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Представлены результаты численного исследования вертикально ориентиро-
ванных круговых цилиндрических оболочек с дефектом на внешней или внутрен-
ней поверхности. Внутренняя полость тонкостенного тела полностью или частично
заполнена идеальной сжимаемой жидкой средой, эффекты плескания на свобод-
ной поверхности которой не учитываются. Дефект в виде кольца прямоугольно-
го сечения моделируется собственным набором физико-механических параметров.
Численная реализация алгоритма осуществляется на основе полуаналитического
варианта метода конечных элементов. Оценка устойчивости базируется на вычис-
лении и анализе комплексных собственных значений связанной системы уравне-
ний. Детально проанализированы зависимости низших частот колебаний и кри-
тических нагрузок, при которых система теряет устойчивость, от параметров де-
фекта и уровня заполнения жидкостью оболочек при различных видах граничных
условий.
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Введение

Машиностроительные конструкции в процессе промышленной эксплуатации подверга-
ются воздействию агрессивной среды [1–3]. При поверхностном контакте с некоторым
жидким или газообразным окружением, имеющим естественную либо технологическую
природу, в результате физико-химических или электрохимических реакций постепенно
изменяются микроструктура и химический состав материала. При длительном взаимо-
действии происходит необратимая деградация как физико-механических свойств, так
и геометрических параметров элементов конструкции. В результате такие ответствен-
ные сооружения, как резервуары, содержащие жидкость или погруженные в нее, трубо-
проводы, транспортирующие жидкую или газообразную среду, под действием рабочих
нагрузок теряют несущую способность, что может приводить к их преждевременному
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разрушению. Практический интерес представляет изучение влияния внешних сил, ко-
торые, с одной стороны, наряду с агрессивной средой способствуют протеканию корро-
зийных процессов [4], а с другой — усугубляют состояние поврежденных конструкций.

При решении рассматриваемой задачи в полной постановке средствами физико-хи-
мической механики или неравновесной термодинамики определяется степень воздей-
ствия агрессивных сред на свойства материала, после чего проводится оценка надеж-
ности конструкции [5–9]. В ряде исследований протекающий во времени коррозийный
процесс не рассматривается, а анализируется только статическое или динамическое
поведение деформируемых тел, имеющих дефекты (язвы, питтинги, пятна, трещины,
вырезы и т. п.), природа происхождения которых, как правило, не уточняется [10–15].

В меньшей степени изучено влияние дефектов для конструкций, взаимодейству-
ющих с жидкой/газообразной средой, когда во внимание принимается гидродинами-
ческая нагрузка. Анализ нестационарных коррозийных процессов, проявляющихся в по-
стоянном утончении стенок цилиндрического резервуара, и их влияния на период и фор-
му колебаний выполнен в [16] посредством комплекса ANSYS с использованием трех-
мерных конечных элементов для несжимаемой жидкости (сырая нефть). Установлено,
что значение и месторасположение максимального гидродинамического давления, дей-
ствующего на смоченной поверхности, определяется длительностью коррозийного про-
цесса. Аналогичная конечно-элементная схема использована в [17] при изучении потери
устойчивости корродирующих резервуаров, толщина стенок которых меняется со време-
нем в случае горизонтального сейсмического возбуждения. Показано, что критическое
пиковое ускорение грунта значительно снижается при коррозионном утончении стенок
резервуара. Исследование гидроупругой устойчивости несовершенных цилиндрических
труб, моделируемых в рамках линейной теории упругости и взаимодействующих с внут-
ренним потоком потенциальной сжимаемой жидкости, проведено в [18] на основе по-
луаналитического варианта метода конечных элементов (МКЭ). Продемонстрировано,
что существование зон, при расположении в которых поверхностного дефекта происхо-
дит более существенное снижение критических скоростей течения жидкости. Конечно-
элементный анализ корродирующей трубы, описываемой в рамках балочной теории Эй-
лера –Бернулли, представлен в [19]. Изучено влияние объемных и точечных дефектов
на нелинейные колебания, обусловленные вихревым воздействием потока жидкости,
моделирование которого осуществляется в рамках эмпирических соотношений.

В настоящей работе в рамках полуаналитического варианта МКЭ исследуется устой-
чивость содержащей жидкость цилиндрической оболочки, имеющей кольцевой дефект.
В [20] отмечается, что распространение коррозионного изъяна в окружном направле-
нии более опасно по сравнению с продольным направлением. Изучение того, насколько
значительно размеры поврежденной зоны и ее местоположение влияют на частотный
спектр и критические параметры потери устойчивости нагруженной статическими си-
лами конструкции, является целью работы.

1. Постановка задачи

Рассматривается вертикально ориентированная цилиндрическая оболочка кругового
сечения длиной 𝐿𝑠, радиусом 𝑅 и толщиной ℎ𝑠, занимающая объем 𝑉𝑠 (рис. 1). Внут-
ренняя полость оболочки на высоту 𝐻 заполнена неподвижной идеальной сжимаемой
жидкостью объемом 𝑉𝑓 . В случае частичного заполнения гравитационные эффекты
на свободной поверхности жидкости Γ не учитываются. Однако принимаются во вни-
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Рис. 1. Схема расчетной области с дефектом на внешней поверхности оболочки (a) и попереч-
ное сечение слоистой конструкции (б )
Fig. 1. Schematic diagram of the computational domain with a defect on the outer surface of the
shell (а) and cross-section of the laminated structure (б )

мание изменения напряженно-недеформированного состояния тела, обусловленные воз-
действием инициированных гравитацией гидростатических сил 𝑝𝑔, действующих на смо-
ченной поверхности. На внутренней или внешней поверхности оболочки на расстоянии
𝑥𝑑 от ее нижнего края расположен кольцевой дефект прямоугольного сечения, имеющий
длину 𝐿𝑑 и глубину ℎ𝑑. Дефект в подобласти 𝑉𝑑 имеет физико-механические свойства
материала, отличающиеся от параметров основного тела. В осевом направлении с обоих
краев на оболочку действует сжимающее усилие 𝐹 . Необходимо проанализировать вли-
яние параметров дефекта на минимальные частоты колебаний и границы устойчивости
оболочки при различных уровнях ее заполнения жидкостью и разных комбинациях
граничных условий, задаваемых на краях тонкостенной конструкции.

2. Основные соотношения и метод решения

Поведение идеальной сжимаемой жидкости описывается в рамках потенциальной тео-
рии, волновое уравнение которой для потенциала скорости 𝜑 имеет вид [21]

∇2𝜑 =
1

𝑐2𝑓

𝜕2𝜑

𝜕𝑡2
, (1)

где 𝑐𝑓 — скорость звука в жидкости. На границе гидроупругого взаимодействия Σ
принимается условие непроницаемости. Предполагается, что на свободной поверхнос-
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ти жидкости Γ, образующейся в результате частичного заполнения внутренней полос-
ти, отсутствуют динамическое давление, поверхностное натяжение и волнообразование,
обусловленное воздействием гравитационных сил. Соответствующие выражения для
граничных условий записываются следующим образом:

Σ :
𝜕𝜑

𝜕𝑛
=

𝜕u

𝜕𝑡
· n, Γ : 𝜑 = 0; 𝑥 = 0 :

𝜕𝜑

𝜕𝑛
= 0, (2)

где u — вектор перемещений оболочки, n — вектор единичной внешней нормали к смо-
ченной поверхности. Условие при 𝑥 = 0 характеризует взаимодействие жидкости с неде-
формируемой поверхностью.

Гидродинамическое давление 𝑝, действующее на поверхности раздела упругого тела
с жидкостью, вычисляется по линеаризованной формуле Бернулли

𝑝 = −𝜌𝑓
𝜕𝜑

𝜕𝑡
, (3)

а гидростатическое давление жидкости 𝑝𝑔 определяется как

𝑝𝑔 = 𝜌𝑓𝑔(𝐻 − 𝑥).

Здесь 𝜌𝑓 — плотность жидкости, 𝑔 — ускорение свободного падения.
Волновое уравнение (1) совместно с граничными условиями (2) преобразуется к сла-

бой форме с помощью метода Бубнова –Галёркина [22]:∫︁
𝑉𝑓

∇𝑍𝑛 · ∇𝜑𝑑𝑉 +

∫︁
𝑉𝑓

𝑍𝑛
1

𝑐2𝑓

𝜕2𝜑

𝜕𝑡2
𝑑𝑉 −

∫︁
Σ

𝑍𝑛
𝜕û

𝜕𝑡
· n𝑑𝑆 = 0, 𝑛 = 1,𝑚𝑓 , (4)

где 𝜑 и û — аппроксимации потенциала скорости и вектора перемещений упругого тела,
𝑍𝑛 и 𝑚𝑓 — базисные функции и их количество.

Выражения для деформаций упругой конструкции в криволинейной системе коорди-
нат (𝑠, 𝜃, 𝑧) определяются с помощью соотношений нелинейной теории тонких оболочек,
основанных на гипотезах Кирхгофа –Лява [23, 24]:

𝐸11 = 𝜀11 + 𝑧𝜅11, 𝐸22 = 𝜀22 + 𝑧𝜅22, 𝐸12 = 𝜀12 + 𝑧𝜅12,

𝜀 = {𝜀11, 𝜀22, 𝜀12, 𝜅11, 𝜅22, 𝜅12}T = 𝜀* +
1

2
𝐸e,

𝜀* = {𝜀1, 𝜀2, 𝛾12, 𝜅1, 𝜅2, 2𝜏}T , e = {0, 0, 0, 0, 𝜃1, 𝜃2, 0, 0, 0}T , (5)

𝜀1 =
𝜕𝑢

𝜕𝑠
, 𝜀2 =

1

𝑅

(︂
𝜕𝑣

𝜕𝜃
+ 𝑤

)︂
, 𝛾12 =

𝜕𝑣

𝜕𝑠
+

1

𝑅

𝜕𝑢

𝜕𝜃
, 𝜏 =

1

𝑅

(︂
𝜕𝑣

𝜕𝑠
− 𝜕2𝑤

𝜕𝑠𝜕𝜃

)︂
,

𝜅1 = −𝜕2𝑤

𝜕𝑠2
, 𝜅2 =

1

𝑅2

(︂
𝜕𝑣

𝜕𝜃
− 𝜕2𝑤

𝜕𝜃2

)︂
, 𝜃1 = −𝜕𝑤

𝜕𝑠
, 𝜃2 =

1

𝑅

(︂
𝑣 − 𝜕𝑤

𝜕𝜃

)︂
.

Здесь 𝑢, 𝑣 и 𝑤 — осевая, окружная и нормальная компоненты вектора перемещений
оболочки u = {𝑢, 𝑣, 𝑤}T; 𝐸 — матрица линейных множителей, которая имеет ненулевые
компоненты 𝐸15 = 𝜃1, 𝐸26 = 𝜃2, 𝐸35 = 𝜃2, 𝐸36 = 𝜃1.

Физические соотношения, устанавливающие связь между вектором усилий и момен-
тов T и вектором обобщенных деформаций 𝜀, в матричном виде записываются как

T = {𝑇11, 𝑇22, 𝑇12,𝑀11,𝑀22,𝑀12}T = 𝐷(𝑥)𝜀,
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где 𝐷 — матрица жесткостей, компоненты которой в случае многослойного изотропного
материала, состоящего из 𝑁 слоев (рис. 1, б ), определяются как

𝐷(𝑥) =

[︂
𝐷0 𝐷1

𝐷1 𝐷2

]︂
, {𝐷0, 𝐷1, 𝐷2} =

𝑁∑︁
𝑘=1

∫︁
(ℎ(𝑥))(𝑘)

𝑄(𝑘){1, 𝑧, 𝑧2}𝑑𝑧,

𝑄(𝑘) =

⎡⎢⎣ 𝑄
(𝑘)
11 𝑄

(𝑘)
12 0

𝑄
(𝑘)
21 𝑄

(𝑘)
22 0

0 0 𝑄
(𝑘)
66

⎤⎥⎦ ,

𝑄
(𝑘)
11 = 𝑄

(𝑘)
22 =

𝐸
(𝑘)
𝑠

1− (𝜈
(𝑘)
𝑠 )2

, 𝑄
(𝑘)
12 = 𝑄

(𝑘)
21 =

𝜈
(𝑘)
𝑠 𝐸

(𝑘)
𝑠

1− (𝜈
(𝑘)
𝑠 )2

, 𝑄
(𝑘)
66 =

𝐸
(𝑘)
𝑠

2(1 + 𝜈
(𝑘)
𝑠 )

,

где 𝐸
(𝑘)
𝑠 и 𝜈

(𝑘)
𝑠 — модуль Юнга и коэффициент Пуассона материала 𝑘-го слоя оболочки

или дефекта (𝐸
(𝑘)
𝑑 , 𝜈

(𝑘)
𝑑 ).

Математическая постановка задачи динамики упругого тела основана на вариацион-
ном принципе возможных перемещений, учитывающем предварительное напряженное
недеформированное состояние [25], работу сил инерции, а также гидродинамическое
давление (3), действующие на смоченной поверхности Σ. В матричной форме он может
быть записан следующим образом:∫︁

𝑆𝑠

𝛿(𝜀*)
T𝐷𝜀*𝑑𝑆 +

∫︁
𝑆𝑠

𝛿(e)T𝜎0e𝑑𝑆 +

∫︁
𝑆𝑠

𝛿 (u)T 𝐽ü𝑑𝑆 −
∫︁
Σ

𝛿(u)TP𝑑𝑆 = 0. (6)

Здесь P = {0, 0, 𝑝}T — вектор поверхностных нагрузок; 𝐽 — матрица инерции, которая
определяется согласно выражению

𝐽 = diag(𝐽0, 𝐽0, 𝐽0), 𝐽0 =
𝑁∑︁
𝑘=1

∫︁
(ℎ(𝑥))(𝑘)

(𝜌𝑠(𝑥))
(𝑘)𝑑𝑧,

где 𝜌𝑠 — плотность материала тонкостенного тела или дефекта (𝜌𝑑). Элементы матрицы
𝜎0 в соотношении (6) находятся из условия

𝐸T𝐷𝜀̄0 = 𝜎0e.

Здесь вектор 𝜀̄0 является решением соответствующей статической задачи, вариационное
уравнение которой имеет вид∫︁

𝑆𝑠

𝛿(𝜀*)
T𝐷𝜀*𝑑𝑆 −

∫︁
Σ

𝛿(u)TP𝑔𝑑𝑆 −
∫︁
𝑙1

𝛿(u)TP𝑒𝑑𝑙 −
∫︁
𝑙2

𝛿(u)T(−P𝑒)𝑑𝑙 = 0,

P𝑔 = {0, 0, 𝑝𝑔}T, P𝑒 =

{︂
𝐹

2𝜋𝑅
, 0, 0

}︂T

,

где 𝑙1 и 𝑙2 — линии, ограничивающие торцы поверхности оболочки при 𝑥 = 0 и 𝑥 = 𝐿𝑠

соответственно.
Численное решение задачи осуществляется с помощью полуаналитического вари-

анта МКЭ, согласно которому искомые неизвестные раскладываются в ряд Фурье по
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окружной координате 𝜃 [26]. В результате этих преобразований исходная задача сво-
дится к совокупности двумерных задач для каждой окружной гармоники 𝑗.

В общем случае компоненты вектора перемещений и потенциал скорости в каждом
конечном элементе определяются через узловые неизвестные:{︂

u
𝜑

}︂
=

[︂
𝑁 0
0 𝑍

]︂
X, X =

{︀
uT
1 , . . . ,u

T
𝑞 , 𝜑1, . . . , 𝜑𝑞

}︀T
,

где X — вектор узловых неизвестных; 𝑁 и 𝑍 — матрицы функций формы, которые
формируются соответствующим образом для каждого типа конечного элемента при
построении конечномерного аналога; 𝑞 — количество узлов в элементе. Для разбиения
оболочки используется конечный элемент в виде усеченного конуса с аппроксимацией
меридиональной и окружной компонент вектора перемещений линейным полиномом,
а нормальной компоненты — кубическим. Дискретизация объема жидкости проводит-
ся с помощью четырехугольного конечного элемента с билинейной аппроксимацией по-
тенциала скорости. Стандартные процедуры МКЭ позволяют из соотношений (4) и (6)
получить связанную систему уравнений для описания гидроупругого взаимодействия
нагруженного тонкостенного тела с жидкой средой

𝑀Ẍ+ 𝐶Ẋ+𝐾X = 0, (7)

где

𝑀 =

[︂
𝑀𝑠 0
0 𝑀𝑓

]︂
, 𝐶 =

[︂
0 𝐶𝑠𝑓

𝐶𝑓𝑠 0

]︂
, 𝐾 =

[︂
𝐾𝑠 +𝐾𝑔 0

0 𝐾𝑓

]︂
.

Типовые матрицы масс 𝑀 , демпфирования 𝐶, жесткости 𝐾 и геометрической жесткос-
ти 𝐾𝑔 для каждого конечного элемента формируются следующим образом:

𝑀𝑠 =

∫︁
𝑆𝑠

𝑁T𝐽𝑁𝑑𝑆, 𝑀𝑓 =

∫︁
𝑉𝑓

1

𝑐2𝑓
𝑍T𝑍𝑑𝑉 , 𝐶𝑠𝑓 =

∫︁
Σ

𝜌𝑓𝑁̄
T𝑍𝑑𝑆, 𝐶𝑓𝑠 = −

∫︁
Σ

𝑍T𝑁̄𝑑𝑆,

𝐾𝑠 =

∫︁
𝑆𝑠

𝐵T𝐷𝐵𝑑𝑆, 𝐾𝑔 =

∫︁
𝑆𝑠

𝐺T𝜎0𝐺𝑑𝑆, 𝐾𝑓 =

∫︁
𝑉𝑓

(∇𝑍)T∇𝑍𝑑𝑉 .

Здесь 𝑁̄ — матрица функций формы для нормальной составляющей вектора узловых
перемещений оболочки; 𝐵 и 𝐺 — матрицы связи деформаций 𝜀* и e с узловыми пере-
мещениями, определяемые в соответствии с (5).

Вводя обозначение Y = Ẋ, перепишем уравнение (7) в следующем виде:[︂
𝐶 𝐾
−𝐼 0

]︂{︂
Y
X

}︂
+

[︂
𝑀 0
0 𝐼

]︂{︂
Ẏ

Ẋ

}︂
= 0, (8)

где 𝐼 — единичная матрица.
Решение системы (8) ищется в экспоненциальной форме{︂

Y(𝑥, 𝜃, 𝑟, 𝑡)
X(𝑥, 𝜃, 𝑟, 𝑡)

}︂
=

{︂
Ỹ(𝑥, 𝜃, 𝑟)

X̃(𝑥, 𝜃, 𝑟)

}︂
𝑒𝜆𝑡, 𝜆 = 𝛾 + 𝑖𝜔, 𝑖 =

√
−1, (9)

где X̃ и Ỹ — некоторые функции координат; 𝜆 — характеристический показатель; 𝜔 —
собственная частота колебаний; 𝛾 — величина, характеризующая демпфирование сис-
темы.
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С учетом представления (9) система уравнений (8) сводится к обобщенной задаче
на собственные значения(︂[︂

𝐶 𝐾
−𝐼 0

]︂
+ 𝜆

[︂
𝑀 0
0 𝐼

]︂)︂{︂
Ỹ

X̃

}︂
= 0. (10)

Вычисление комплексных собственных значений 𝜆 системы (10) осуществляется пос-
редством алгоритма, основанного на неявно перезапускаемом методе Арнольди [27].
Оценка устойчивости гидроупругой структуры базируется на анализе характеристи-
ческих показателей 𝜆, получаемых при последовательно возрастающем значении внеш-
ней нагрузки 𝐹 . Численная реализация описанного алгоритма произведена в среде
MATLAB. Для создания конечно-элементной сетки используются возможности паке-
та ANSYS.

3. Численные результаты

Расчеты выполнялись для различных вариантов граничных условий, задаваемых на
краях упругой конструкции, при указании которых используются следующие обозна-
чения: F — свободный край, S — свободное опирание (𝑣 = 𝑤 = 0), C — жесткая заделка
(𝑢 = 𝑣 = 𝑤 = 𝜕𝑤/𝜕𝑛 = 0).

Для представления результатов вычислений вводятся безразмерные величины

𝜂 =
𝐻

𝐿𝑠

, 𝛼 =
𝐿𝑑

𝐿𝑠

, 𝛽 =
ℎ𝑑

ℎ𝑠

, 𝜉 =
𝑥𝑑

𝐿𝑠

, Ω(𝜂) =
𝜔(𝜂)

𝜔0(𝜂)
− 1, Φ =

𝐹𝑐

𝐹 0
𝑐

− 1,

обозначающие уровень заполнения 𝜂, а также длину 𝛼, глубину 𝛽 и положение области
дефекта в осевом направлении 𝜉, отсчитываемое от нижнего края оболочки (𝑥 = 0).
Ω и Φ характеризуют изменения собственной частоты колебаний 𝜔 и величины крити-
ческой нагрузки 𝐹𝑐, при которой происходит потеря устойчивости, относительно зна-
чений 𝜔0 и 𝐹 0

𝑐 , соответствующих идеальной оболочке (𝐸𝑑/𝐸𝑠 = 1). При вычислении Ω
уровни заполнения 𝜂 для конфигураций с отсутствием и наличием дефекта совпадают.

В численных экспериментах, если не указано иное, использовались следующие гео-
метрические и физико-механические параметры: 𝐿𝑠 = 0.231 м, 𝑅 = 0.07725 м, ℎ𝑠 =
0.0015 м, 𝐸𝑠 = 205 ГПа, 𝐸𝑑/𝐸𝑠 = 0.5, 𝜈𝑠 = 𝜈𝑑 = 0.3, 𝜌𝑠 = 𝜌𝑑 = 7800 кг/м3, 𝜉 = 0.5,
𝛼 = 0.1, 𝛽 = 0.1, 𝜂 = 1, 𝑐𝑓 = 1500 м/с, 𝜌𝑓 = 1000 кг/м3.

3.1. Верификация алгоритма

Для оценки достоверности результатов, полученных с использованием описанного выше
алгоритма, приведем примеры.

Пример 1. Рассмотрена свободно опертая с обоих краев оболочка (𝐸𝑠 = 200 ГПа,
𝑝𝑔 = 0). На рис. 2 представлены графики изменения низших собственных частот коле-
баний от величины сжимающего усилия при различных уровнях заполнения 𝜂 в сравне-
нии с результатами работы [28]. По мере увеличения усилия частота становится равной
нулю, что соответствует статической потере устойчивости (дивергенции). Из представ-
ленных данных следует, что полученные зависимости хорошо согласуются с известными
результатами, а незначительные отличия могут быть объяснены как разными подхода-
ми к описанию тонкостенного тела, так и особенностями численной реализации.
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Рис. 2. Зависимость собственных частот колебаний 𝜔 свободно опертой цилиндрической обо-
лочки (SS) от величины осевого усилия 𝐹 при различных уровнях заполнения 𝜂. Линии —
расчет, символы — результаты работы [28]
Fig. 2. Dependence of natural vibration frequencies 𝜔 of a simply supported cylindrical shell (SS)
on the value of axial force 𝐹 at different filling levels 𝜂. Lines — calculation, symbols — results of
work [28]

Сравнение низших частот колебаний 𝜔 жестко защемленной с обоих торцов оболочки (CC)
с дефектом и без него, Гц

Comparison of the lowest frequencies of vibrations 𝜔 for shell (CC) rigidly clamped at both ends
with and without a defect, Hz

𝜉
Дефект на внешней поверхности Дефект на внутренней поверхности

𝜂 = 0 𝜂 = 1 𝜂 = 0 𝜂 = 1
Расчет [18] Расчет [18] Расчет [18] Расчет [18]

− 1541.17 1540.25 972.135 977.128 1541.17 1540.25 972.135 977.128

0.05 1534.62 1533.60 967.973 972.873 1535.29 1534.32 968.365 973.304

0.10 1538.10 1536.87 970.195 974.968 1534.13 1532.93 967.658 972.436

0.15 1538.69 1537.73 970.551 975.502 1535.01 1534.02 968.248 973.169

0.20 1538.47 1537.59 970.398 975.409 1535.34 1534.43 968.477 973.455

0.25 1537.07 1536.21 969.513 974.524 1535.07 1534.17 968.325 973.307

0.30 1534.99 1534.14 968.202 973.212 1534.61 1533.73 968.047 973.038

0.35 1532.70 1531.86 966.763 971.772 1534.08 1533.22 967.720 972.724

0.40 1530.66 1529.83 965.487 970.495 1533.59 1532.75 967.419 972.433

0.45 1529.26 1528.44 964.615 969.622 1533.25 1532.42 967.209 972.230

0.50 1528.77 1527.95 964.308 969.315 1533.13 1532.30 967.134 972.158

Пример 2. Рассмотрена жестко защемленная с обоих торцов цилиндрическая обо-
лочка (CC), содержащая неоднородность в виде поверхностного кольцевого дефекта.
В таблице приведены низшие собственные частоты колебаний, полученные при различ-
ном расположении дефекта по длине пустой (𝜂 = 0) и полностью заполненной жидкос-
тью (𝜂 = 1) оболочки. Здесь же представлены значения, полученные в рамках алгорит-
ма, описанного в работе [18]. Задача решалась также с помощью полуаналитического
варианта метода конечных элементов, но с тем отличием, что тонкостенное тело и де-
фект рассматриваются с точки зрения линейной теории упругости. В этом случае для
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качественного описания дефекта требуется значительное количество конечных элемен-
тов по толщине тела. Для пустой и полностью заполненной жидкостью оболочки макси-
мальное различие в результатах, полученных для двух реализаций, не превышает 0.09
и 0.6 % соответственно. Дискретизация области упругого тела, обеспечивающая прием-
лемую сходимость, составляла 164 и 2073 неизвестных для решений в рамках теории
оболочек и линейной теории упругости. Таким образом, можно заключить, что исполь-
зование осреднения характеристик по толщине в рамках какой-либо теории оболочек
позволяет более эффективно моделировать тела с несовершенствами, обеспечивая при
этом подходящую точность вычислений.

3.2. Анализ собственных колебаний оболочки с дефектом

На рис. 3, a приведены зависимости низших собственных частот 𝜔min от уровня запол-
нения 𝜂 внутренней полости бездефектной (𝛼 = 0, 𝛽 = 0) оболочки, полученные при
различных вариантах граничных условий, заданных на краях оболочки. Для обеих кон-
фигураций с повышением уровня заполнения и, следовательно, ростом присоединенной
массы жидкости имеет место снижение низшей частоты колебаний. При этом происхо-
дит изменение жесткости конструкции в осевом и окружном направлениях, благодаря
чему также возможно изменение номера окружной гармоники, на которой фундамен-
тальная частота минимальная. Эта особенность в большей степени зависит от геомет-
рических параметров оболочки и физико-механических свойств материала [29, 30]. Для
рассматриваемых конфигураций при любом уровне жидкости такое изменение отсутст-
вует, и в случае жесткого закрепления (CC) минимальная частота всегда соответствует
четвертой гармонике, а в случае консольного (CF) — третьей.

На рис. 4–6 представлены изоповерхности относительного изменения собственной
частоты колебаний Ω, полученные для жестко закрепленных (CC — рис. 4 и 5) и кон-
сольных (CF — рис. 6) оболочек, на внешней или внутренней поверхностях которых
имеется кольцевой дефект. Приведенные здесь данные наглядно демонстрируют по-

Рис. 3. Зависимости низшей частоты колебаний 𝜔min идеальной конструкции от уровня запол-
нения 𝜂 (а) и критического усилия 𝐹𝑐 свободно опертой идеальной/неидеальной оболочки (SS)
от номера окружной гармоники 𝑗 (б )
Fig. 3. Dependences of the lowest frequency of vibration 𝜔min of an ideal structure on the filling
level 𝜂 (а) and the critical force 𝐹𝑐 of a simply supported ideal/non-ideal shell (SS) on the number
of the circumferential harmonic 𝑗 (б )



Исследование влияния поверхностных дефектов на частоту. . . 25

Рис. 4. Изоповерхности относительного изменения низших частот колебаний Ωmin как функ-
ции местоположения 𝜉 и уровня заполнения 𝜂, полученные для жестко закрепленной оболоч-
ки (CC) в случае размещения области дефекта на внешней (а) или внутренней (б ) поверхности
Fig. 4. Isosurfaces of the relative variation of the lowest vibration frequencies Ωmin as a function of
location 𝜉 and filling level 𝜂 for a rigidly clamped shell (CC) in the case when the defect zone is
located on the outer (а) or inner (б ) surface

Рис. 5. Изоповерхности относительного изменения частот колебаний Ω1 (а) и Ω9 (б ) как функ-
ции местоположения 𝜉 и уровня заполнения 𝜂, полученные для жестко закрепленной оболоч-
ки (CC) в случае размещения области дефекта на внешней поверхности
Fig. 5. Isosurfaces of the relative variation of vibration frequencies Ω1 (а) and Ω9 (б ) as a function
of location 𝜉 and filling level 𝜂 for a rigidly clamped shell (CC) in the case when the defect zone is
located on the outer surface
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Рис. 6. Изоповерхности относительного изменения низших частот колебаний Ωmin как функции
местоположения 𝜉 и уровня заполнения 𝜂, полученные для консольно закрепленной оболоч-
ки (CF) в случае размещения области дефекта на внешней (а) или внутренней (б ) поверхности
Fig. 6. Isosurfaces of the relative variation of the lowest vibration frequencies Ωmin as a function of
location 𝜉 and filling level 𝜂 for a cantilevered shell (CF) in the case when the defect zone is located
on the outer (а) or inner (б ) surface

ведение фундаментальной частоты в зависимости от расположения изъяна вдоль оси
вращения оболочки 𝜉 при различных значениях уровня ее заполнения 𝜂.

При жесткой заделке (CC) независимо от уровня заполнения снижение низшей час-
тоты происходит по мере приближения области дефекта к центральной части оболочки
(см. рис. 4) и носит ярко выраженный локальный характер. Другой локальный мини-
мум наблюдается при частичном заполнении вблизи нижнего края тонкостенного тела.
Отметим, что нижняя зона резервуара, контактирующая с остаточной жидкостью, наи-
более сильно подвержена коррозионному воздействию [16]. Для таких конфигураций
наличие дефекта не приводит к изменению окружной гармоники, которой соответству-
ет низшая частота (𝑗 = 4, Ωmin = Ω4).

В качестве примера эволюции низших частот, отвечающих другим гармоникам, на
рис. 5 приведены изоповерхности, построенные для окружных мод 𝑗 = 1 и 𝑗 = 9. В од-
ном случае для всех уровней заполнения снижение частоты имеет место при прибли-
жении области дефекта к краям упругой конструкции, тогда как в другом локальный
экстремум достигается при смещении изъяна к нижнему краю оболочки при незначи-
тельном уровне жидкости.

В случае консольного закрепления (CF) влияние области дефекта на падение час-
тоты усиливается по мере ее приближения к свободному краю (см. рис. 6). При этом
снижение жесткости несовершенной оболочки более значительное. С другой стороны,
эта зона резервуара в меньшей степени взаимодействует с жидкостью и может подвер-
гаться коррозии из-за водяного конденсата, атмосферного кислорода или повышенной
кислотности среды [16]. Более того, как можно увидеть из данных, представленных на
рис. 6, уровень жидкости в резервуаре практически не оказывает влияния на степень
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деградации низшей частоты колебаний, которая для несовершенной конструкции все
так же соответствует третьей окружной гармонике (𝑗 = 3).

Дефектные области на внешней или внутренней поверхности оболочки приводят
к качественно схожим результатам, однако в целом наибольшее падение частот имеет
место при расположении дефекта снаружи, что обосновывает необходимость примене-
ния антикоррозионных мер, обеспечивающих защиту от атмосферных воздействий. При
этом присутствуют такие зоны, где при одинаковых значениях параметров 𝜉 и 𝜂 дефект
на внутренней поверхности оболочки инициирует большее снижение фундаментальной
частоты.

3.3. Анализ устойчивости оболочки с дефектом

На рис. 3, б приведены зависимости критического сжимающего усилия 𝐹𝑐 от номера
окружной гармоники 𝑗, полученные для свободно опертой на краях оболочки (SS),
внутренняя или внешняя поверхность которой идеальна (𝛼 = 0, 𝛽 = 0) или содержит
дефект (𝛼 = 1, 𝛽 = 1). Оболочка с указанными граничными условиями и видом на-
гружения может рассматриваться как часть цилиндрического бака с множественными
отсеками [31]. Для рассмотренных конфигураций потеря устойчивости происходит по
пятой окружной гармонике (𝑗 = 5) как в отсутствие, так и при наличии дефекта. В за-
висимости от размеров области дефекта и его местоположения данное значение может
изменяться.

На рис. 7 для свободно опертой оболочки (SS), полностью заполненной жидкостью
(𝜂 = 1), представлена изоповерхность относительного изменения критического усилия
Φ как функции длины 𝛼 и глубины 𝛽 дефектной области, расположенной на внеш-

Рис. 7. Изоповерхности относительного изменения критического усилия Φ как функции дли-
ны 𝛼 и глубины 𝛽, полученные для свободно опертой оболочки (SS) в случае размещения
области дефекта (𝜉 = 0.5) на внешней (а) или внутренней (б ) поверхности
Fig. 7. Isosurfaces of the relative change of the critical force Φ as a function of length 𝛼 and depth 𝛽
for a simply supported shell (SS) when the defect zone (𝜉 = 0.5) is located on the outer (a) or
inner (б ) surface
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а

б

Рис. 8. Изоповерхности относительного изменения критического усилия Φ как функции мес-
тоположения 𝜉 и длины 𝛼 (а) и глубины 𝛽 (б ), полученные для свободно опертой оболочки
(SS, 𝜂 = 1) в случае размещения области дефекта на внешней (слева) или внутренней (справа)
поверхности
Fig. 8. Isosurfaces of the relative change in the critical force Φ as a function of location 𝜉 and
length 𝛼 (а) and depth 𝛽 (б ) for a simply supported shell (SS, 𝜂 = 1) when the defect zone is
located on the outer (left) or inner (right) surface

ней (рис. 7, а) или внутренней (рис. 7, б ) поверхности. Отсюда следует, что наличие на
поверхности оболочки области с пониженными характеристиками приводит к уменьше-
нию нагрузки, при которой происходит потеря устойчивости, а степень этого снижения
определяется размерами несовершенства. Очевидно, что наибольшее падение крити-
ческого усилия достигается, когда область дефекта распространяется на весь объем
упругого тела. Из двух варьируемых параметров изъяна изменение глубины оказы-
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вает большее воздействие на предельные значения. Как и в случае с собственными
частотами колебаний, выбор расположения области дефекта на внешней или внутрен-
ней поверхности оболочки не оказывает качественного влияния на полученные зави-
симости. Однако дефект на наружной поверхности приводит к более быстрому сни-
жению критической нагрузки. Немонотонный характер линий равного уровня говорит
о смене окружной гармоники, которой отвечает минимальное критическое осевое уси-
лие. В частности, при 𝛼 ∈ [0, 0.2] наблюдается область незначительного роста критиче-
ского усилия Φ с увеличением длины 𝛼.

На рис. 8 для аналогичной конфигурации показаны изоповерхности относительного
изменения критического усилия Φ, полученные при варьировании положения области
дефекта по длине оболочки и одного из параметров, определяющего ее размер: дли-
ны (рис. 8, а) или глубины (рис. 8, б ). Из представленных зависимостей можно сделать
вывод о том, что внешняя поверхность расположения области дефекта более чувстви-
тельна к изменению варьируемых параметров, так как в этом случае происходит бо-
лее резкое снижение зависимых величин от геометрических размеров области дефекта.
Симметричность результатов относительно положения 𝜉 = 0.5 обусловлена симметрией
граничных условий и условий нагружения. По мере увеличения геометрических пара-
метров дефекта (𝛼 или 𝛽) происходит немонотонное снижение величины критической
нагрузки относительно расположения области неоднородности. При изменении длины
наибольшее падение наблюдается вдоль центрального расположения дефекта. При ва-
рьировании глубины критическая нагрузка снижается только до определенного значе-
ния 𝛽, после чего зона наибольшего падения усилия наблюдается при расположении
дефекта вблизи краев оболочки.

Заключение

Представлены математическая модель и алгоритм ее численной реализации, предна-
значенные для исследования собственных колебаний и устойчивости цилиндрической
оболочки, на краях которой приложено сжимающее осевое усилие. Внутренняя полость
тонкостенного тела полностью или частично заполнена идеальной сжимаемой жидкос-
тью. Принято во внимание изменение в напряженно-недеформированном состоянии
смоченной поверхности упругого тела, подвергшейся воздействию гидростатического
давления, как функции гравитационных сил. На внутренней или внешней поверхности
оболочки учтено наличие кольцевого дефекта с прямоугольным сечением, обладающе-
го собственным набором физико-механических параметров. Детально оценено влияние
различных геометрических параметров дефекта (положение, ширина, глубина) на ха-
рактеристики колебательного процесса и границы устойчивости. Продемонстрировано,
что наличие дефекта, происхождение которого может быть связано с коррозионным
воздействием, приводит к уменьшению как частоты колебаний, так и критических уси-
лий. Степень этого снижения зависит не только от геометрических размеров области
дефекта, ее положения в меридиональном направлении и поверхности расположения,
но и от заданной комбинации краевых условий на торцах оболочки. Установлено, что
дефект на внешней поверхности приводит к более сильному ухудшению динамических
свойств оболочки с жидкостью. На основании выполненных расчетов можно заклю-
чить, что защита промышленных конструкций от внешних воздействий должна быть
так же обязательна, как и от содержимого, с которым они контактируют.
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Abstract

The paper presents the results of numerical investigation of vertical circular cylindrical shells
with a defect on their outer or inner surface. The inner cavity of the thin-walled shell is completely
or partially filled with an ideal compressible fluid. The dynamic behavior of the examined fluid-
solid system does not account for the effects of sloshing on the free surface of the fluid. The
defect in the form of a ring with rectangular cross-section is modeled using its own set of physical
and mechanical parameters. The behavior of the fluid medium and multilayered elastic structure
subjected to a combined action of axial forces and hydrostatic pressure is described in the framework
of both potential theory and classical shell theory. To determine the hydrodynamic pressure exerted
by the fluid on the inner surface of the shell (defect), the Bernoulli equation is used. A mathematical
formulation of the dynamic problem for the elastic body is developed using the variational principle
of virtual displacements, and the system of equations for the fluid medium is constructed using the
Bubnov-Galerkin method. For the numerical implementation of the algorithm, a semi-analytical
version of the finite element method is employed. The stability of the system is estimated using the
calculation and analysis of complex eigenvalues for the coupled system of equations. The validity of
the obtained results is confirmed by comparison with known numerical solutions. The dependences
of the lowest vibration frequencies and critical loads, provoking the loss of the system stability are
analyzed in detail as functions of the defect parameters and the level of fluid in the shell under
different types of boundary conditions.
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