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Исследуется возможность автоматического выделения и классификации осино-
вых и березовых насаждений на RGB-изображениях сверхвысокого пространствен-
ного разрешения, полученных с беспилотного летательного аппарата. Для реше-
ния задачи семантической сегментации проведено сравнение работы сверточных
нейронных сетей на основе различных архитектур: U-Net, FPN, PSPNet, Linknet,
DeepLabV3, DeepLabV3+. Результаты показали, что архитектуры DeepLabV3+
и модификации U-Net с Inception-блоками позволяют получить наилучшие резуль-
таты семантической сегментации, достигая наиболее высоких значений метрик ка-
чества IoU (∼0.83) и F-score (∼0.91).
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Введение

Проблема определения видового состава лесных насаждений по данным дистанционно-
го зондирования уже на протяжении нескольких десятилетий приковывает внимание
многих ученых из разных стран [1], и в последние годы интерес к этой теме неуклонно
растет [2–10]. Актуальность этой проблемы обусловлена прежде всего постоянным совер-
шенствованием и развитием средств и технологий дистанционного зондирования, вклю-
чая интенсивное распространение в последние годы технологий беспилотной съемки.

Результаты, которые представлены в работах [7, 11–16], убедительно показывают,
что высокая точность определения породного состава лесных насаждений может быть
достигнута при использовании лидарных данных совместно с данными гиперспектраль-
ной съемки высокого пространственного разрешения. Однако системы, построенные на
основе гиперспектральных данных, имеют лишь ограниченное практическое примене-
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ние по следующим основным причинам. Во-первых, высокая стоимость гиперспектраль-
ных камер делает практическое использование таких систем экономически неэффектив-
ным для большинства малых и средних предприятий, занимающихся лесоустройством
или лесозаготовками. Во-вторых, такие системы не позволяют обеспечить устойчивую
надежность результатов, потому что они полагаются на информацию о спектральной
отражательной способности крон деревьев, которая определяется не только породой
дерева, но и целым рядом самых разнообразных факторов, например временем го-
да, регионом, воздействием теней, зависит от погоды, освещенности, состояния почвы
и подстилки, плотности листьев и др. Поэтому в последние годы проводятся иссле-
дования [2, 17, 18], результаты которых позволили бы создать системы определения
видового состава древостоя на основе RGB-изображений сверхвысокого пространствен-
ного разрешения (2–10 см/пиксель), полученных с беспилотных летательных аппаратов
(БПЛА) с помощью недорогих цифровых фотокамер.

Дистанционное зондирование на базе малых беспилотных летательных аппаратов
является быстро развивающейся технологией [19]. С помощью БПЛА можно получать
гибкое временное разрешение и чрезвычайно высокое (до нескольких сантиметров) про-
странственное разрешение изображений, на которых можно увидеть особенности дерева
на уровне ветвей и даже листьев. Поэтому при распознавании пород деревьев на изоб-
ражениях сверхвысокого пространственного разрешения значительную роль играют не
только спектральные признаки, но и пространственные (текстурные и геометрические).
Совместное использование спектральных и пространственных признаков в рамках тра-
диционных подходов к анализу и распознаванию изображений является сложной и к на-
стоящему времени не до конца решенной задачей [20–23].

Наиболее эффективный подход к анализу аэрокосмических изображений высокого
пространственного разрешения заключается в применении методов глубокого обучения
на основе сверточных нейронных сетей (СНС) [24]. Это связано с тем, что сверточные
нейронные сети специально разработаны для анализа пространственных закономер-
ностей и при их использовании не требуется “ручного” извлечения пространственных
признаков. В отличие от традиционных алгоритмов сегментации и распознавания изоб-
ражений, СНС обеспечивают возможность совместного анализа спектральных и прост-
ранственных свойств объектов на изображении. Более того, СНС позволяют решать
задачи семантической сегментации изображений, т. е. одновременно производятся вы-
деление и классификация объектов [25].

Цель данной работы состоит в экспериментальном исследовании наиболее подходя-
щих моделей сверточных нейронных сетей для семантической сегментации близких по
спектральным характеристикам осиновых и березовых древостоев на RGB-изображени-
ях, получаемых с помощью беспилотных летательных аппаратов. Результаты этих ис-
следований могут найти практическое применение, например, при определении разме-
ра арендной платы за лесные участки, используемые для заготовки древесины. Оценка
площади насаждений осуществляется специалистами путем непосредственного выезда
на место для осмотра лесного участка. Автоматизация этих работ позволит сократить
затраты и повысить объективность получаемых оценок.

1. Объект исследования и исходные данные

В качестве объекта исследования выбран участок смешанного леса в районе
п. Аламбай Алтайского края площадью около 4 км2, на котором главными лесооб-
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Рис. 1. Пример исходного RGB-изображения размером 6000×4000 пикселей
Fig. 1. An example of the original RGB image with the size of 6000×4000 pixels

разующими породами являются береза (betula pendula, betula alba) и осина (populus
tremula).

Исходными данными для обработки служили 68 RGB-изображений размером
6000×4000 пикселей с пространственным разрешением порядка 5 см, полученных с по-
мощью БПЛА. Съемка производилась с высоты 250 м. Пример исходного RGB-изоб-
ражения представлен на рис. 1. Съемка выполнена ООО “Беспилотные технологии”
в апреле 2021 г. Месяц апрель для съемки был выбран не случайно. В этот период на
ветвях деревьев нет ни листьев, ни снега, ни изморози и осиновые и березовые насаж-
дения можно легко дешифрировать. На RGB-снимках, полученных в летний вегета-
ционный период, выделить и распознать близкие по спектральным характеристикам
березовые и осиновые древостои представляется более сложной задачей.

В настоящей работе семантическая сегментация выполнялась на три класса: “бере-
зовые насаждения”, “осиновые насаждения” и “фон”.

2. Архитектуры сверточных нейронных сетей

Для семантической сегментации используется целый ряд различных архитектур свер-
точных нейронных сетей [24]. В данной работе для исследований использованы сле-
дующие шесть архитектур: U-Net, DeepLabV3, DeepLabV3+, FPN, LinkNet, PSPNet,
а также предлагаемая нами модификация U-Net с Inception-блоками.

В последнее время для решения различных прикладных задач широко применяется
трансферное обучение (transfer learning). Предобученные модели позволяют использо-
вать готовые карты признаков, сформированные при решении других задач. В данной
работе используется семейство предобученных сетей ResNet. Они представляют собой
тип глубоких нейронных сетей, которые разработаны для решения проблемы затухаю-
щего градиента. Эта проблема часто возникает при создании глубоких нейронных сетей
с большим числом сверток.

Существует несколько модификаций архитектур ResNet: ResNet-18, ResNet-34,
ResNet-50, ResNet-101, ResNet-152. Проведенные исследования показали, что исполь-
зование достаточно глубоких энкодеров применительно к данной задаче приводит к пе-
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реобучению сети и ухудшению качества получаемых результатов. Поэтому в дальней-
шем в качестве энкодера во всех шести исследуемых нами архитектурах использовалась
сверточная сеть ResNet-50, которая обеспечивает приемлемое качество сегментации при
относительно небольших вычислительных затратах.

Использование в исследовании архитектуры U-Net обусловлено тем, что она хорошо
зарекомендовала себя при решении задач семантической сегментации лесных насажде-
ний [4, 5]. Изначально U-Net разработана для сегментации биомедицинских изобра-
жений [25], где продемонстрировала высокое качество результатов. Такая архитектура
позволяет комбинировать как низко-, так и высокоуровневые признаки.

DeepLabV3 — семейство моделей сегментации изображений, разработанных компа-
нией Google. Отличительной особенностью этих архитектур является наличие расши-
ренных сверток (atrous or dilated convolutions), которые помогают увеличить поле зре-
ния сети и учитывать объекты разных размеров без увеличения вычислительных затрат
и потери качества изображения. Использование механизма ASPP (atrous spatial pyramid
pooling) позволяет агрегировать признаки на разных масштабах и, соответственно, луч-
ше учитывать контекст объектов на изображениях.

DeepLabV3+ является расширением и улучшением архитектуры DeepLabV3, ко-
торое внедряет энкодер-декодерную структуру. Энкодер формирует карты признаков
и уменьшает размер изображения, а декодер восстанавливает исходное разрешение
входных данных.

Архитектуры FPN и PSPNet используют пирамидальную структуру признаков для
интеграции информации на разных масштабах, но FPN является более универсальной,
так как подходит для семантической сегментации и обнаружения объектов, а PSPNet
специализируется на задачах анализа контекста сцен.

LinkNet — архитектура сверточной нейронной сети, разработанная для задач семан-
тической сегментации, в которых требуются высокая точность и эффективность. Она
также построена на основе энкодер-декодерной структуры с использованием расширен-
ных сверток для увеличения поля зрения сети и учета объектов разных размеров. Ос-
новным фокусом данной архитектуры является эффективная сегментация изображений
при как можно меньшем числе параметров сети, что позволяет применять архитектуру
в условиях ограниченных вычислительных мощностей.

Кроме рассмотренных выше архитектур для исследования предлагается модифи-
кация архитектуры U-Net c Inception-блоками, схема которой представлена на рис. 2.
Далее будем называть ее U-Net-M. На этом рисунке использованы следующие условные
обозначения:

� Input — входной слой;
� Conv2D — операция свертки;
� MaxPooling — операция субдискретизации выбором максимального значения в ок-
рестности 2×2 пикселей;

� AvgPooling — операция субдискретизации выбором среднего значения в окрестнос-
ти 2×2 пикселей;

� Softmax — выходной слой с функцией активации Softmax;
� Up-sampling — операция увеличения масштаба методом ближайшего соседа;
� Concatenation — конкатенация тензоров;
� BN + ReLu — использование пакетной нормализации с функцией активации ReLu;
� x2 (x4) — двукратное (четырехкратное) использование операций с тензорами либо
использование блока из наборов операций (при наличии фигурной скобки).
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Рис. 2. Схема архитектуры сверточной нейронной сети U-Net-M
Fig. 2. Schematic diagram of the U-Net-M convolutional neural network architecture

Архитектура состоит из двух соединенных между собой сетей: энкодера для извле-
чения из изображения семантической информации в виде вектора признаков и декодера
для превращения вектора признаков в матрицу нового изображения — маски классов.
Энкодер представляет собой обычную сверточную сеть, состоящую из повторяющих-
ся Inception-блоков со слоями активации ReLu. После каждого слоя активации идет
слой пакетной нормализации. Декодер представляет собой последовательность шагов
из операций повышающей дискретизации карт признаков, за которой следует объеди-
нение с соответствующим сверточным слоем из энкодера. Последний слой декодера
работает с функцией активации Softmax.

Для оценки эффективности предложенных сверточных нейронных сетей использо-
вались две метрики: Intersection over Union (IoU) и F-score.

Метрика IoU является общепринятой метрикой эффективности при решении задачи
семантической сегментации цифровых изображений [26], принимает значения из интер-
вала [0, 1], найденные по формуле

IoU(𝑃, 𝑇 ) =
|𝑃 ∩ 𝑇 |
|𝑃 ∪ 𝑇 |

,

где 𝑃 — множество пикселей, сегментированных сетью; 𝑇 — множество пикселей маски,
выделенной экспертом.

Метрика F-score — взвешенное гармоническое среднее полноты (Recall) и точности
(Precision). Precision, Recall и F-score вычисляются по следующим формулам:

Precision =
TP

TP + FP
, Recall =

TP

TP + FN
, F-score =

2 · Precision · Recall
Precision + Recall

.

Здесь TP (true positive) — истинно-положительное решение, TN (true negative) — ис-
тинно-отрицательное решение, FP (false positive) — ложно-положительное решение, FN
(false negative) — ложно-отрицательное решение.

В качестве функции потерь выбрана функция Дайса –Серенсена (DSL):
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DSL = 1− 2|𝑋 ∩ 𝑌 |
|𝑋|+ |𝑌 |

,

где 𝑋 — множество пикселей маски, выделенной экспертом; 𝑌 — множество пикселей,
сегментированных сетью.

В качестве оптимизатора выбран алгоритм Adam. Обучение сети происходило с ис-
пользованием высокоуровневого фреймворка PyTorch, который представляет собой гиб-
кий и мощный способ для создания и обучения нейронных сетей. PyTorch содержит
широкий набор инструментов для построения сетей, включающий всевозможные виды
слоев нейронных сетей, функции активации, оптимизаторы и пр.

3. Процесс обучения

Для формирования выборок для обучения и тестирования все изображения случайным
образом были разделены на три части: обучающую (50 изображений), валидационную
(9 изображений) и тестовую (9 изображений).

Исходные изображения размечались вручную с использованием веб-сервиса
Supervisely [27] (рис. 3), а затем нарезались на фрагменты 512×512 пикселей. Таким
образом, было получено 1170 обучающих, 280 валидационных и 110 тестовых фраг-
ментов. Далее расширение выборки происходило в полуавтоматическом режиме: сеть
обучалась на имеющейся обучающей выборке, затем на ее вход подавались новые фраг-
менты. Если результат предсказания был удовлетворительным, то фрагмент добавлял-
ся в обучающую выборку на следующей итерации. На рис. 4 представлена схема полу-

Рис. 3. Пример размеченного
изображения
Fig. 3. An example of a labelled
image

Рис. 4. Схема полуавтоматического расширения обучающей
выборки
Fig. 4. Scheme of semi-automatic expansion of the training
sample

Рис. 5. Примеры пар фрагментов и масок из обучающей выборки (белым цветом представлены
березы, серым — осины)
Fig. 5. Examples of pairs of fragments and masks from the training sample (birch trees are
represented in white, aspen trees in gray)
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автоматического расширения обучающей выборки. В результате обучающая выборка
была расширена до 1560 уникальных пар фрагментов.

Для увеличения объема обучающей выборки выполнялась аугментация данных, ко-
торая включала следующие операции:
1) поворот фрагментов на случайно выбранный угол 𝛼 ∈ (0, 180∘);
2) масштабирование на случайный процент от 0 до 10;
3) случайные отображения относительно горизонтальной и вертикальной осей.

В результате всех проведенных операций объем обучающей выборки был увеличен до
17 000 пар. Примеры пар фрагментов и масок из обучающей выборки представлены на
рис. 5.

4. Экспериментальные исследования

Все вычисления проводились на узле кластера ФИЦ ИВТ, который обладает следую-
щими характеристиками: HPE Apollo 6500 G10+, 2×AMD EPYC 7452 (32 ядра по
2.35 ГГц), 1 TБ ОЗУ, 8×Nvidia A100 80 ГБ SXM4.

Для определения оптимальных параметров сверточных нейронных сетей выполнен
ряд экспериментов, в ходе которых модели СНС обучались с разными настройками
мини-пакета (8, 16 и 32) в течение 150 эпох с постепенно понижающейся скоростью
обучения от 10−3 до 10−6. Результаты экспериментальных исследований представле-
ны в таблице. Значения метрик IoU и F-score приведены для трех наборов выборки:
обучающей, валидационной и тестовой. Представленные в таблице вычисления были
произведены на одной видеокарте.

Результаты экспериментальных исследований СНС
Experimental results of CNNs

Архитектура сети IoU F-score Число эпох Время, мин Память, МБ

U-Net
0.919 0.958

57 9.3 68020.845 0.914
0.785 0.871

FPN
0.684 0.811

62 17.1 36040.662 0.789
0.651 0.762

PSPNet
0.816 0.899

85 10.4 25200.794 0.883
0.733 0.829

Linknet
0.921 0.959

73 13.8 45440.816 0.897
0.742 0.821

DeepLabV3
0.932 0.965

88 16.7 48540.851 0.917
0.797 0.889

DeepLabV3+
0.949 0.972

110 20 39040.878 0.932
0.832 0.907

U-Net-M
0.935 0.966

123 30.7 100380.873 0.929
0.828 0.905
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Анализ полученных результатов показывает, что архитектуры U-Net-M
и DeepLabV3+ продемонстрировали лучшее качество семантической сегментации. На
рис. 6 приведены графики зависимости метрики IoU от номера эпохи для архитектур
U-Net-M и DeepLabV3+, пунктирной линией выделены эпохи с наибольшими показа-
телями метрик на валидации.

На рис. 7 представлены примеры результатов семантической сегментации с помо-
щью архитектур U-Net-M и DeepLabV3+. Сравнительный анализ полученных резуль-
татов семантической сегментации показывает, что осиновые и березовые насаждения

а б

Рис. 6. Графики зависимости метрики IoU от номера эпохи для архитектур СНС U-Net-M (а)
и DeepLabV3+ (б )
Fig. 6. Plots of the dependence of IoU metric on epoch number for U-Net-M (а) and
DeepLabV3+ (б ) CNN architectures

а б в г

д е ж з

Рис. 7. Результаты семантической сегментации исходных изображений (а, д) с помощью ар-
хитектур U-Net-M (в, ж) и DeepLabV3+ (г, з) и эталонная карта сегментации (б, е). На
рисунках б –г, е–з белым цветом представлены березы, а серым – осины
Fig. 7. Results of semantic segmentation of the original images (а, д) using U-Net-M (в, ж) and
DeepLabV3+ (г, з) architectures and ground-truth segmentation mask (б, е). In pictures б –г, е–з
birch trees are represented in white, aspen trees in gray
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распознаются практически безошибочно. Наблюдаются небольшие различия в конту-
рах выделяемых объектов, что может быть обусловлено нечеткостью и сложностью их
границ.

Заключение

Рассмотрена проблема автоматизированного дешифрирования осиновых и березовых
древостоев на RGB-изображениях сверхвысокого (около 5 см) пространственного раз-
решения, получаемых с помощью беспилотных летательных аппаратов. Для решения
этой задачи использованы сверточные нейронные сети различных архитектур: U-Net,
DeepLabV3, DeepLabV3+, FPN, LinkNet, PSPNet. Также была предложена архитекту-
ра U-Net-M, являющаяся модификацией U-Net с Inception-блоками. Проведено экспе-
риментальное исследование перечисленных СНС. Для оценки качества результатов сег-
ментации использовались метрики IoU и F-score. Результаты экспериментов показали,
что наилучшее качество семантической сегментации осиновых и березовых древостоев
обеспечивают архитектуры DeepLabV3+ и предложенная U-Net-M.

Результаты работы могут найти практическое применение, например, при опреде-
лении размера арендной платы за лесные участки, используемые для лесозаготовки
древесины.

В дальнейшем на основе этой работы планируется решать задачу подсчета числа
отдельных деревьев на изображениях, полученных с БПЛА.

Благодарности. Исследование выполнено за счет гранта Российского научного фон-
да (проект � 22-17-20012, https://rscf.ru/project/22-17-20012/) при паритетной
финансовой поддержке Правительства Республики Хакасия.
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Abstract

The problem of determining the species composition for forest stands using remote sensing
data has been attracting significant attention for decades. The relevance of this problem is due to
the constant improvement and development of remote sensing tools and technologies including the
intensive spread of unmanned imagery technologies in recent years.

Remote sensing based on small unmanned aerial vehicles (UAVs) is a rapidly developing techno-
logy. Compared to manned aircraft, UAVs are an easy-to-use and low-cost tool for remote sensing of
forests. Survey cameras mounted on UAVs allow data collection even in cloudy conditions. UAVs can
produce flexible temporal resolution and extremely high (up to several centimeters) spatial resolution
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of images, where tree features can be seen at the level of branches and even leaves. Therefore, not
only spectral features but also spatial (textural and geometric) features play a significant role in
tree species recognition in ultra-high spatial resolution images.

Currently, the most effective approach to analyse high spatial resolution aerospace images is to
apply deep learning methods based on convolutional neural networks (CNNs). This is due to the
fact that CNNs are specifically designed to analyse spatial patterns and they don’t require “manual”
extraction of spatial features. Unlike traditional image segmentation and recognition algorithms,
CNNs provide the ability to analyse spectral and spatial features of objects in an image jointly.

The paper investigates the possibility of automatic identification and classification of aspen and
birch stands in RGB images of ultra-high spatial resolution obtained from unmanned aerial vehicles.
To solve the problem of semantic segmentation we compared the performance of convolutional
neural networks based on different architectures: U-Net, FPN, PSPNet, Linknet, DeepLabV3,
DeepLabV3+. The results showed that DeepLabV3+ architecture and modifications of U-Net with
Inception-blocks allow to achieve the best results of semantic segmentation, reaching the highest
values of IoU (∼0.83) and F-score (∼0.91) quality metrics.

Keywords: image processing, drone photography, semantic segmentation, classification, UAV,
identification of tree stands, convolutional neural network.
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