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Работа представляет собой продолжение цикла исследований авторов, посвя-
щенных компактным схемам для численного решения задач нелинейной волокон-
ной оптики. В качестве средства вычислений на неравномерных сетках предложена
двухслойная схема типа предиктор-корректор, построенная по аналогии с хорошо
зарекомендовавшей себя безытерационной схемой, ранее предложенной авторами
для частного случая равномерной сетки. Изменен способ генерации адаптивной
сетки — вместо конструирования управляющей функции по решению разработан
явный способ задания сетки со сгущением в зонах больших градиентов, опираю-
щийся на базовое преобразование Бахвалова. Приведены результаты численных
экспериментов, выполненных на модельных задачах с известными точными реше-
ниями.
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1. Постановка задачи

Рассмотрим краевую задачу для уравнения Гинзбурга –Ландау (см., например, [1, 2]).
В нелинейной оптике оно обычно используется в форме

𝑖
𝜕𝑈

𝜕𝑡
+

𝐷

2

𝜕2𝑈

𝜕𝑥2
+ |𝑈 |2𝑈 = 𝑖𝛿𝑈 + 𝑖𝜅|𝑈 |2𝑈 + 𝑖𝛽

𝜕2𝑈

𝜕𝑥2
+ (𝑖𝜇− 𝜈)|𝑈 |4𝑈, (1)

где 𝑖 — мнимая единица; 𝑈 — комплексный потенциал, зависящий от эволюционной
переменной 𝑡 (нормированной длины распространения) и “медленного” времени 𝑥; ко-
эффициент 𝐷 = ±1 определяет тип дисперсии (нормальной или аномальной), а пара-
метры 𝛿, 𝜅, 𝛽 ≥ 0, 𝜇, 𝜈 в правой части вещественны. В частном случае, когда все они
равны нулю, уравнение (1) превращается в нелинейное уравнение Шрёдингера.

Уравнение (1) моделирует процессы, происходящие в различных оптических
устройствах (см., например, [3, 4]). Типичные решения таких уравнений имеют слои
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в виде волн и солитонов на фоне обширных зон с небольшой вариацией решения.
Ввиду наличия чрезвычайно узких слоев шаг равномерной сетки необходимо
задавать достаточно малым с целью удовлетворительной аппроксимации мелкомас-
штабных элементов решения. Эффективным способом экономии вычислительных
ресурсов служит повышение порядка точности схем [5–9], позволяющих получать
результаты более качественные в сравнении со схемами второго порядка типа
Кранка –Николсон [10–12]. Однако даже четвертый порядок точности не представ-
ляется достаточным для кардинального решения проблемы, а применение схем еще
более высоких порядков сопряжено с расширением шаблонов схем за пределы тради-
ционных трехточечных [13–15] и, следовательно, с весьма существенным усложнением
алгоритмов.

Проблема заключается в использовании равномерных сеток, не являющихся
оптимальными для задач со слоями, поскольку ограничения на размер шага в силу
его постоянства приходится соблюдать тотально во всей области решения. Более
подходят для таких задач адаптивные сетки, сгущающиеся лишь в зонах больших
градиентов. В работе [8] адаптивная технология применялась к нелинейным задачам
для уравнения теплопроводности и уравнения Шрёдингера в сочетании с компактной
высокоточной схемой на сетке, перестраиваемой на каждом шаге с помощью
управляющей функции, формируемой по вычисленному решению. Применение этой
в целом удовлетворительной методики, которая считается более универсальной, чем ал-
гебраический способ, все же омрачалось нежелательным укрупнением шага
сетки в окрестности вершин и у основания солитонов, т. е. в областях большой
кривизны графиков решения в этих зонах. Для исправления ситуации на каждом
шаге дополнительно приходилось корректировать управляющую функцию с целью
сгущения сетки именно в окрестности экстремумов второй производной.
Корректировка осуществлялась путем решения специальной одномерной краевой
задачи. С учетом сказанного ясно, что генерация сетки по явным формулам значи-
тельно менее затратна.

Схема в [8] применялась трехслойная, для нее на старте вычислений требовалось
задавать решение на двух начальных слоях, тогда как краевая задача предполагает
задание лишь одного начального данного. Кроме того, для ее применения предвари-
тельно требовалось достаточно точно интерполировать решения на новую сетку сра-
зу на двух предыдущих слоях. Линейная интерполяция (идеальная по устойчивости)
не годилась для компактной схемы, поэтому применялась лагранжева интерполяция
3–4-го порядков точности, которая требовала использования достаточно мелкого шага
или внимательного контроля устойчивости при умеренных шагах.

В настоящей работе применяются усовершенствованная схема и явный способ
генерации сетки. Вместо трехслойной схемы [8] применяется двухслойная, а ее
безытерационность достигается путем применения технологии предиктор-коррек-
тор [16], когда приближение к решению, полученное явно на промежуточном
шаге предиктора, на шаге корректора используется в правой части, ликвидируя
тем самым нелинейность схемы. Глобальное координатное преобразование,
генерирующее сетку, строится на основе модификации [17] классического базового
преобразования Бахвалова [18], предназначенной для схем произвольного порядка
точности. Это позволяет на каждом шаге задавать координаты узлов сетки по яв-
ным формулам вместо более емкого по числу операций способа генерации сетки по
управляющей функции.
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2. Специальная сетка

Преобразование Бахвалова [18] имеет вид

𝑥 = 𝐵(𝜉) = −𝜀

𝑎
ln

(︂
1− 𝜉

𝑞

)︂
, 0 ≤ 𝜉 ≤ 𝜉0, (2)

где 𝜀 — малый параметр, 𝑞 и 𝑎 — константы преобразования. Обратное преобразование
моделирует поведение решения в экспоненциальном пограничном слое в окрестности
нуля (0, 𝑥0), 𝑥0 = 𝑥(𝜉0).

При 𝜉 > 𝜉0 преобразование (2) стандартным образом продолжается гладко полино-
мом, построенным по формуле Тейлора функции 𝐵(𝑥) в окрестности 𝜉0 с некоторым
остаточным членом. Например, это может быть продолжение класса гладкости 𝐶2 вида

𝐵(𝜉) = 𝐵(𝜉0) +𝐵′(𝜉0)(𝜉 − 𝜉0) +
𝐵′′(𝜉0)

2
(𝜉 − 𝜉0)

2 + 0(𝜉 − 𝜉0)
3, 𝜉 > 𝜉0, (3)

где 𝑐0 — мало значимая константа (равная единице). В настоящее время известно много
различных составных преобразований, аналогичных (2), (3), используемых в задачах с
малым параметром для сгущения сетки в слоях.

Координатное преобразование (2) было предназначено для построения специальных
сеток, ориентированных на применение простейших схем первого, а при отсутствии
конвективных членов и второго порядка точности. Для методов высоких порядков точ-
ности более подходящим является модифицированное преобразование [17], в котором
постоянная 𝑞 заменена функцией малого параметра 𝑞 = 𝜉0/(1 − 𝜀1/𝑛), где 𝑛 — такое
число, что для моделируемого решения все производные до порядка 𝑛 по новой пере-
менной 𝜉 равномерно ограничены в слое по 𝜀1/𝑛. Модифицированное преобразование,
таким образом, имеет вид

𝐵(𝜉) = −𝜀

𝑎
ln

(︂
1− (1− 𝜀1/𝑛)

𝜉

𝜉0

)︂
, 0 ≤ 𝜉 ≤ 𝜉0. (4)

Именно оно (с продолжением класса гладкости 𝐶2) использовалось в данной работе. Па-
раметр 𝜉0 при равномерной по 𝜉 сетке означает долю числа шагов, попадающих в левую
ветвь базового преобразования, т. е. в слой, остальные шаги генерируемой сетки лежат
в области полиномиального продолжения. Всюду в расчетах 𝜉0 = 1/2, 𝑎 = 2, а число 𝑛
соответствовало порядку производной в остаточном члене погрешности аппроксимации
схемы.

В случае внутреннего слоя, каковым является солитон, необходимо продолжить
функцию нечетным образом на отрицательную область переменной 𝜉. В результате
функция 𝑥 = 𝐵(𝜉) становится определенной всюду, имеет гладкость 𝐶2, причем𝐵(0)=0,
и любая сетка на оси 𝜉 отображается в сетку с двусторонним сгущением в окрестности
𝑥 = 0. Мера сгущения зависит от величины малого параметра 𝜀.

В течениях вязкой жидкости естественным малым параметром является коэффи-
циент вязкости 𝜀 = 1/Re, а в задачах нелинейной волоконной оптики малый параметр
в уравнение явно не входит, но может быть определен как 𝜀 = 1/𝐿 при переходе к без-
размерной переменной 𝑥′ = 𝑥/𝐿. Например, модуль решения для фундаментального
солитона тогда запишется в виде |𝑈 | = sech(𝑥′/𝜀), откуда видно, что слой является
экспоненциальным.
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В случае, когда требуется сгустить сетку в окрестности единственной точки 𝑥1 из
промежутка −𝐿 < 𝑥 < 𝐿, строится отображение вида

𝑥 = 𝜑(𝜉) = 𝑥1 +𝑚(𝜉)𝐵(𝜉 − 𝜉1), 𝑚(𝜉) = 𝑎+ 𝑏(𝜉 − 𝜉1), 𝜉1 = 𝑥1/𝐿, (5)

в котором коэффициенты линейного множителя 𝑚(𝜉) однозначно определяются из
требований, чтобы отрезок (−1 < 𝜉 < 1) отобразился бы функцией 𝜑(𝜉) на отре-
зок −𝐿 < 𝑥 < 𝐿. При этом точка 𝜉1 = 𝑥1/𝐿 ∈ (−1, 1) отображается в 𝑥1, и лю-
бая сетка на отрезке −1 ≤ 𝜉 ≤ 1 генерирует сетку на −𝐿 ≤ 𝑥 ≤ 𝐿, сгущающую-
ся с обеих сторон в окрестности 𝑥1. Геометрически это представляется как перенос
графика преобразования (3), (4) из точки (0, 0) в точку (𝜉1, 𝑥1) с предварительным
сжатием (или растяжением) его по 𝑥 c помощью однозначно определяемого линейного
множителя 𝑚(𝜉). Как вариант рассматривался также квадратичный множитель вида
𝑚(𝜉) = 1 + 𝑎(𝜉 − 𝜉1) + 𝑏(𝜉 − 𝜉1)

2, равный единице в точке сгущения, а на границах
удовлетворяющий условиям 𝜑(±1) = ±𝐿. В обоих случаях сформулированными усло-
виями коэффициенты 𝑎, 𝑏 определяются однозначно и построенное глобальное отобра-
жение проецирует равномерную сетку по 𝜉 в специальную сетку по 𝑥 с двухсторонним
сгущением в окрестности 𝑥1.

Если на отрезке −𝐿 < 𝑥 < 𝐿 имеется несколько (упорядоченных в естественном
порядке) точек 𝑥𝑗 (𝑗 = 1, . . . ,𝑚), где требуется локальное сгущение сетки, то сначала
им назначаются прообразы 𝜉𝑗 = 𝑥𝑗/𝐿 (𝑗 = 1, . . . ,𝑚) и в окрестности каждой точки
(𝜉𝑗, 𝑥𝑗) строится аналогичное (5) локальное двустороннее отображение так, чтобы об-
разом точки 𝜉𝑗 была бы точка 𝑥𝑗, встречные ветви соседних локальных отображений
с номерами 𝑗 и 𝑗 + 1 гладко склеивались бы в серединах между точками сгущения 𝜉𝑗
и 𝜉𝑗+1, а крайние ветви подтягивались бы к значениям ±𝐿 при 𝜉 = ±1 соответственно.
В результате получается гладкое глобальное отображение, генерирующее специальную
сетку со сгущением во всех заданных точках.

3. Компактная разностная схема на неравномерной сетке

Зафиксируем произвольно узел неравномерной сетки по переменной 𝑥 и обозначим че-
рез ℎ+ и ℎ− локальные значения шагов сетки справа и слева от этого узла, а через ∆+

и ∆− — соответствующие простейшие разделенные разности “вперед” и “назад”. Введем
также обозначения для разности, суммы и произведения соседних шагов ℎ+ и ℎ−:

𝑑 = ℎ+ − ℎ−, 𝑠 = ℎ+ + ℎ−, 𝑝 = ℎ+ℎ−.

Для разностных операторов

∆ =
ℎ−∆+ + ℎ+∆−

𝑠
, Λ =

∆+ −∆−

𝑠/2
,

аппроксимирующих операторы одно- и двукратного дифференцирования, справедливы
разложения

∆𝑤 =
𝜕𝑤

𝜕𝑥
+

𝑝

6

𝜕3𝑤

𝜕𝑥3
+𝑂(ℎ4), Λ𝑤 =

𝜕2𝑤

𝜕𝑥2
+

𝑑

3

𝜕3𝑤

𝜕𝑥3
+

𝑝

12

𝜕4𝑤

𝜕43
+𝑂(ℎ4).

Если при этом сетка квазиравномерна [19] (т. е. является образом равномерной при
гладком координатном преобразовании отрезка в отрезок), то для нее разность соседних
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шагов 𝑑 = 𝑂(ℎ2), поэтому Λ аппроксимирует двойное дифференцирование не с первым
порядком (как на произвольной неравномерной сетке), а со вторым.

Умножив уравнение (1) на −𝑖, приведем его к виду

𝜕𝑈

𝜕𝑡
=

𝜕2𝑈

𝜕𝑥2
+ 𝑓(𝑈),

где в случае уравнения Гинзбурга –Ландау

𝑐 = 𝛽 +
𝐷

2
𝑖, 𝑓(𝑈) = 𝛿𝑈 + (𝜅+ 𝑖)|𝑈 |2𝑈 + (𝜇+ 𝜈𝑖)|𝑈 |4𝑈,

а в случае уравнения Шрёдингера

𝑐 =
𝐷

2
𝑖, 𝑓(𝑈) = 𝑖|𝑈 |2𝑈.

Двухслойная схема, аппроксимирующая уравнение (3) с погрешностью 𝑂(𝜏 2 + ℎ4), яв-
ляется обобщением схемы Микеладзе [20] на случай квазиравномерной сетки и имеет
вид (см. [8]):

Σ
𝑈𝑛+1 − 𝑈𝑛

𝜏
= Λ

𝑈𝑛+1 + 𝑈𝑛

2
+ Σ

𝑓𝑛+1 + 𝑓𝑛

2
, Σ = 𝐸 +

𝑑

3
∆ +

𝑝

12
Λ. (6)

Эта схема имеет нелинейность на верхнем шаге 𝑓𝑛+1 = 𝑓(𝑈𝑛+1) относительно искомой
функции. В работе [8] безытерационная схема построена из схемы (6) путем записи ее
по слоям с номерами 𝑛 − 1 и 𝑛 + 1 с удвоенным шагом 2𝜏 и одновременной заменой
полусуммы правой части с точностью 𝑂(𝜏 2) значением 𝑓𝑛 на среднем слое. В резуль-
тате получается трехслойная схема, не требующая итераций. Однако ее недостатком
является то обстоятельство, что начальное условие в краевой задаче ставится лишь
на нулевом слое, а для старта вычислений требуется знать решение также и на первом
слое. Более предпочтительным представляется иной подход, основанный на технологии
предиктор-корректор.

На основе разложения

𝑈(𝑡+ 𝜏) = 𝑈(𝑡) + 𝜏
𝜕𝑈

𝜕𝑡
(𝑡) +𝑂(𝜏 2) = 𝑈(𝑡) + 𝜏

(︂
𝑐
𝜕2𝑈

𝜕𝑥2
(𝑡) + 𝑓(𝑈(𝑡))

)︂
+𝑂(𝜏 2)

построим предиктор ̃︀𝑈 = 𝑈𝑛 + 𝜏(𝑐Λ𝑈𝑛 + 𝑓𝑛),

явно вычисляющий предварительное значение 𝑈𝑛+1 с погрешностью 𝑂(𝜏 2 + ℎ4).
Представим правую часть в схеме (6) с точностью до членов 𝑂(𝜏 2 + ℎ4) в виде

Σ
𝑓𝑛+1 + 𝑓𝑛

2
≃ Σ𝑓𝑛 +

𝜏

2

𝑓𝑛+1 − 𝑓𝑛

𝜏
,

а затем заменим 𝑓𝑛+1 = 𝑓(𝑈𝑛+1) ↦→ 𝑓(̃︀𝑈) с той же точностью. В результате получим
неявный шаг корректор без нелинейности:

Σ
𝑈𝑛+1 − 𝑈𝑛

𝜏
= Λ

𝑈𝑛+1 + 𝑈𝑛

2
+ Σ𝑓𝑛 +

𝜏

2

𝑓(̃︀𝑈)− 𝑓𝑛

𝜏
.

Если заменить разностный оператор Σ тождественным оператором 𝐸, то порядок
погрешности по пространственной переменной понизится до второго и результатом бу-
дет схема типа предиктор-корректор на неравномерной сетке, аналогичная схеме Кран-
ка –Николсон.
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4. Результаты численных экспериментов

В качестве первого теста решена задача для уравнения Шрёдингера в области
(−𝐿 < 𝑥 < 𝐿)× (0 < 𝑡 < 10), имеющая точное решение в виде солитона

𝑈(𝑥, 𝑡) = exp (−𝑖𝑡/2)sech 𝑥.

Варианты расчетов отличались размерами отрезка 𝐿 = 10, 100, 1000 (иначе говоря,
значениями малого параметра 𝜀 = 1/𝐿 = 0.1, 0.01, 0.001), порядком точности схемы
и типом сетки — равномерной и адаптивной, построенной по описанной выше техноло-
гии.

В табл. 1–3 приведены ошибки модуля решения в C-норме на последовательности
сгущающихся сеток (𝑁 — число шагов) при трех указанных значениях малого пара-
метра 𝜀 = 1/𝐿. При 𝐿 = 10 ширина солитона в сравнении шириной области не слишком
мала, следовательно, градиенты решения обезразмеренной задачи в слое умеренные,
именно поэтому адаптивная сетка практически не имеет преимущества перед равно-
мерной (см. табл. 1). При увеличении 𝐿 преимущество адаптивной сетки проявляется
все заметнее, так как упомянутые градиенты возрастают в 10 раз (см. табл. 2) и 100 раз
(см. табл. 3) соответственно. Результаты свидетельствуют также о том, что реальная
ошибка много меньше при высоком порядке точности.

Точное решение уравнения Шрёдингера во второй задаче представляет собой взаи-
модействие двух солитонов [5, 10], движущихся навстречу друг другу:

𝑈(𝑥, 𝑡) = sech (𝑤+) exp (𝑖𝑣+) + sech (𝑤−) exp (−𝑖𝑣−), (7)
где

𝑤± = 𝑤±(𝑥, 𝑡) = 𝑥± (10− 4𝑡), 𝑣± = 𝑣±(𝑥, 𝑡) = 2𝑥± (20− 3𝑡).

В начале процесса (отсчет ведется от 𝑡0 = 0.5) центры солитонов занимают положение
𝑥1 = −8, 𝑥2 = 8.

На рис. 1 представлены результаты численного решения этой задачи (при значении
параметра 𝐿 = 10) до сближения солитонов (рис. 1, а), в момент их встречи в точке
𝑥 = 0 (рис. 1, б ) и после расхождения (рис. 1, в). Сетка намеренно выбрана достаточно
грубой (𝑁 = 80), чтобы численные решения визуально не сливались с точным и мар-
керы разных результатов различались.

До встречи солитонов (рис. 1, а) решение реально выглядит гладким, в этом случае
удовлетворительная точность расчета соответствует гладкости. В точке встречи соли-
тонов (рис. 1, б ) имеет место наибольший хаос: проявляется интерференция с возник-
новением нескольких взаимодействующих пиков, сосредоточенных вблизи нуля, и хотя

Т а б л и ц а 1. С-норма ошибки, полученная
при 𝐿 = 10
Table 1. C-norm of error obtained when 𝐿 = 10

𝑁
Схема 𝑂(ℎ2) Схема 𝑂(ℎ4)

Равно-
мерная

Адап-
тивная

Равно-
мерная

Адап-
тивная

20 2.247e−00 1.023e−00 1.588e−00 3.084e−01
40 3.126e−01 2.306e−01 1.918e−02 1.227e−02
80 6.443e−02 5.811e−02 1.071e−03 7.454e−04
160 1.561e−02 1.453e−02 1.821e−04 1.834e−04

Т а б л и ц а 2. С-норма ошибки, полученная
при 𝐿 = 100
Table 2. C-norm of error obtained when 𝐿 = 100

𝑁
Схема 𝑂(ℎ2) Схема 𝑂(ℎ4)

Равно-
мерная

Адап-
тивная

Равно-
мерная

Адап-
тивная

100 2.094e−00 8.685e−01 2.074e−00 1.734e−01
200 2.275e−00 1.914e−01 1.286e−00 1.041e−02
400 3.046e−01 2.088e−02 1.610e−02 6.529e−04
800 6.497e−02 1.165e−02 9.006e−04 4.087e−05
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Т а б л и ц а 3. С-норма ошибки, полученная при 𝐿 = 1000
Table 3. C-norm of error obtained when 𝐿 = 1000

𝑁
Схема 𝑂(ℎ2) Схема 𝑂(ℎ4)

Равномерная Адаптивная Равномерная Адаптивная

1000 8.582e−01 5.901e−02 8.183e−01 5.173e−03
2000 6.754e−01 1.480e−02 5.583e−01 3.142e−04
4000 5.047e−01 3.670e−03 1.957e−01 1.967e−05

а

abs(𝑈), 𝑡 = 1.5, 𝑁 = 80 real(𝑈) imag(𝑈)

б

abs(𝑈), 𝑡 = 2.5, 𝑁 = 80 real(𝑈) imag(𝑈)

в

abs(𝑈), 𝑡 = 4, 𝑁 = 80 real(𝑈) imag(𝑈)

Рис. 1. Численные решения при 𝑡 = 1.5 (а), 𝑡 = 2.5 (б ) и 𝑡 = 4 (в), полученные по схемам
𝑂(𝜏2 + ℎ2) и 𝑂(𝜏2 + ℎ4)
Fig. 1. Numerical solutions at 𝑡 = 1.5 (а), 𝑡 = 2.5 (б ) and 𝑡 = 4 (в) obtained by 𝑂(𝜏2 + ℎ2) and
𝑂(𝜏2 + ℎ4) schemes
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точное решение согласно (7) остается формально гладким, градиенты на пиках все же
довольно велики. Поэтому возникают значительные локальные ошибки (это особенно
заметно на графике мнимой части решения), аналогичные ошибкам в задачах газовой
динамики в области ударных переходов. После прохождения солитонов друг через дру-
га (рис. 1, в) решение снова становится более плавным, качественно близким к точному,
но возникает слабое различие в скорости перемещения пиков приближенного решения
и точного.

Заметим, что ввиду особенностей спектра схем пики модуля численного решения по
схеме типа Кранка –Николсон несколько отстают от точного местоположения солитона,
а по компактной схеме, напротив, несколько опережают его. Заметим, что аналогич-
ное отклонение от истинной скорости движения волны известно в газовой динамике.
Малые ошибки в скорости перемещения пиков ввиду чрезвычайно малой ширины со-
литона являются причиной, не позволяющей эффективно оценивать точность расчетов
в С-норме ни по одной схеме, ни по другой, так как небольшое смещение решения по
оси абсцисс влечет заметную локальную ошибку по ординате. Однако до сближения
солитонов ошибка в положении пиков незначительна. В табл. 4 приведены результаты
на момент 𝑡 = 1.5, соответствующий решению, изображенному на рис. 1, а.

Попытки использования равномерной сетки для решения задачи с двумя солито-
нами при 𝐿 = 10 показали, что при числе узлов 𝑁 = 640 (т. е. на сетке с таким же
числом узлов, как в результативных расчетах на адаптивной сетке) численные реше-
ния как по схеме Кранка –Николсон, так и по компактной схеме оказались совершен-
но неудовлетворительными. Качественное совпадение численного решения компактной
схемы с точным решением на равномерной сетке достигалось лишь с 𝑁 = 2560. Это
свидетельствует о том, что в сложных задачах, в частности в задачах со взаимным
проникновением движущихся слоев, формальное повышение порядка точности схемы
является менее значимым фактором эффективности метода, чем использование разум-
но построенных сеток.

На рис. 2 представлена динамика изменения специальной сетки (𝑁 = 80) в задаче
с двумя солитонами. В горизонтальных сечениях при различных значениях эволюцион-
ной переменной 𝑡 изображены узлы сетки и положение центров солитонов. Из рисунка
заметна некоторая асимметрия в характере сгущения сетки слева и справа от вершин
солитонов. Очевидно, что выбранный способ склейки четырех базовых преобразований
(от двух вершин солитона влево и вправо) оказался не самым идеальным: функции-
множители при базовых преобразованиях, используемые для построения глобального
гладкого отображения, различны на разных склонах солитонов при различных расстоя-
ниях от центра солитона до ближайшей границы и до середины области. Эти расстояния
оказываются равными лишь при 𝑡 = 1.25 и при 𝑡 = 3.75, когда асимметрия исчезает.

Т а б л и ц а 4. С-норма ошибки при 𝑡 = 1.5 для двух схем
Table 4. C-norm of error obtained at 𝑡 = 1.5 for two schemes

𝑁
Линейная интерполяция Кубическая интерполяция Сплайновая интерполяция
𝑂(ℎ2) 𝑂(ℎ4) 𝑂(ℎ2) 𝑂(ℎ4) 𝑂(ℎ2) 𝑂(ℎ4)

80 3.453e−01 3.568e−01 4.854e−02 5.246e−02 4.250e−02 1.040e−02
160 2.475e−01 2.510e−01 1.327e−02 2.056e−02 9.293e−03 9.099e−04
320 1.492e−01 1.501e−01 5.384e−03 7.181e−03 2.462e−03 3.665e−04
640 8.234e−02 8.256e−02 1.796e−03 2.273e−03 8.479e−04 7.350e−05
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Рис. 2. Изменение адаптивной сетки в процессе счета
Fig. 2. Evolution of the adaptive grid during the computation process

Расчеты проводились на сетке в физических координатах. На сетке 𝑛-го слоя по
схеме находилось решение на следующий момент эволюционной переменной. Оно ин-
терполировалось на сетку слоя с номером (𝑛 + 1). При этом испытывались различные
способы интерполяции решения — линейная, кусочно-кубическая, сохраняющая фор-
му геометрии кривой, и кубическая сплайновая. Численные результаты существенно
зависели от способа интерполяции. В табл. 4 приведены результаты сравнения С-норм
ошибок решения, полученного в момент 𝑡 = 1.5 на сгущающихся адаптивных сетках
при различных интерполяционных процедурах. Из таблицы видно, что использование
линейной интерполяции практически сводит на нет преимущество компактной схемы,
и, наоборот, сплайновая интерполяция оказалась полезной не только для компактной
схемы, но также и для схемы второго порядка точности.
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Abstract

The paper is a further development of the authors’ research cycle on high-precision difference
methods for numerical solution of nonlinear fiber optics problems (for the Schrödinger equation
and the Ginzburg –Landau equation). A two-layer predictor-corrector type scheme is chosen as the
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apparatus for computations on non-uniform meshes, which is constructed by analogy with the well-
proven noniterative scheme previously proposed by the authors for the special case of a uniform
grid. In contrast to the frequently used three-layer scheme, which requires setting initial conditions
on the first two layers on the evolutionary variable, the two-layer technique has no problems when
a computation is started.

Instead of the frequently used method of adaptive mesh generation relying on the construction of
a control function based on a dynamically varying solution, an explicit method of setting the denser
mesh in the zones of large gradients, based on the classical basic Bakhvalov transformation and on
the knowledge of soliton locations, is applied. The global coordinate transformation is constructed by
smooth conjugation of elementary basic transformations. It allows saving computational resources
and avoiding undesirable larger grid step near extrema of the second derivative of the solution, for
example, near the soliton peak or base.

On two test problems the comparison of schemes of the fourth and second order of accuracy on
constructed special grids and on uniform grids with the same number of steps is carried out. The
order of accuracy of the schemes at moderate gradients of the solution is numerically confirmed. It
is shown that at large gradients a reasonably constructed adaptive grid is a more important factor
of computational efficiency than the order of accuracy of the schemes.
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adaptive grid, nonlinear fiber optics.

Citation: Paasonen V.I., Fedoruk M.P. On application of special adaptive grids in
problems of nonlinear fiber optics. Computational Technologies. 2024; 29(5):43–54.
DOI:10.25743/ICT.2024.29.5.005. (In Russ.)

Acknowledgements. The research was funded by the Russian Science Foundation (project
No. 20-11-20040, https://rscf.ru/project/20-11-20040/).

References

1. Akhmediev N.N., Afanasiev V.V. Singularities and special soliton solutions of the cubicquintic
complex Ginsburg –Landau equation. Physical Review E. 1996; 53(1):1190–1201.

2. Kivshar Yu.S., Agraval G.P. Opticheskie solitony. Ot volokonnykh svetovodov k fotonnym kristal-
lam [Optical solitons. From fiber light guides to photon crystals]. Moscow: Fismatlit; 2005: 647.
(In Russ.)

3. Agrawal G.P. Nonlinear fiber optics. N.Y.: Academie Press; 2001: 446.
4. Agrawal G.P. Aplications of nonlinear fiber optics. N.Y.: Academie press; 2001: 458.
5. Xie S.-S., Li G.-X., Yi S. Compact finite difference schemes with high accuracy for one-dimensional

nonlinear Schrödinger equation. Computer Methods in Applied Mechanics and Engineering. 2009;
(198):1052–1061.

6. Paasonen V.I., Fedoruk M.P. A compact dissipative scheme for nonlinear Schrödinger equation.
Computational Technologies. 2011; 16(6):68–73. (In Russ.)

7. Paasonen V.I., Fedoruk M.P. A compact noniterative scheme with artificial dissipation for nonline-
ar Schrödinger equation. Computational Technologies. 2012; 17(3):83–90.

8. Paasonen V.I. Compact third-order accuracy schemes on non-uniform adaptive grids. Computational
Technologies. 2015; 20(2):56–64.

9. Paasonen V.I., Fedoruk M.P. Three-level non-iterative high accuracy scheme for Ginzburg –
Landau equation. Computational Technologies. 2015; 20(3):46–57.

10. Chang Q., Jia E., Sun W. Difference schemes for solving the generalized nonlinear Schroödinger
equation. Journal of Computational Physics. 1999; (48):397–415.

11. Xu Q.B., Chang Q.S. Difference methods for computing the Ginzburg –Landau equation in two
dimensions. Numerical Methods Partial Differential Equation. 2011; (27):507–528.

12. Wang T.C., Guo B.L. Analysis of some finite difference schemes for two dimensional Ginzburg –
Landau equation. Numerical Methods Partial Differential Equation. 2011; (27):1340–1363.

13. Wang T. Convergence of an eighth-order compact difference schemes for the nonleniar Shrödinger
equation. Advances in Numerical Analysis. 2012; Art.ID 913429.:24.

https://rscf.ru/project/20-11-20040/


54 В.И. Паасонен, М.П. Федорук

14. Paasonen V.I. Classification of difference schemes of maximum possible accuracy on extended
symmetric stencils for the Schrödinger equation and the heat conduction equation. Numerical Analysis
and Applications. 2020; 13(1):82–94. DOI:10.1134/S1995423920010073. Available at: https://

www.researchgate.net/publication/339518138_Classification_of_Difference_Schemes_of_

Maximum_Possible_Accuracy_on_Extended_Symmetric_Stencils_for_the_Schrodinger_

Equation_and_the_Heat_Conduction_Equation.
15. Paasonen V.I., Fedoruk M.P.On the efficiency of high-order difference schemes for the Schröedinger
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