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Nccenenyercst BO3MOXKHOCTD aBTOMATUYIECKOT'O BBIJIEJIEHUS U KJIACCUPUKAITUN OCHHO-
BbIX U 0epe3oBbix Hacax Aenuil Ha RGB-u300pazkeHusix CBEpXBbICOKOIO IIPOCTPAHCTBEH-
HOTO Pa3pernenus, MOIyIeHHBIX ¢ OeCTUIOTHOTO JieTaTeIbHoTo anmapara. s perre-
HUST 337a4910 CEMAHTUIECKOW CerMEHTAIINU MPOBEIEHO CpaBHEHWE PAabOThI CBEPTOUHBIX
HEHPOHHBIX ceTell Ha ocHOBe pazianvnbix apxurekTyp: U-Net, FPN, PSPNet, Linknet,
DeepLabV3, DeepLabV3+. Pesynabrarsl mokazasu, uro apxutekTypbl DeepLabV3+
u mogudukanuu U-Net ¢ Inception-6ioxkamu mo3BOASIIOT HOTYYIUTh HAMIYGIAE PE3YIhb-
TaThl CEMAHTUYIECKOH CErMEeHTAINH, JJOCTHTast Hanbo/iee BEICOKUX 3HAYEHUN METPUK Ka-
gectBa [oU (~0.83) u F-score (~0.91).

Karueswvie caosa: 0bpaboTka m3obpazKkennii, 6eCOMIOTHAT CheMKa, CEMAHTHIECKAsT
cermenTanust, Kiaaccudurarnus, BILJTA, Beigenenne 1peBOCTOEB, CBepTOUHAS HEHPOH-
Has CETb.
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BBenenue

[Ipobaema orpejiesieHus BUJOBOIO COCTABA JIECHBIX HACAYKIECHUN 110 JIAHHBIM JIUCTAHIIMOHHO-
ro 30HJMPOBAHUSA YK€ Ha HPOTIKEHUU HECKOJbKUX JIECATHICTHI NPUKOBBIBACT BHUMAHUE
MHOIHX YYeHBIX W3 Pas3HbIX cTpaH [1|, n B mocyienHue roapl mHTEpeC K 3TOH TeMe HeyKJIOHHO
pacret [2510]. AKTyaTbHOCTB TO# MPOGIEMBI 00YCIOBIEHA MPEZKJIE BCErO MOCTOSHHBIM COBED-
MMEHCTBOBAHNEM W PA3BUTHEM CPEJICTB U TEXHOJIOTHl TUCTAHITUMOHHOTO 30HIUPOBAHUS, BKJIIO-
4yasi UHTEHCUBHOE PACIIPOCTPAHEHUE B IOCJIEHUE I'OJIbl TEXHOJIOIUH OECIUJIOTHON ChbeMKHU.
Pesysbrarhl, KoTopble npeactaBienbl B paborax |7, (11H16], ybeurenbHo MOKa3bIBAIOT,
YTO BBICOKAs TOYHOCTH OMPE/IEIEHUA TOPOJIHOT0 COCTaBa JIECHBIX HACAYKIECHUI MOYXKET OBIThH
JIOCTUTHYTA TPU UCIOTBb30BAHUN JIUJAPHBIX JAHHBIX COBMECTHO C JJAHHBIMH T'HIEPCIIeKTPAJTb-
HOI CheMKHU BBICOKOT'O MPOCTPAHCTBEHHOTO pa3periennsd. OTHAKO CHCTEMBI, TOCTPOEHHBIE HA
OCHOBE TUTEPCIEKTPAILHBIX JAHHBIX, UMEIOT JUIIh OTPAHUYCHHOE TPAKTUIECKOE TTPUMEHe-
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HHUE 110 CJIe AYIOIMUM OCHOBHBIM IIPpUYIXHAM. BO—HepBbIX, BBICOKad CTOUMOCTD I'mliepCIieKTpaJib-
HBIX KaMep AeJIaeT MTPaKTUIeCKOEe UCITOJIb30BaHNE TAKNX CUCTEM 9KOHOMUNYIECKU HeSCbeeKTI/IB—
HBIM JIJId OOJIBIIMHCTBA MAJIbIX M CPEJIHUX MPEIIPUATH, 3aHUMAIOIIUXCS JIECOYCTPORCTBOM
WIN JIeCO3aroTOBKaMu. Bo-BTOPBIX, TaKue CHCTEMBI He IMO3BOJISIOT 00eCIeYUTh YCTOWIHBYIO
Ha/I€2KHOCTb Pe3yJIbTaTOB, IIOTOMY YTO OHHU IIOJAralorTcd Ha MHMOPMAIMIO O CHEKTPaIbHOM
OTpakaTeabHONH CIIOCOOHOCTH KPOH JIEPEBBEB, KOTOPAS OMPEIesieTcss He TOJHKO MOPOI0it
JiepeBa, HO W TIEJIBIM PSIJIOM CaMbIX PA3HOOOPA3HBIX (PaKTOPOB, HANPHUMEP BPEMEHEM TO-
Jla, PernOHOM, BO3JeficTBHEM TeHell, 3aBUCUT OT IOTOJbI, OCBEIIEHHOCTH, COCTOSHUS ITOYBBI
U IMOJCTUJIKH, IIOTHOCTH JHUCTheB u Ap. [losToMy B mociaeanue rojibl MPOBOAATCA HCCIe-
jgoBauust |2, |17, 18], pesysbrarsl KOTOPHIX O3BOIMIK Obl CO3/aTh CHCTEMBbI OIPEIeJeHUs
BHIOBOT'O COCTaBa JApeBocTost Ha ocHoBe RGB-m300pazkennii cBepXBBICOKOI'O ITPOCTPAHCTBEH-
Horo paszpertenns (2-10 ¢cM/THKCeb), TOTYyYeHHBIX ¢ OECITIIOTHBIX JeTATEIbHBIX AlapaTOB
(BILJIA) ¢ momorbio Heoporux nudpoBbixX GoToKaMep.

JlucraHiuoHHoe 30HIUpOBaHUEe Ha 0a3e MaJbIX OCCHUJOTHBIX JIeTATEJbHBIX alllapaToB
SIBJIgETCs OBICTPO pasBuBalomiefics Texuosorueii [19]. C momomntbio BITJIA MoxKHO TOIyYIaTH
rubKoe BPeMEHHOE Pa3pelieHne i 4pe3BblYaiiHO BHICOKOE (/10 HECKOJIbKUX CAHTHMETPOB) MPO-
CTPAHCTBEHHOE Pa3pelente n300pazkeHuii, Ha KOTOPHIX MOYKHO yBUI€TH OCOOEHHOCTH JIePEBa
HAa YPOBHE BeTBell n jgaze JiucTheB. [[oaToMy mpu pacmo3HaBaHuM MOPOJ, I€PEBHEB Ha 300~
PaKEHHUSAX CBEPXBBICOKOI'O IIPOCTPAHCTBEHHOIO Pa3pellleHuss 3HAUUTEIbHYIO POJIb UI'PAIOT He
TOJBKO CIIEKTPAJIbHBIE IPU3HAKH, HO U IPOCTPAHCTBEHHBIE (TEKCTYPHbIE U TEOMETPHYECKIE).
COBMGCTHOG HCIIOJIb30BaHUE CIIEKTPAJIbHbIX U IIPOCTPAaHCTBEHHBIX IIPU3HAKOB B PaMKaX Tpa-
JIMIIAOHHBIX MTOJIX0/IOB K aHAJN3Y U PACIIO3HABAHUIO N300paKeHUH ABJISETCS CJA0XKHOM 1 K Ha-
CTOSIIIEMY BPEMEHN He 10 KOHIIA PerreHHoil 3a1aqeit [20-23).

Haubostee spdekTuBHBIH 10/1X0/T K aHAIU3Y a3POKOCMHYECKUX U300parKeHHil BHICOKOTO
HPOCTPAHCTBEHHOTO pa3pelIeHus 3aK/II0YaeTcs B IPUMEHEHUH METOI0B IVIYOOKOTO 00y ueHns
Ha OCHOBe CBepTOUHBIX HeilponubX cereil (CHC) [24]. Dro cBazano ¢ Tem, 9To cBepTOUHBIE
HelflpOHHBIE CeTH CIEeNuaIbHO Pa3paboTaHbl JiIsl aHAJIM3a TPOCTPAHCTBEHHBIX 3aKOHOMEp-
HOCTEH M pU UX UCIOJIb30BAHUU HE Tpebyercsd “pydHOro” u3BjAedeHUs MTPOCTPAHCTBEHHBIX
HpPU3HAKOB. B oTytmyue oT TpajMIIHOHHBIX aJIrOPUTMOB CEIMEHTAIIUU U PACIO3HABAHULA H300-
paxkenuit, CHC obecnieunBaloT BO3MOKHOCTb COBMECTHOI'O aHAIN3A CIEKTPAJBHBIX U IIPOCT-
PAHCTBEHHBIX CBOMCTB 00BeKTOB Ha m3o0pazkenun. bosee Toro, CHC mo3zBoasior perrarn
3aJ1a91 CEMAHTHIECKOW CErMEHTAINMN W300parKeHuii, T. €. OJIHOBPEMEHHO ITPOU3BOIATCS BbI-
nenenne u Kiaaccudukanusa o6bexTos [25).

[lenw maHHOi pabOTHI COCTOUT B AKCIIEPUMEHTAILHOM UCCJIEI0BaHNN HAauboJIee TOIX0IsI-
X MOJIeJiell CBepTOYHBIX HeHPOHHBIX CeTell /Il CeMaHTHIeCKOil cerMeHTalnu OJIM3KAX 110
CHEKTPAJbHBIM XapaKTePUCTUKAM OCHUHOBBIX U O€pe30BHIX JpeBoctoeB Ha RGB-u3o06pazkenn-
X, TIOJYIAaE€MBIX C MTOMOIIBI0 OECMIIOTHBIX JIeTATEILHBIX alapaToB. Pe3y bTaTsl STUX UC-
CJICJTOBAHUI MOTYT HAHTH NPAKTUYECKOe NPUMEHEHNe, HAIpUMeEp, IIPU ONPEIEJICHAN pa3Me-
pa apeHHOM IIATH 32 JIECHBIE YYACTKH, UCIO/Ib3yeMble IS 3ar0TOBKH JApeBecuHbl. OIeHKa
IJIONIA/IA HACAXKJICHUN OCYIIECTBASETCS CIEIUATUCTAMHI IIyTeM HEIIOCPEJICTBEHHOIO BbIe3)Ia
Ha MECTO JIJIT OCMOTPA JIECHOTO yYacTKa. ABTOMATU3AIINs 3TUX pabOT MO3BOJIUT COKPATHTH
3aTPaThl U HOBBICUTH OObEKTUBHOCTD MOJIYIAEMBIX OIEHOK.

1. O0beKT uccijieJOBaHNUA M MCXOAHbIE JaHHbIE

B kagecTBe 00BEKTa MCCICIOBAHUSA BHIOpAH YYacTOK CMEIIAHHOTO Jieca B paiione
. Aam6ait Astaiickoro Kpas ILIOIAIBI0 OKOJIo 4 KM?, Ha KOTOPOM IJIABHBIMH JIECOO0-
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Puc. 1. llpumep ucxonuoro RGB-uzobpaxkenus pasmepom 6000x4000 nuxceseit
Fig. 1. An example of the original RGB image with the size of 6000x4000 pixels

pasytomuvu nopogamu saiagorcs 6epesa (betula pendula, betula alba) u ocuna (populus
tremula).

UcxogabivMu  gaHHbIME it oOpaborku  cayxkuan 68 RGB-uzobpaxkenuit pasmepom
6000x 4000 mkcesneil ¢ TPOCTPAHCTBEHHBIM pa3pelieHneM MOops/IKa O CM, MOJYIeHHBIX C M0-
mvorbio BITJIA. Cbemka npowsBoamiaachk ¢ BoicoTbl 250 m. ITpumep nexognoro RGB-u300-
pakeHWsT TpeJiCTaBIeH Ha PHC. Cwoemka poeinosaena OO0 “BecnuioTnble TeXHOJIOTHH’
B ampesie 2021 r. Mecsn ampesb 111 ¢chbeMKH ObLI BRIOpaH He ciaydaitno. B aTor nepuon Ha
BETBSIX JIEPEBHEB HET HU JIMCTHEB, HU CHETd, HU U3MOPO3U M OCHHOBBIE U OEPE30BbIEe HACAZK-
JieHust MOXKHO Jjierko nemugpuposarb. Ha RGB-canvkax, mosydeHHbIXx B JIeTHHIT Berera-
[IHOHHBINA TEPUO/I, BBIIEIUTH W PACIO3HATH OJU3KHE TO CHEKTPAJIHHBIM XapaKTePUCTHKAM
Oepe30Bble U OCHHOBBIE JIPDEBOCTOU IIpe/ICTaBasgeTcs DoJiee CJI0KHON 3a1adeil.

B nacrosieit pabore cemanTHUYecKast CerMeHTaIlMsI BBITIOJIHJIACh HA TPH KJjacca: “Oepe-
30Bble HACAXKJEHUs , “OCUHOBbBIE HacaxjaeHus u “¢poun’.

2. ApxXuTeKTypbl CBEPTOYHBIX HEIPOHHBIX ceTell

st ceMaHTHYECKON cerMeHTaIluNd HCIIOAb3YeTCs Hebli psiJl pa3IudHbIX apXHTEKTYP CBep-
TOYHBIX HEUPOHHBIX CeTel . B nmamnoit pabore mjs mcciiegoBaHHE HCHOJIb30BAHBI ClIe-
aytomue mecth apxutekTyp: U-Net, DeepLabV3, DeeplabV3+, FPN, LinkNet, PSPNet,
a Takxke mpejyiaraemasa Hamu moandukamus U-Net ¢ Inception-610xkamu.

B nociienee BpeMst sl pelieHusT Pa3JIMIHBIX TPUKJIAIHBIX 33029 MIPOKO ITPUMEHIETCS
rpancdeproe obyuenue (transfer learning). IIpenobyuentbie Mogen MO3BOJISIIOT HCIOIB30~
BaTh TOTOBBIE KAPTHI MPU3HAKOB, C(HPOPMUPOBAHHBIE IIPU PEIICHUH JIPDYTUX 3a/a4. B nanuoii
pabore HCHIOIb3yeTCs ceMeiicTBO mpenodydeHHbIX cereir ResNet. OHu mpeacTaBagioT coboit
THI TJIYOOKHX HEHPOHHBIX ceTeil, KOTOpbIe pa3paboTaHbl s PelleHus Mpo0IeMbl 3aTyXal0-
IIero rpajuenTa. dTa mpobaeMa 9acTo BO3HUKAET IPU CO3AaHUH TJIYOOKUX HEHPOHHBIX CeTeil
¢ OOJIBIIUM YHUCJIOM CBEPTOK.

CymecrByeT HeckKoJabKO Moaudukamnuit apxutekTyp ResNet: ResNet-18, ResNet-34,
ResNet-50, ResNet-101, ResNet-152. IIpoBesennble uccie10BaHus MOKA3aIM, 9TO UCIOJIb-
30BaHUE JIOCTATOYHO ITyOOKMX IHKOIEPOB IPUMEHUTE/IHHO K JTAHHON 33/1a9e MPUBOINAT K He-
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PeoOyUIeHNI0 CeTH U YXYAIIEHNI0 KAYeCTBa MOJIyIaeMbIX Pe3yabraToB. [[oaToMy B masbHeil-
MeM B Ka9eCTBe SHKOJIEPA BO BCEX TMECTH UCC/IEIyeMbIX HAMHU aPXUTEKTYPaX UCIO/Ib30BAIACH
cBeprouHasd ceTh ResNet-50, koTopas obecrieduBaeT NpueMIeMOe KadecTBO CeIrMeHTAIUU TIPU
OTHOCHTE/ILHO HEOOJIBIITNX BBIYUCIATEIbHBIX 3aTPATaX.

Wcnonb3oBanue B uccaeoBanuu apxuTeKTypbl U-Net 00ycJIoBIeHO TeM, 9TO OHA XOPOIIO
3apeKOMEeHI0OBaJIa cedsl ITPU PelIeHnH 3a1a4 CeMaHTHIECKO cerMeHTAINT JIECHBIX HACaKIe-
uuit |4, 5]. M3navanpao U-Net paspaborana jjist cermeHTanuu GHOMEIUIMHCKAX H300pa-
JKenuii |25, rae mpogeMoHCTPHpPOBaIa BHICOKOE Ka4eCTBO pe3yabTaToB. Takas apXuTekTypa
MO3BOJIsIET KOMOMHUPOBATH KAK HU3KO-, TAK ¥ BBICOKOYPOBHEBBIE TTPU3HAKH.

DeepLabV3 — cemeiicTBo Mojieieii cermenTanun n300pazkennii, pa3paboTaHHbIX KOMIIa-
nueit Google. OTIMYUTENTbHON 0COOEHHOCTHIO ITUX APXUTEKTYP ABJIACTCA HAJUIUE PACIIH-
peHHBIX cBepTOK (atrous or dilated convolutions), KOTOpbIe TOMOTAIOT YBEJUYUTH MOJIE 3Pe-
HHUs CETU U YIUTHIBATH OOBEKTHI PA3HBIX PAa3MepPOB 0€3 yYBeTHUeHUs BHIUUCIUTEIbHBIX 3aTPaT
U noTepu Kavecra n3obpazxkenus. VcnoapzoBanue mexanusma ASPP (atrous spatial pyramid
pooling) mo3BoJIgeT arpernpoBaTh MPU3HAKK Ha PA3HBIX MACIITabax W, COOTBETCTBEHHO, JIy -
IIIe YYUTHIBATHh KOHTEKCT O0ObEKTOB Ha M300parkKeHusX.

DeeplLabV3+ gasmiserca pacimpenuneM u yiaydiienueM apxutekTypbl DeeplabV3, xo-
TOpOE BHEJIpPSeT HKOIEP-JIEKOJAEPHYIO CTPYKTYPY. DHKOJep (hopMHpPYeT KapThl MPU3HAKOB
U yMEHBIIaeT pa3Mep H300parkeHus, & JEKOJep BOCCTAHABIMBAET HCXOJHOE pa3pelieHue
BXOJIHBIX JTAHHBIX.

Apxurektypsl FPN u PSPNet ucrnob3yor nupaMuIaibHyIo CTPYKTYPY TPU3HAKOB JTs
uHTerpanuyu nHGoOpMaun Ha pa3Heix MacmTabax, Ho FPN gasisgercsa Gosee yHUBEpCATIBLHOII,
TaK KakK MOIXOIUT JJIsi CEMaHTHYECKON cerMeHTannu u oOHapyxKeHus o0bekToB, a PSPNet
CTIeTMAIN3UPYETCsT Ha 33/a9aX aHAJIM3a KOHTEKCTa, CIIEH.

LinkNet — apxurekrypa cBepTOYHOM HEfipOHHOI ceTHn, pa3paboTannas Jjid 3a/a49 CeMaH-
THIECKOW CerMEHTAINH, B KOTOPBIX TPEOYIOTCST BBICOKAS TOYHOCTH U 3 dexTuBHOCTh. OHA
TaKzKe MOCTPOEeHA Ha OCHOBE YHKOAEP-IEKOAEPHON CTPYKTYPBI C UCIOJIB30BAHIEM PACIITHPEH-
HBIX CBEPTOK JIJId YBEJMYEHUS TOJIS 3PEHUS CeTH M yueTa 00beKTOB Pas3sHbIX pazmMepoB. Oc-
HOBHBIM (DOKYCOM JIAHHO apXUTEKTYPbI siBjigercs 3hpeKTuBHas cerMeHTalns n300pazKeHuit
pPU KaK MOYKHO MEHBIIIEM YHCJIE TAPAMEeTPOB CeTH, UYTO MO3BOJISIET NPUMEHSITh APXUTEKTYPY
B YCJIOBUSIX OTPAHUYIEHHBIX BBIUUC/IUTEIHHBIX MOIITHOCTEA.

Kpome paccMOTpeHHBIX BBITIE apXUTEKTYD JIJisl UCCAET0OBAHUS TIPeIIaraeTcs MOIudu-
karust apxutextypsl U-Net ¢ Inception-61okamn, cxema KOTOpoii mpejcrasiena mHa puc. [2
Haiee 6ynem HazbiBaTh ee U-Net-M. Ha 3ToM prucyHKe ncnosib30BaHbI CJIeIVIONIAE YCIOBHBIE
0003HAYECHUS:

e Input — BXOJHO# CJI0IL;

e Conv2D — omepamus cBepTKH;

e MaxPooling — oneparus cybauckperusanun BhIDOPOM MaKCUMAJILHOIO 3HAYCHUS B OK-

PECTHOCTH 2 X 2 IHKCeJIelt;

e AvgPooling — oneparnus cyOaucKpeTn3anuy BEIOOPOM CpeIHero 3HaYeHHs B OKPEeCTHOC-

TH 2X 2 IHUKCeJIeit;

Softmax — BbIXOAHON cyi0il ¢ pyHKIMeil akTuBanun Softmax;

Up-sampling — omeparnus yBeandeHust Macirraba MeTo oM OJnKaiiiero cocea;
Concatenation — KoHKaTeHaIUs] TEH30POB;

BN + ReLu — ucronb3oBanne nakeTHo# HopMaau3amnuu ¢ pyukiueit akrupanuu Relu;
x2 (x4) — AByKpaTHOe (YeTBIPEXKPATHOE) UCIIOIb30BAHUE OMePAIUiil ¢ TeH30paMu U0
HCIosIb30BaHne 610Ka u3 HabOpoB omepanuii (npu Hasuanu HUIYPHOR CKOOKH).
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Puc. 2. Cxema apxuTeKTyph! ¢BepTOUHOM Heitporuoit cetu U-Net-M
Fig. 2. Schematic diagram of the U-Net-M convolutional neural network architecture

ApXUTEKTypa COCTOUT U3 JABYX COIMHEHHBIX MeXKIy coboil cereil: SHKOmepa JJIs U3BJIe-
YeHUd U3 N300parKeHns ceMaHTHIeCKOi nH(MOPMAIMK B BUIe BEKTOPa IPU3HAKOB U JIEKOIepa
JIJIS IIPEBpAlleHus BEKTOpa IPU3HAKOB B MATPHUILY HOBOI'O M300parKeHUs — MACKU KJIACCOB.
DHKO/IEP TPeACcTaBigeT co00H OOBITHYI0 CBEPTOYHYIO CETh, COCTOSIINYIO U3 MTOBTOPSIOIIHX-
csa Inception-6siokoB co cinogmu aktupamuun ReLu. Ilocsie Kazkgoro ciios akTHBAIUH HIET
cJI0il makeTHOH HopMaJm3anuu. Jlekomep mpejcTapisgeT coboil mMoc/ie0BaTe/IbHOCTD IIATOB
U3 oNepanuii MOBBIIAONEH JTUCKPETHIAINNA KapT MPU3HAKOB, 3 KOTOPOi caemayeT o0beIu-
HEHUE C COOTBETCTBYIOIIUM CBEPTOYHBIM CJIOeM u3 3HKOjepa. llocsennuii cioit jgekoaepa
paboraer ¢ dyHKIHEH akTuBanunn Softmax.

g onerku 3(pHEKTUBHOCTH TIPEJIIOKEHHBIX CBEPTOUYHBIX HEHPOHHBIX CETel MCIOJIB30-
BasIuCh 1Be MeTpukn: Intersection over Union (IoU) u F-score.

Metpuxka loU sBigerca obmenpuasaToit MeTpukoi 3MEeKTUBHOCTH IPU PEHICHUN 33391
CeMAHTUYECKOf cermMenTalun udpoBbix n306paKenuii |26), npuarMaer 3HAYCHIS U3 UHTED-
Basa [0, 1], naiinennsie no dopmyste

ou(p,T) = L0110
|PUT]|
rje P — MHOXKeCTBO IHUKCeJIel, CEerMeHTUPOBAHHbIX CeTbI0; T’ — MHOZKECTBO HUKCeJIei MacKH,
BBIJICJICHHONH 9KCIEPTOM.
Merpuka F-score — B3Bemennoe rapmonmndeckoe cpeuaee moanorel (Recall) u Tounoctn
(Precision). Precision, Recall u F-score BRIYHCIAIOTCS IO CIYIOMIM (bOPMYJIaM:

Precision = T—P Recall = T—P F-score = 2 - Precision Recall‘
TP +FP’ TP +FN’ Precision + Recall
Bnecs TP (true positive) — ucruano-nosoxkuteasuoe pemtenne, TN (true negative) — mc-
TUHHO-OTpHUIaTeIbHOe pentenne, FP (false positive) — noxkHO-TI0102KUTEIbHOE perierne, FN
(false negative) — MOKHO-OTPHIIATENLHOE PEIEHHE.

B kauectse dyukiun morepb Boibpana dbyukius Jaiica— Cepencena (DSL):
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21X NY|
X[+ Y]
rae X — MHOXKECTBO IIHKCeJeil MaCKH, BbIJIEJIeHHON SKCIepToM; Y — MHOXKeCTBO IHUKCeJIei,
CeTMEHTAPOBAHHBIX CETHIO.
B kagectBe onrumuzaropa BeiOpan aaropurm Adam. Obydenue cetn mPOUCXONIIO ¢ UC-

noJIb30BaHuEeM BBICOKOYpoBHEBOro (hpeiimBopka Py Torch, kotopsrit npepcrasisger coboii rud-
KU W MOIMHBIN crocod i co3janusd u odydenus uHeiipounbix cereit. PyTorch comepzxur

DSL =1 —

IMIAPOKUH HAOOP MHCTPYMEHTOB JIJIsI IOCTPOEHUs ceTeil, BKIIOYAIOMMUH BCeBO3MOXKHBIE BUJIbI
CJI0eB HEHPOHHBIX ceTell, (PYHKIIMKM aKTUBAIMH, ONTUMU3ATOPLI U IIP.

3. IIponecc obyueHus

g popMmupoBanust BbIOOPOK /11t 00yUeHHUsI U TECTUPOBAHUS BCe N300payKeHUsT CIydaiiHbIM
o6pa3oM ObLIN pasiesieHbl Ha Tpu dacTi: obydaromniyto (50 n3obparkenuii), BaJInIAINOHHYO
(9 uzobpazkenuit) u TecroByio (9 nzobpazxenuit).

Ucxonubie wn300pakenusi pasMedajnch BPYYHYIO € HCHOJb30BaHHEeM BeO-cepBuCca
Supervisely (puc. |3), a 3aTem Hapesasuch Ha dbparMenThl 512x512 mukceseit. Takum
obpazom, 6bL10 Trosiyaero 1170 obyuarorux, 280 Baammanuonabix n 110 TectoBbIx dpar-
MeHTOB. Jlasiee pacmiupenue BBIOOPKH MPOUCXOIUIO B IIOJYaBTOMATHIECKOM PEXKHMeE: CeThb
oOydJaJsiach Ha uMerolieiica odydalomnieil BLIOOPKe, 3aTeM Ha ee BXOJI I0JaBaJIUCh HOBBIE (bpar-
MeHTH. Ecmu pe3yabrar npeicKasanns ObLT YIOBIETBOPUTEILHBIM, TO (pparMeHT 100aBIAI-
cd B 0Oy4valoniyio BbIOOPKY Ha ciejyiomeit urepanuu. Ha puc. [4| npejcrasiena cxema moJry-

Hcxoxuste Pyunas O6yuaromas | OOydeue Caeprounas Hoobygerne
1306 parkeHIL pasMeTKa BEIOOpKA CHC HelIpoHHAas ceTh CHC
IIpencxazanie
Pesynsratst
JlomonHITeIbHEE .
CeMaHTIYeCcKoi
1306 pakeHnT
CerMeHTAaIII
BusyansHerii
KOHTpPOIIb
Pacmmpernas
PenpeseHrarnBHas Ha P
obyuarormas
BEIGOpKA
BEIGOpKA
Her

Puc. 3. Ilpumep pazmeuennoro Puc. 4. Cxema MOSTyaBTOMATIHYECKOTO PACIINPEHUS 00y Iaromeit
n300paKeHnsT BBIOOpKUT

Fig. 3. An example of a labelled Fig. 4. Scheme of semi-automatic expansion of the training
image sample

Puc. 5. ITpumepsl nap dbparmenTos u Macok u3 obyuatonieil Bhibopku (6e/ibiM 1BETOM 1IPEICTAB/IEHbI
Bepesbl, CepbIM — OCHHBI)

Fig. 5. Examples of pairs of fragments and masks from the training sample (birch trees are
represented in white, aspen trees in gray)
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aBTOMATHYECKOTO pacITUpeHust oOydJatoieii BbiOopKu. B pesyibrare obydaroriasi BbIOOpKa
obl1a pacmupena 10 1560 yHUKaJIBHBIX TTap (hParMeHToB.

g yBesmyenust oobeMa obydaronieil BoIOOPKU BBIOJIHAIACH ayTMEeHTalMs JAHHbIX, KO-
TOpasd BKJIIOYAJIa CJASTYIONINE OMePAIUN:

1) moBopoT ¢dparMeHTOB Ha CIydaiiHo BhOpaHHbIi yroa a € (0, 180°);

2) macmrabupoBanue Ha crydaiiubiii mporent or 0 1o 10;

3) cayugaiinble 0TOOpaYKEHUsT OTHOCUTETHHO TOPU3OHTANBHOM U BEPTUKAIBHON OCeil.
B pesynbrare Bcex mpoBeEeHHBIX Olepaliuii 00beM 00ydJalolieil BHIOOPKH ObLT yBeJUYeH 10
17 000 map. [Ipumepsl map pparMeHTOB U MACOK U3 00ydJalolneil BHIOOPKH Mpe/ICTaBICHbBl Ha

puc. [3

4. DKcrepuMeHTAJIbHbIE NCCJIeJOBaAHUA

Bce Borumcienuns nposoguauch Ha y3iae Kiaacrepa OUIL BT, koropeiii ob1amaeT ciemyro-
mumu xapakrepuctukamu: HPE Apollo 6500 G10+, 2xAMD EPYC 7452 (32 sapa 1o
2.35 T'Tn), 1 TB O3V, 8xNvidia A100 80 T'b SXM4.

s onpeesieHrs ONTUMAJIBHBIX TAPAMETPOB CBEPTOUYHBIX HEHPOHHBIX ceTeil BLIIOJIHEH
PsiJI, 9KCHEPUMEHTOB, B x0/1¢ KoTopbix mojen CHC obydasuch ¢ pasubiMu HACTPOHKaMu
vuan-akera (8, 16 u 32) B Teuenne 150 3MOX € MOCTEHEHHO IOHHYKAIONIEHCA CKOPOCTHIO
obygernsa ot 1073 10 1075, PesynbTaTsl 3KCHepEMEHTAILHBIX HCCICIOBAHUI TPEICTABIC-
upl B Tabsuie. 3nadenus mMeTpuk loU m F-score mpuBesennl a0 Tpex HaOOPOB BBIOOPKH:
oOy4Jaroniel, BaJIUIAIMOHHON U TecToBOM. IIpejacraBiienHbie B TabJuIle BBIYMCICHUS ObLIH
IPOU3BEICHBI HA OTHOM BUICOKApPTE.

Pesynbrate skenepuMmenTanbabix nccaenopanmiit CHC
Experimental results of CNNs

Apxurekrypa cetu | IoU | F-score | Hucno snox | Bpemsi, mun | [lamsars, MB

0.919 | 0.958

U-Net 0.845 | 0914 a7 9.3 6802
0.785 | 0.871
0.684 | 0.811

FPN 0.662 | 0.789 62 17.1 3604
0.651 | 0.762
0.816 | 0.899

PSPNet 0.794 | 0.883 85 10.4 2520
0.733 | 0.829
0.921 | 0.959

Linknet 0.816 | 0.897 73 13.8 4544
0.742 | 0.821
0.932 | 0.965

DeepLabV3 0.851 | 0.917 88 16.7 4854
0.797 | 0.889
0.949 | 0.972

DeepLabV3+ 0.878 | 0.932 110 20 3904
0.832 | 0.907
0.935 | 0.966

U-Net-M 0.873 | 0.929 123 30.7 10038
0.828 | 0.905
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Ananm3 TOJNyYeHHBIX  Pe3yabTAaTOB MHOKa3biBaeT, d9To apxurekTypbl  U-Net-M
n DeepLabV3- npoaeMoncTpupoBain JIydiinee KadecTBO ceMaHTHIECKO# cermenTannu. Ha
puc. [6] upusesens rpadukn 3apucumoctu Merpukn [oU or HOMepa MOXU Jjist APXUTEKTYD
U-Net-M u DeepLabV3+, nyHkTupHOi JuHAEH BBIICJICHBI SMOXUA ¢ HAMOOJIBIIUME MOKA3a-
TeJIdAMA METPpUK Ha BaJIWJallUuN.

Ha puc. [7| mpeacraBiensl npuMepbl pe3yJibTaTOB CEMAHTHYECKONW CEIMEHTAIUU C ITOMO-
mpio apxutekTyp U-Net-M u DeepLabV3-. CpaBHuTe IbHBINA aHAIN3 HOJYIEHHBIX PE3Y/Ib-
TaTOB CEMAaHTHYECKON CerMeHTAIluU IOKa3bIBAET, YTO OCHHOBBIE U Oepe30Bble HACAKICHUA
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Puc. 6. I'paduku 3aBucumoctn merpurn loU ot Homepa snoxu jyist apxurektyp CHC U-Net-M (a)
u DeepLabV3+ (6)

Fig. 6. Plots of the dependence of IoU metric on epoch number for U-Net-M (a) and
DeepLabV3+ (6) CNN architectures
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Puc. 7. Pesysibrarbl ceMaHTUUECKONH CErMEHTAIMU MCXOJIHBbIX u300paxenuit (a, d) ¢ mOMOIIbIO ap-
xurektyp U-Net-M (6, orc) m DeepLabV3+ (2, 3) m sramonnas xapra cermentanuu (6, e). Ha
puUCyHKaX 6—2, e—3 OeJIbIM I[BETOM IpEJCTaBICHBI O€PE3bl, a CEPbIM — OCHHBI

Fig. 7. Results of semantic segmentation of the original images (a, d) using U-Net-M (s, otc) and
DeepLabV3+ (e, 3) architectures and ground-truth segmentation mask (6, ¢). In pictures 6—e, e—3
birch trees are represented in white, aspen trees in gray
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pacrno3naiorcd npaktudecku Oesomubdbouno. Habjomaorca nebosbiue pa3andus B KOHTY-
pax BBIJIEJISIEMBIX 00beKTOB, YTO MOYXKET ObITh 00YCJIOBIEHO HEUETKOCTHIO M CJI0YKHOCTHIO X
rpaHUII.

3akJroueHne

Pacemorpena mpobiiema aBTOMATU3UPOBAHHOIO JeIUMPUPOBAHKSI OCHHOBBIX U 0EPE30BBIX
napesocroeB Ha RGB-uzobpazkeHusix ¢BEPXBBICOKOTO (OKOJO b €M) MPOCTPAHCTBEHHOTO Das3-
pemenud, 1moJaydaeMbIX C ITOMOIIBIO 6€CHI/IJIOTHBIX JIeTATCJIbHBIX allllapaTOB. ZLJ'IH peniennda
9TOM 3aJa4M HCIIOJIH30BAHBI CBEPTOUYHBbIC HEHPOHHBIE CeTH PasHIHbIX apxutekTyp: U-Net,
DeepLabV3, DeepLabV3+, FPN, LinkNet, PSPNet. Tak:ke ObL1a mpeiozxKena apXuTeKTy-
pa U-Net-M, asasomasica momuduramueit U-Net ¢ Inception-6okamu. IIpoBemeno skcime-
puMeHTaJBHOE HCcaenoBanne nepeanciaeHabrx CHC. [ oneHku KauecTBa pe3ybTaToB Cer-
MeHTaInn ucroab3oBauch MeTpukn loU n F-score. Pe3syabrarsl sKCliepuMeHTOB MTOKA3aJIH,
YTO HAWIy4YIllee Ka9eCTBO CEMAaHTUUECKON CerMeHTAIllMl OCUHOBLIX U O6€pe30BLIX JPEBOCTOEB
obecnieunBatoT apxuTeKTypbl DeepLabV3-+ u npeanoxennas U-Net-M.

Pesyabrarsl paboThl MOTYT HaifiTH TpaKTUYeCKOe MpUMeHeHHe, HApPUMep, P OIpee-
JIEHUU pa3Mepa apeHIHOW IIaThl 3 JIECHbIE YYaCTKU, UCIOJB3YeMble JJis JIeCO3arOTOBKH
JPEeBECUHBI.

B nmanbreiinieM Ha OCHOBe 3TOH pabOTHI IJIAHUPYETCA pPEHIaTh 3a/ady I0JIcUeTa YUC/a
OT/IeJIBHBIX JePeBbeB Ha m300pazKeHusx, moydeHHbx ¢ BITJTA.

Baaromaproctu. lccienoBanue BbIlOJIHEHO 3a cuer rpanta Poccuiickoro nay4unoro pos-
nga (mpoexkt Ne 22-17-20012, https://rscf.ru/project/22-17-20012/) npu mapurerHOii
dunancosoit nojepxkke [Ipasurenbcrsa Pecriybimkn Xakacus.

[IporpamMMHBIe pacdeThl BBIIOJHEHBI ¢ ucnoab3oBanueM obopyposanus HHKII “Ilentp na-
yunbix UT-cepsucos ®UILL UBT”.
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Abstract

The problem of determining the species composition for forest stands using remote sensing
data has been attracting significant attention for decades. The relevance of this problem is due to
the constant improvement and development of remote sensing tools and technologies including the
intensive spread of unmanned imagery technologies in recent years.

Remote sensing based on small unmanned aerial vehicles (UAVs) is a rapidly developing techno-
logy. Compared to manned aircraft, UAVs are an easy-to-use and low-cost tool for remote sensing of
forests. Survey cameras mounted on UAVs allow data collection even in cloudy conditions. UAVs can
produce flexible temporal resolution and extremely high (up to several centimeters) spatial resolution
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of images, where tree features can be seen at the level of branches and even leaves. Therefore, not
only spectral features but also spatial (textural and geometric) features play a significant role in
tree species recognition in ultra-high spatial resolution images.

Currently, the most effective approach to analyse high spatial resolution aerospace images is to
apply deep learning methods based on convolutional neural networks (CNNs). This is due to the
fact that CNNs are specifically designed to analyse spatial patterns and they don’t require “manual”
extraction of spatial features. Unlike traditional image segmentation and recognition algorithms,
CNNs provide the ability to analyse spectral and spatial features of objects in an image jointly.

The paper investigates the possibility of automatic identification and classification of aspen and
birch stands in RGB images of ultra-high spatial resolution obtained from unmanned aerial vehicles.
To solve the problem of semantic segmentation we compared the performance of convolutional
neural networks based on different architectures: U-Net, FPN, PSPNet, Linknet, DeepLabV3,
DeepLabV3+. The results showed that DeepL.abV3+ architecture and modifications of U-Net with
Inception-blocks allow to achieve the best results of semantic segmentation, reaching the highest
values of IoU (~0.83) and F-score (~0.91) quality metrics.

Keywords: image processing, drone photography, semantic segmentation, classification, UAV,
identification of tree stands, convolutional neural network.
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