
Analogously, for the fourth term, we have:
|I4| = ‘J(uh7 Sohu Vh) - J(u7 (pavh) + J(u7 ¥, ll) - J(uh7 Soh7 u)‘ <
< [ 1R o) () = el [ IV4] = e |
I's
+/ (a7 ]) [[Rew (u*, ")| = [Row (w, )| [[IVE] = lur]l| dat

I's

+ [loall ) = sl o~ = ;| dat
T's
+ [ o) = gu(ralp] o = uf| da

I's
I Z4<(collRa (W, ) || oo (rg) Lyt max (Mg, Mp) pracr+co(Lgt Ly, ) ) [[u—u |y [la—=v"|| 20+

1
+ - max (Mg, Mp) pacrlle — " lwlla = V" 2(ry)a- (51)

14

Concerning the the last term of the right-hand side of (47)), using (H4)(b), (c), the bounds
|or(p — @r)| < L, and the Lipschitz continuity of the function ¢, we have:

1Zs| = [x(u”, ", 0 — ") = x(u, 0,0 — ") + x (0", ", " — @) — x(u, 0, 6" — p)| <

< / ($(u)or(" — or) — (w)orlp — or)) (9 — @) da| +

s

+ / (D) b(" — or) — (un)duly — o)) (€' — @) da| <
s
< MyZllp — oI + LLycocrl[u — w v o — " [+
+ Myerllp — P lwll€" — @ll ey + LLucon — 0|y IIE" — ol 120y, (52)
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Applying Young’s inequality:
ab < na® + %bQ,
and using 7, we find that:
=[5+ flo = "I}y <
< C{lla = VM + o = €1 + lu = V13 rype + ke = E¥1lEaqr, +
+(IFe(@lx + 1P Veolla + [f]lv) [la = v* v+
+ (1) | 2oy IRy (W, ) || 0w (rg) + (Mg, + My, )meas(T)2) u=v"{| 2y}, (53)

where C' is a positive constant independent of h, and consequently the inequality
holds. [ |

Theorem 3. Under the hypothesis of Theorem [, and in addition, assume that:
o.c L*T3)? and o, L*(T3).
Then, there exists a constant C independent of h such that:
[l —u"{ly + [l — " [lw <

: h h h h
<C, {uu V'l llp = € lw + Tu = vz + o — €Mz +

+ (||0T||L2(F3)d + ol L2y + Iz || 2y [Row (W, @) || oo ) +
1/2 1/2
+(Mg1 + Mgz)meaS(F3>l/2) ”u - Vh||L/2(p3)d}7 (54)

where C' > 0 independent of h.

Proof. We start by making an approximation of the term Z,, under the added regularity of
o, € L*(T3)?, and o, € L*(I's). Thus, from (2)), the constitutive law (7)), and the boundary

conditions , , we get:

T|= (P*V(w—soh),e(u—vh>>H+/aT-<v’;—u7>da+/ay<vﬁ—uy>da+J<u,so,vh>—J(u,so,u> <
I3 I's
<PV (0 — 0") lulle@—v") s + (o Lzt + loullis) 1= V7 gzt
- (IR (1, )l e 1 ) sy + (Mo + My meas(Ts)2) 1 — v 2,

subsequently, through the utilization of Young’s inequality, we obtain:

1
Z| < nlle — "I + EHU -5+ (llor 2 rgye + llowllz2ay)) lu — Vh“L?(Fs)dJr

+ (IRaw (w, ) [ o (e [l ur ) 22rg) + (Mg, + My,) meas(Is)'/?) lu = v 1zpy)a.

So, using this inequality and the same arguments used in the proof of Theorem[2], we conclude
that the estimation is verified, which concludes the proof.
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In order to evaluate the errors arising from approximating the finite element spaces V"
and W", it is necessary to introduce an extra assumption regarding the smoothness of the

solution:
ue H* Q) up, € H*(T3), o€ H*Q), ¢r, € H*(T3).

Denoting IT"u and IT"¢ the standard finite element interpolation operators of u and ¢,
respectively, then we have the interpolation error estimate (cf. [35]):

lu— Hhu”V < Chlul g2y, (55)
e —¢l|,,, < Chlplazo). (56)

where |.|p2(q)e is the semi-norm over H?(Q)%. The restriction of the partitions 7" on I's

induces a regular family of finite-element partitions of I's. So, we also have the interpolation
error estimate:

o T < Ol o)
HSO_HhQDHZQ(FS) S Ch2’80‘H2(F3)' (58)
Hence, by and —, we have the following error estimate:
lu—a"{lv + [l — ¢"[lw <

< Ch{|u|H2(Q)d + [l + hlulga(ryye + hle] a2y +
+ (HUTHB(rg)d + llovllz2ws) + [[Row(w, @) || oo o) | (lar (D] 2+

1/2
+ (Mg1 + Mgz) meas(r3)l/2) ’u }-I/QQ(Fs)d}'

6. Iteration method

In this section, we propose an iterative method which is useful for solving Problem (PV")
and it is based on the method of successive approximations by a fixed-point iteration
method [36]. This iteration method consists of the following procedure:

Let x" = (ul, ") € X" = V" x W" be the n-th approximation of the solution to Prob-
lem (PV"). We seek for the weak solution x!' ; = (ul,,, ", ;) € X" of the linear problem.
(X1 Y™ = Xpy1)  + 0 (x5, ¥") = pd (x5, x5 00) + pX (e, ¥ — X0 yy) >

> (X27 yh - XZ—H)X - P (AXZ - f37 yh - XZ—H)X vyh € Xh7 (59)

where p > 0 is a constant.
We have the following result.

Lemma 5. There exists a unique solution X', = (ul, o) € V* x W', satisfying (59).
Proof. Let us write the variational inequality in the form:

. h h )
{ Find z" € X" such that: (60)

b(z", y" —2") + ¢(y") — 0(2") > (G, y" —2")x Vy" € X",
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M= XZ+
b<Zh7 yh - Zh) = (XZJrla yh - Xz+1)Xa ¢<yh) = pj<XZ7 yh>7 (b( ) = pJ( n+1)

(Gy" —2")x = (x!,y" —x! )x — p(Ax] — f5,y" —xI, ) x — pX(x2, y" — XZH)-

where z , and

Since b(z",y") is a continuous and X"-elliptic bilinear from, ¢(z") is a proper, convex and
lower semi-continuous function and G is linear and continuous functional, we deduce that
the variational inequality has a unique solution (see [36]). [

Theorem 4. Let x" and x" | be the solutions of (40), (1) and (B9), respectively. Under
the assumptions of Theorem |1 l with the same value of L* xP converges strongly to x"
in X" for:
2(ma — )

O<p< .
P M3 — a?

Proof. In the first phase of our demonstration, we will show that the solution of , xh 1
weakly converges to x", the solution of (PV"). In order to do this, we consider x/"_; and x" ,
as two successive solutions of the variational inequality :

(XZHayh n+l) +PJ(X Y ) PJ( n+1> +p§€(x2,yh—xn+1) =

> (xy" = Xp) ¢~ (Axy —f5,¥" - Z+1) (61)
(X ¥ = X1 o) ¢+ pT (X1, ¥") = T (X0 X0 o) 4+ PR (K, Y — X0 5) >

2 (XZJrl?y - Z+2)X_ (Axn+1—f3,y _XZH)X- (62)

By adding the inequalities resulting from y"=x!, and y"=x" 41 in and , respec-
tively, we obtain:

(XZ+2 - XZH, XZ+2 - X2+1)X <
<p (J(Xh XZ+2) —J(x Z+1a n+2) + J( Xpt1s Z+1) - J(XZ7XZ+1)) +

+p (X(X XZ+2 - Z+1) - SZ( Z-s—la Z+2 - XZ-H)) +
+ (XZ-i-l (Axn+1 Ax! ), X n+2 Z-i-l)X'

Then, it follows that:
x50 = X013 < pS1+ S, (63)

where
S1 J<X XZ—i—Z) - j(xh Xn+1) + J( n+1aXZ+1) - j<XZ+17XZ+2)+
+ X(XmXZJrQ) - X( h n+1) + X( n+17 ZJrl) - %(XZ+17XZ+2>7

h h h
82 = (Xn-‘rl — X, =P (Axn+1 AX ) n+2 n+1)X
From algebraic manipulations similar to those in the proof of Theorem [2] we obtain:
h h h h
S1 < pa[xs = X llx %0  — x5 x (64)
On the other hand, using Cauchy —Schwarz inequality, we get:

82 S ||XZ+1 n (Axn+1 AX ) HX”Xn—i-Q Z+1HX7
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and since, we have:

HXZH - Xh - p (AXZH Ax ) ”X =
= (XZH (Aan Ax ) , ZH (AXnH AXZ)) X =
= sz—i—l - XZHX - QP(Xn—i—l X AXn+1 Axn) + p HAXn—i-l - AXZH%(?

moreover by using , and , we obtain:
351 =5 —p (Axpoy — Axp) (1% < lxpen =13 —2omallxt o —xal[5 +0° Mi1xq o —xq 1%

then, we have:

Hxn+1 Z —pP (AXZH - AXZ) [x < \/1 —2pma + PQM,% HXZH - XZ”X-

Hence, using the above inequality, we find that:

S < 1= 2pma + pM |Ixhg — X [Ix[xhy — XA (65)

Combining , , and , we obtain:

¢z = X llx < Ap)llxniy —xallx,

where A\(p) = pa+ /1 — 2pma + p?M3. i.e.,
%41 = Xallx < A(p)" [} — xgl|x
We can choose p such that:

2(ma — «) a
0<p< —7—— for — <1
p M3 — o2 o A ’
we obtain A(p) < 1. Then, we deduce that (x?) is a Cauchy sequence. Hence (x") is bounded
in X" so there exist x* € X, and a subsequence still denoted by (x”), such that:

x" —~x* weakly in X", as n — +oo. (66)
Next, we proof that x* is a solution of (PV"). Since the trace map v:Vx W— L?(T'3)?xL*(T3)
is a compact operator, from the weak convergence x — x* in X", we obtain the convergence
x" — x* strongly in L*(I'3)¢ x L?(T'3). From (59), we have:

p (Axl,y" = X)  + 2T (X0 y") — pj(XZ,XZH) +pX(xp, " = x04) >
> (XZ - XZ+17 y — n+1) + P(f37 - XZ+1)X-
Now, from , the properties of R, ¥, g1, g2 and ¢, we have:
j(ngy:) T, xl ) = T(x5, y") = J(x*, %),
o ) 2 e T s o b — e — ey e, [ 4

(fsvyh - XZH) — (fsjyh - x")x,
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Then, we find that:

lim sup p(Ax], x! ;= y")x < p(fs,x7 —y") + pJ (X", ") = pJ (x*,x7) + pX(x", ¥" = x7),

n—-400

or
lim sup p(Ax" x| — x*)x = limsup p(Ax" x" | — y")x + limsup p(Ax], y" — x*)x <
n—+o00 n—+o00 n—+o00
< limsup p(Ax;;, X,y — y")x + limsup pl| A x[|y" = x[[x <
n—-+o0 n—+00

< p(F3,x —y") + pJ (x",y") — pJ (x", x) + pX(x", y" —x")+

+ lim sup p|| Ax]| x[ly" — x*| x,

n—-+o0o

for all y" = (v &") € X" Note that ||Ax"||x is bounded, and we may then substitute

y" = x* into the previous inequality to obtain:

lim sup p(Ax", XZH —x")x <0.
n——+o0o

Furthermore, we use the pseudo-monotonicity of the operator A to conclude:
p(Ax", x* — y")x < liminf p(Axp, x5, — ¥")x
n—-+00
Hence, we have:

(AX*,yh —x")x + j(x*,y) — j(x*,x*) + )Z(x*,yh —x") > (fg,yh —x")x VX" € X"

From (72)), we find that x* is a solution of Problem (PV"), and from the uniqueness of the
solution to this variational inequality we obtain x* = x". We conclude that x" = (u”, ")
is the unique weak limit in X" = V" x W" of any subsequence of the sequence (x") and
therefore, we find that the whole sequence (x") converges weakly to element x”.

In the second phase of our demonstration, we will proof that x” 41, the solution of ,
converges strongly to x" the solution of (PV") as n — +oo.
(i) The couple x" = (u”, ") is a solution of (PV") if only if

(Axha yh - Xh)X + j(xh7 yh) - j(xh7 Xh) + %(th yh - Xh) Z <f37 yh - Xh)X: (67)
for all y" = (v &) € XM
(ii) The couple x" , = (u”,, ¢, ) is a solution of if only if
(X1 ¥" = Xpaa)x + 0 (x5, ¥") = pJ (x5 X5 0) + X (e, Y = Xp4) 2

> (xp,y" — XZH)X — p(Ax; — f3,y" — XZH)X vy" e X" (68)

Multiplying both sides of the inequality by p, then taking y" = x” 41 in (67)), yh = xh
in and adding the obtained inequalities, we get:

h h h h h h h h
(Xn-i-l — XX = Xn+1)X + p<AX - Axmxn-i-l - X )X+

+ P |:j(XZ? Xh) - :]V( Z?XZ—H) + j(xh’ XZ-H) - j( h7 Xh)} +
o {ﬂxz, Kt ) + R — xhﬂ >0, (69)

The inequality , can be rewritten as follows:
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(XZ+1 - Xh; XZ+1 - Xh)X S g]_ + gQa (70)
where

Gi =p j(xmxh)—j( Z’XZ+1)+j(Xhaxn+1)_j(thXh)_l_%(xzvxh_xgi—l)_}'%(xhvXZ—}-I_Xh) )

Go= (XZ —x" - p(AXh - AXZ)v XZ+1 - Xh)X :
One has: . . . .

G < paxpy —xlxlx; —x"x. (71)
Moreover, it follows from , and Cauchy Schwarz inequality that:

Go < /1 — 2oma+ pMEIx, — X" [ — X" x. (72)
Then, in virtue of , , and , we get:
I = x5 < Ap)lIxey = x"Ixllxn = x"[|x.

Next, we use the triangular inequality to conclude that:
i = X" 1% < A)lIxar — X" x(llxy = 2 llx + iy = x"lx) <
< M) lIxn 1 = X% + o)l — xpallx e — x"]x.

Hence, we have:

Ap)

h by < Bl

||Xn+1 X ||X =1_ )\(p) ||Xn+1 Xn“X

Finally, from the above inequality, letting n — 400, we obtain x? — x". [ |
Conclusion

The presented paper outlines a model that deals with the static process of frictional contact
between an electrically conductive foundation and a piezoelectric body, where the electro-
elastic constitutive law is considered to be nonlinear. The model used in this study incor-
porated Signorini modified contact conditions and Coulomb’s friction law, while also taking
into account the electrical conductivity condition. By applying the theory of variational in-
equalities and a fixed-point theorem, the existence of a unique weak solution for the problem
was established. Additionally, a finite element method was utilized to approximate the so-
lution, and an iteration method was proposed to numerically solve the problem, with its
convergence being established.
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Annorarus

B crarthe ocHOBHOE BHUMAHWE yIAEISIETCS MATEMATHIECKON MOIEIN, KOTOPAs OMUCHLIBAET COCTO-
sIHNE PABHOBECHS TTbE303JIEKTPUIECKOM CTPYKTYPhI, HAXOISIIECsT B KOHTAKTE ¢ MPOBOALATIINM OCHO-
BaHUEM, C yaeToM Tperusi. OCHOBHON 3aKOH, PETYJIUPYIONIUIT 3JIEKTPOYTIPYTOE MOBEJIEHIE CUCTEMBI,
CUUTAETCs] HEJMHEHHBIM, & KOHTAKT MOJIEIUPYETCs C HCIOJIB30BAHHEM MOIUMDUIUPOBAHHBIX KOH-
TaKTHBIX yCsI0Bui CHHBOPUHU. DTU YCIOBHUS MTOTOJIHIIOTCS HEJIOKAIBHBIM 3aKOHOM TpeHust Kysona,
U pEeryJisipu30BaHHBIM YCJIOBUEM 3jeKTporpoogaocTu. Cirabast (hbopMyIupoBKa MOJENH TTPEJICTaB-
JIEHA, KAK CBA3AHHAS CUCTEMA, KOTOPAs CBA3BIBAET TIOJIA CMEIEHUST U IJIEKTPUIECKOTO TTOTEHITHATIA.
[Tokazano, uTo ciaboe peleHne CyIIecCTBYeT U €/IMHCTBEHHO, DU 3TOM HCIIOJIB3YIOTCs TeopeMbl ba-
Haxa 0 HEOJABUXKHOHN TOUKE U apIyMeHTOB a0CTPAKTHBIX SJ/LIUNTHIECKAX KBA3UBAPUAIIMOHHBIX HEPa-
BercTB. Kpome TOro, nccieoBaHo KOHEYHO-3JIEMEHTHOE MPUOJINKEHNEe 3a/1a41 U BBIBEJIEHA OIEHKA,
CBA3aHHOM ¢ HuM norpertHocTu. IIpeacraBien nrepannoOHHbI METO/, JIJisl PEIIEHUs CUCTEMbI KOHEY-
HBIX 3JIEMEHTOR, TIOJIYYE€HHOU B PE3Y/IbTATE aHAIN3a, 1 PACCMOTPEH AHAIN3 CXOANMOCTH METOJIa TTPU
COOTBETCTBYIOIIUX YCJIOBUSX.

Karouesnie cao6a: The303J1€KTPUYECKOE TEJIO, TIPOBOJIAIIEE OCHOBAHNE, MOJU(MUIINPOBAHHbIE KOH-
TakTHBIE yeyaoBrus CUHbOpUHU, 3aKOH TpeHus KysioHa, KBa3nBapualmoHHOE HEPABEHCTBO, HAHAXOBA,
HETOIBUKHAST TOYKA, UTEPAINOHHBI METO/.

Humuposanue: dmu-Yapau U., Mannmmun W., Bernxupa s716-X., ®akxap P. Anamn3 n ancien-
HBIE PE3YIbTATHI /It MOAUMDUIUPOBaHHON 3amaun CHHROPUHN C HEJIOKAIBHBIM TPEHUEM B 3JIEKTPO-
yrnpyroctu. Berauncaurensuble texnogorun. 2024; 29(6):52-75. DOI1:10.25743/1CT.2024.29.6.004.

(Ha aHrsMiicKOM)


http://matwbn.icm.edu.pl/ksiazki/zm/zm26/zm2644.pdf

	Notations and preliminaries
	Physical model and its mathematical formulation
	Variational formulation of the problem
	Existence and uniqueness results
	Finite element setting and discrete variational problem
	Iteration method

