
Вычислительные технологии, 2024, том 29, � 4, с. 95–109.© ФИЦ ИВТ, 2024 ISSN 1560-7534

Computational Technologies, 2024, vol. 29, no. 4, pp. 95–109. © FRC ICT, 2024 eISSN 2313-691X

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ

DOI:10.25743/ICT.2024.29.4.007

Тестирование операций графической обработки

с эмуляцией графических ускорителей

А.М. Гиацинтов*, К.А. Мамросенко

Федеральный научный центр Научно-исследовательский институт системных исследований
РАН, 117218, Москва, Россия
*Контактный автор: Гиацинтов Александр Михайлович, e-mail: giatsintov@niisi.ras.ru

Поступила 20 октября 2023 г., доработана 13 ноября 2023 г., принята в печать 20 ноября 2023 г.

Важными аспектами работы с графическими операциями являются достиже-
ние корректности выполнения операций и отладка подсистем и драйверов, связан-
ных с отображением графической информации. В статье представлена архитекту-
ра эмулятора графического ускорителя, предназначенного для диагностики и по-
следующего исправления сложно выявляемых ошибок в компонентах графической
подсистемы. В отличие от известных решений, в архитектуре предусматривает-
ся возможность применения программного обеспечения как в составе эмуляторов
аппаратного обеспечения системы в целом типа QEMU, так и в виде присоеди-
няемой библиотеки к драйверу графического ускорителя. Применение эмулятора
позволило обнаружить некоторые ошибки, которые на реальной аппаратуре имели
характер “плавающих” и были тяжело воспроизводимы.

Ключевые слова: визуализация, графическая система, рендеринг, операционная
система, эмуляция, QEMU.

Цитирование: Гиацинтов А.М., Мамросенко К.А. Тестирование операций гра-
фической обработки с эмуляцией графических ускорителей. Вычислительные тех-
нологии. 2024; 29(4):95–109. DOI:10.25743/ICT.2024.29.4.007.

Введение

Сегодня все большее число задач требует использования аппаратных ускорителей для
уменьшения времени, необходимого для вычислений, а также для отображения резуль-
татов вычислений. Одним из значимых направлений является обработка графической
информации на встраиваемых системах, используемых в авиационной, автомобильной
и других отраслях промышленности. В качестве операционной системы во встраивае-
мых системах стал активно применяться Linux, например в автомобилях. Однако су-
ществует ряд встраиваемых систем, для которых важно своевременно реагировать на
возникающие события. Как правило, для таких целей используются операционные сис-
темы реального времени (ОСРВ). В настоящей статье рассматривается отечественная
ОСРВ [1], которая базируется на следующих общих принципах:

– использование стандартов;
– мобильность;
– развитие средств протоколирования диагностики и обработки ошибок;
– гибкие средства планирования;
– использование объектно-ориентированного подхода;
– управляемость (в частности, наличие средств конфигурирования);

95



96 А.М. Гиацинтов, К.А. Мамросенко

– наличие кросс-средств разработки и отладки пользовательских приложений;
– значительное число пакетов окружения для создания графических приложений,
баз данных, картографических систем.

При разработке этой операционной системы использованы международные стандар-
ты и спецификации:

– стандарт C, описывающий язык и библиотеки языка C;
– стандарт POSIX 1003.1 на мобильные операционные системы (программный ин-
терфейс) [2];

– спецификация ARINC 653 [3], определяющая интерфейс APEX (application execu-
tive) между операционной системой целевого модуля и прикладными програм-
мами [4].

Важными аспектами работы с графическими операциями являются достижение кор-
ректности их выполнения и отладка подсистем и драйверов отображения графической
информации. Учитывая, что целевая операционная система предназначена для работы
на процессорах, архитектура которых отличается от x86-64, запуск тестовых программ
становится затруднительным. Один из способов отладки — запуск целевой операцион-
ной системы и тестовых программ на программном эмуляторе системы на кристалле
(SoC). Однако для корректной работы таких компонентов, как драйверы графического
ускорителя, требуется программная эмуляция GPU, которая не реализована в большин-
стве доступных программных эмуляторов.

Известно несколько программных эмуляторов, позволяющих моделировать абст-
рактный или определенный GPU. К ним можно отнести эмулятор gem5-gpu, создан-
ный на базе gem5, который может эмулировать некоторые видеокарты NVIDIA с архи-
тектурой Fermi и Maxwell. Необходимо упомянуть эмулятор Attila, который модели-
рует виртуальный GPU с поддержкой OpenGL и DirectX 9, а также предоставля-
ет программный стек, включающий реализации OpenGL и DirectX. Эмулятор Attila
позволяет сохранять статистику использования памяти, время выполнения функций
реализации OpenGL и другие параметры. К сожалению, оба эмулятора более не разви-
ваются.

В рамках этой статьи авторы пытаются ответить на вопрос, какие методы отлад-
ки графических операций можно применить при использовании операционных систем
реального времени, а также какими функциональными характеристиками должен обла-
дать эмулятор графического ускорителя, используемый при диагностике и исправлении
сложно выявляемых ошибок в компонентах графической подсистемы.

Новизна работы заключается в следующем: разработана архитектура эмулятора
графического процессора. В отличие от известных решений, в ней предусмотрена воз-
можность применения программного обеспечения (ПО) как в составе эмуляторов ап-
паратного обеспечения системы в целом типа QEMU [5], так и в виде присоединяемой
библиотеки к драйверу графического ускорителя. Для повышения производительности
в архитектуре предложено использование аллокаторов памяти.

Приведен обзор смежных работ по графическим технологиям в операционных сис-
темах и эмуляторах. В разд. 2 дано описание разработанной архитектуры графической
системы. В разд. 3 рассмотрены вопросы отладки графической подсистемы и операций
прорисовки. Раздел 4 посвящен методам разработки эмулятора графического ускори-
теля, применяемого для отладки драйверов и подсистем операционной системы без
использования реального аппаратного обеспечения. Результаты практической оценки
и применения эмулятора представлены в разд. 5.



Тестирование операций графической обработки. . . 97

1. Анализ предшествующих работ

Использованию встроенных решений для обработки графической информации посвя-
щен ряд статей. В работе [6] описано создание приборной панели самолета на основе
операционной системы VxWorks и генератора интерфейсов Tilcon. Работа [7] посвящена
созданию приборов с использованием ОСРВ, однако при этом не задействуются GPU,
а все вычисления выполняются на CPU. В работе [8] описан подход к созданию прибо-
ров с использованием встраиваемых систем и стандартов ARINC 661 и OpenVG. В ста-
тье [9] приведено влияние различных факторов на производительность визуализации
авиационных приборов при использовании графических API OpenGL ES и OpenGL SC.

Эмуляции встраиваемых систем и их отдельных компонентов, таких как графичес-
кие чипы, также посвящено значительное количество работ. В статьях [10, 11] описан
эмулятор GPU в контексте работы с API NVIDIA CUDA, однако в них рассмотре-
ны вопросы только общих вычислений на GPU и не затронуты вопросы выполнения
графических операций. Исследование [12] посвящено разработке нового GPU, а также
использованию существующих эмуляторов GPU при создании нового устройства. Эму-
ляция процессора с архитектурой MIPS64 Octeon с использованием эмулятора с откры-
тым исходным кодом QEMU описана в статье [13], однако в ней нет сведений о работе
с графикой. Статья [14] посвящена разработке эмулируемого устройства на базе QEMU,
а также созданию драйвера устройства в ОС Linux. Работы [15–20] посвящены вопро-
сам разработки и отладки системного ПО с использованием QEMU. В статьях [21–23]
рассмотрены вопросы безопасности при использовании эмуляторов, подобных QEMU.

2. Графическая система ОСРВ

Для обработки графической информации в ОСРВ разработана архитектура графичес-
кой системы, состоящая из трех основных частей [24].

1. Подсистема верхнего уровня. Взаимодействует с пользовательскими приложени-
ями, предоставляет набор компонентов для взаимодействия пользовательских прило-
жений с графическим драйвером.

Основные задачи пользовательского уровня графической системы:
– управление соединениями (создание/закрытие, установка соединения и т. д.);
– управление поверхностями (создание/удаление поверхностей, получение/установ-
ка параметров поверхности и т. д.);

– управление дисплеем (включение/выключение, установка параметров — гамма,
поворот и т. д.);

– управление режимом изображения (получение списка поддерживаемых режимов,
добавление режима, установка режима отображения и т. д.);

– ускорение графических операций.

Структуры и функции, используемые в подсистеме пользовательского уровня, имеют
префикс gs.

2. Подсистема нижнего уровня. Предоставляет различные функции и структуры
для графических драйверов:

– основные функции драйвера (регистрация/отмена регистрации, получение пара-
метров, управление драйвером и т. д.);

– управление выводом на экран (конвейер вывода, “миксер” поверхностей и т. д.);



98 А.М. Гиацинтов, К.А. Мамросенко

– компоненты ускорения графических операций (планировщик операций, примити-
вы синхронизации и т. д.);

– получение режимов монитора (получение и разбор edid);
– управление видеопамятью;
– управление функциями платы (управление тактовыми генераторами, i2c и т. д).

Структуры и функции, используемые в подсистеме нижнего уровня, имеют префикс gsi.

3. Подсистема ядерного уровня. Взаимодействует с ядром ОС и выполняет низко-
уровневые операции:

– хранение информации о графическом драйвере;
– выделение/освобождение памяти, доступной различным процессам;
– выделение/освобождение непрерывной физической памяти;
– преобразование физической памяти в виртуальную и наоборот;
– обработка прерываний.

Поскольку графическая система разрабатывается для ОСРВ с микроядерной архи-
тектурой, основным аспектом проектирования архитектуры является взаимодействие
уровней графической системы, графических драйверов и ядра ОС. Например, ядро
Linux является монолитным, и большинство драйверов интегрированы непосредствен-
но в ядро. Драйверы пользовательского пространства и приложения взаимодействуют
с драйверами через файл устройства, расположенный в папке /dev. С другой стороны,
QNX имеет микроядерную архитектуру, а управление драйверами осуществляется че-
рез серверы и менеджеры ресурсов. Приложения также взаимодействуют с драйверами
через файлы устройств, но с помощью другого набора функций.

В настоящее время графическая система использует гибрид этих подходов. Подсис-
темы ядерного и нижнего уровней работают в ядре ОС в главном системном процессе.
Драйверы графических устройств находятся в пакете поддержки микропроцессора, ко-
торый может содержать исходный код или скомпилированную версию драйвера в виде
статической библиотеки. Исходный код драйвера может быть скомпилирован при сбор-
ке бинарного образа ОС. Кроме того, пакет содержит файл с конфигурацией для опре-
деленного типа устройства, передаваемой графическим драйверам при инициализации.
Графические драйверы также работают в главном системном процессе. Подсистема
ядерного уровня создает в папке /dev файл устройства с именем graphics, который
используется графическими драйверами для выполнения низкоуровневых операций,
таких как преобразование физических адресов в виртуальные. Графические драйве-
ры не создают отдельный файл устройства в папке /dev. Взаимодействие пользова-
тельского приложения с графическими драйверами осуществляется через подсистему
верхнего уровня.

Каждая подсистема компилируется в отдельную статическую библиотеку. Библиоте-
ка подсистемы верхнего уровня компонуется непосредственно в пользовательское при-
ложение, а библиотеки ядерного и нижнего уровней компонуются в бинарный образ
ОС. Учитывая, что каждая подсистема компилируется в свою собственную библиотеку
и выполняется в разных процессах, необходимо было использовать механизм для пере-
дачи данных между разными процессами. Графическая система использует механизм
очередей сообщений для организации связи между подсистемой нижнего уровня, вы-
полняемой в главном системном процессе, и подсистемой верхнего уровня, выполняемой
в пользовательском процессе.

При регистрации драйвера в графической системе создаются две очереди сообще-
ний: одна для приема сообщений, другая для их передачи. Когда пользовательское



Тестирование операций графической обработки. . . 99

приложение инициализируется и устанавливается соединение, верхний уровень графи-
ческой системы определяет количество доступных драйверов в системе и отправляет
запрос в очередь сообщений конкретного драйвера для получения информации о воз-
можностях драйвера.

Запросив информацию у подсистемы нижнего уровня, пользовательское приложение
всегда ожидает ответа — операции взаимодействия между верхним и нижним уровнями
графической системы синхронны. Подсистема нижнего уровня определяет тип входя-
щего сообщения и выполняет соответствующую обработку. В большинстве случаев это
означает взаимодействие с функциональностью драйвера, а не только с графической
системой. Для каждого драйвера подсистема нижнего уровня создает свой собственный
поток с циклом обработки сообщений.

3. Отладка графической системы и операций прорисовки

Важные аспекты работы над графической системой — достижение корректности выпол-
нения операций и отладка подсистем и драйверов, связанных с отображением графи-
ческой информации. Так как целевая операционная система предназначена для работы
на процессорах, архитектура которых отличается от x86-64, запуск тестовых программ
становится затруднительным. Тестовые программы могут быть запущены на целевой
платформе и операционной системе, что требует доступа к аппаратному обеспечению,
а это не всегда возможно. Время одной итерации может быть значительным, так как
во многих случаях требуется перезапускать операционную систему и другие системные
компоненты.

Описанный выше метод тестирования направлен в большей степени на окончатель-
ное тестирование всех компонентов графической подсистемы и тестирование взаимодей-
ствия различных подсистем в различных условиях. Однако значительная часть оши-
бок может быть выявлена в процессе разработки с помощью юнит-тестов. В большин-
стве случаев юнит-тесты во время разработки запускаются на машине разработчика,
что может привести к трудностям, когда графическая система использует функции
и структуры, отсутствующие в операционной системе, установленной на компьютере
разработчика. Поскольку разработка графической системы ведется разными програм-
мистами на разных операционных системах (Windows, Linux), принято решение эмули-
ровать отсутствующие типы данных и функции целевой операционной системы. Для
этого внутри графической системы существует набор файлов с префиксом simulator_,
который обеспечивает эмуляцию необходимой функциональности (например, функций
распределения памяти, присущих целевой операционной системе). Используя эмулиро-
ванные типы данных и функции целевой операционной системы, можно протестировать
бо́льшую часть функциональности графической системы на компьютере разработчика,
что значительно ускорит разработку и тестирование.

Еще одним способом отладки является запуск целевой операционной системы и тес-
товых программ на программном эмуляторе системы на кристалле, например QEMU.
Этот метод позволяет обнаружить большинство проблем. Однако необходимо учиты-
вать, что эмулятор может не полностью соответствовать реальной системе на кристалле
и проблемы, которые можно воспроизвести на аппаратном обеспечении, не воспроизво-
дятся на эмуляторе. Кроме того, для корректной работы графической системы, драй-
веров и тестовых программ программный эмулятор должен обеспечивать эмуляцию
графического чипа системы на кристалле, но эмуляторы с открытым исходным кодом
редко предоставляют такую возможность.



100 А.М. Гиацинтов, К.А. Мамросенко

4. Эмулятор графического ускорителя

Для решения указанных проблем разработан эмулятор графического чипа. Главными
требованиями к эмулятору были низкая сложность внутреннего устройства, модуль-
ность и возможность работать как в виде присоединяемой библиотеки, так и в составе
других эмуляторов, например QEMU. С учетом требования обеспечения возможности
встраивания эмулятора в другие системы принято решение разрабатывать эмулятор на
языке C.

Для расширения возможностей отладки разработан дополнительный модуль (прило-
жение-контейнер), позволяющий использовать функциональность графической систе-
мы, драйверы 3D-ускорителя и эмулятора в режиме присоединяемой библиотеки. Каж-
дый из компонентов подключен к приложению в виде статической библиотеки. Кроме
того, в приложение интегрируется тестовая программа, которая используется для от-
ладки компонентов. Она также должна быть скомпилирована в виде динамической
или статической библиотеки. При запуске приложения производится инициализация
описанных выше компонентов, после чего запускается тестовая программа, во время
работы которой возможны остановка и просмотр состояния драйвера 3D-ускорителя,
графической системы и ее подсистем.

Архитектуру разработанного эмулятора можно разделить на несколько слоев:
– верхний уровень предоставляет API для взаимодействия прикладных программ
с эмулятором (инициализация, программирование регистров виртуального устрой-
ства и т. д.);

– средний уровень выполняет сервисные функции, необходимые для корректной ра-
боты эмулятора (управление памятью, пулом потоков, проверка наличия запро-
шенного регистра у эмулируемого устройства, и т. д.);

– нижний уровень осуществляет эмуляцию конкретного графического чипа (см. ри-
сунок).

С учетом требования к модульности эмулятора код эмуляции конкретного графичес-
кого чипа (нижний уровень) собирается в отдельную библиотеку, что позволяет под-
ключать и отключать различные эмулируемые графические чипы при необходимости.
Рассмотрим каждый из слоев подробнее.

Для простоты работы с эмулятором API для взаимодействия с прикладными про-
граммами сделан минималистичным. Как и с реальными графическими чипами, управ-

Архитектура эмулятора
Emulator architecture



Тестирование операций графической обработки. . . 101

ление виртуальным чипом осуществляется посредством чтения и записи в регистры
устройства. Для этих операций эмулятор предоставляет отдельные функции (на дан-
ный момент поддерживаются наиболее часто используемые операции чтения и записи
по 4 байта). Основные параметры эмулятора задаются при инициализации, но ряд пара-
метров можно задать при помощи механизма свойств. Например, при помощи свойств
пользовательское приложение получает доступ к регистрам (указатель на память, от-
вечающую за регистры) эмулируемого устройства. Также при помощи свойств регули-
руется необходимость генерации прерываний виртуальным устройством.

Большинство графических чипов имеют блок управления памятью (memory map
unit — MMU) для возможности работы с буферами памяти, которые не расположены
непрерывно в оперативной памяти [25]. В этих случаях эмуляция функциональности
MMU производится на нижнем уровне для конкретного блока. Когда функциональнос-
ти MMU нет (например, этот блок в разработке) или по какой-то причине нет возмож-
ности ее задействовать, эмулятор предоставляет программную эмуляцию блока управ-
ления памятью.

Рассмотрим метод программной эмуляции MMU подробнее. При запуске програм-
мы, использующей эмулятор, задаются начальный адрес отсчета для виртуальных ад-
ресов и общий доступный размер, например начальный адрес 4 КБ, общий доступный
размер — (4 ГБ−4 КБ). Далее программа может добавлять, удалять или получать уже
существующие отрезки памяти. Отрезок памяти состоит из начального адреса, разме-
ра отрезка памяти и указателя на пользовательские данные, которые хранятся в этом
отрезке.

При добавлении информации об отрезке памяти в эмулятор происходит проверка на
корректность параметров, а также на то, что этот отрезок уже был добавлен. Добавле-
ние отрезка не происходит, если указанные условия не выполнены. Далее происходит
проверка, можно ли модифицировать уже существующий отрезок памяти или новый
отрезок расположен отдельно от ранее добавленных. При модификации существующего
отрезка могут быть изменены или начальная точка, или размер отрезка. В противном
случае определяется, куда вставить новый отрезок памяти — перед существующими,
между ними или после существующих.

При удалении отрезка памяти также проверяется, существует ли данный отрезок
памяти в MMU. Удаление происходит только в случае, если отрезок существует. Далее
происходит определение, откуда требуется удалить отрезок — с начала или конца су-
ществующего отрезка или из середины. При удалении из середины отрезка создаются
два новых отрезка, у которых изменены размер и начальный адрес.

При получении отрезка памяти из MMU определяется, есть ли данный отрезок
в MMU, и вычисляется позиция запрашиваемого отрезка памяти среди остальных от-
резков памяти в MMU. Иногда требуется использовать адрес памяти, начинающийся не
в начале отрезка памяти, а, например, в середине. В этом случае рассчитывается сме-
щение относительно начала отрезка памяти и возвращаются пользовательские данные
с рассчитанным смещением.

Общая функциональность эмулятора, используемая остальными его частями, со-
ставляет средний уровень эмулятора. Один из факторов, влияющих на скорость работы
эмулятора, — эффективность управления памятью. Системное программное обеспече-
ние в целом и эмуляторы в частности характеризуются частым выделением неболь-
ших объемов памяти, во многих случаях используемых для хранения промежуточ-
ных результатов. К сожалению, операция выделения памяти в большинстве современ-



102 А.М. Гиацинтов, К.А. Мамросенко

ных систем достаточно ресурсоемкая. При использовании профилировщика процеду-
ры работы с памятью часто занимают от 10 до 30 % от общего времени выполнения
программы [26].

Чтобы уменьшить влияние функций обработки памяти на скорость выполнения,
можно использовать несколько подходов. Один подход предполагает исключение или
минимизацию использования функций выделения памяти в коде, выполняемом бо́ль-
шую часть времени жизни программы. Другой подход предполагает использование
аллокаторов. Аллокатор заранее запрашивает у операционной системы определенный
объем памяти (обычно несколько мегабайт), который затем используется приложением
по мере необходимости. Функции распределения памяти аллокатора выполняются во
много раз быстрее, чем функции распределения памяти, предоставляемые операцион-
ной системой. Если памяти, выделенной аллокатором, недостаточно, далается запрос
дополнительной памяти у операционной системы. Аллокатор позволяет выделять па-
мять отдельно для каждого потока выполнения без необходимости использования бло-
кирующего доступа, что также должно повысить производительность в ряде сценариев.
Используемый аллокатор основан на решении с открытым исходным кодом rpmalloc.

Одной из задач, стоящих перед эмулятором, является предоставление регистров эму-
лируемого устройства для пользовательской программы. На реальном аппаратном обес-
печении пользовательской программе доступны начальный адрес регистров устройства
и общий размер регистров — эти параметры используются для отображения физиче-
ских регистров в оперативную память (напрямую работу с физической памятью для
чтения и записи регистров применяют реже, в основном в тестовых программах без
использования операционной системы). Далее программа использует полученный вир-
туальный адрес в качестве начального адреса регистров и прибавляет требуемое смеще-
ние относительно начала для чтения или записи в конкретный регистр. Соответственно,
эмулятор должен предоставлять подобную функциональность, а также реагировать на
использование некорректных адресов регистров (например, устройство не имеет регист-
ров между адресами 0x10 и 0x20, а программа обратилась по адресу 0x14).

Для реализации указанной выше функциональности предложен следующий метод.
Во время инициализации эмулятора создаются виртуальные регистры эмулируемого
устройства. После создания виртуальных регистров у эмулятора есть полная информа-
ция о том, какое смещение используется для каждого виртуального регистра относи-
тельно начального адреса. Эмулятор выделяет память, которая будет передана пользо-
вательскому приложению с размером, равным общему размеру регистров устройства —
данную память приложение будет использовать для чтения и записи в регистры. Да-
лее, в выделенную память заносится информация о наличии или отсутствии регистра
в конкретном смещении относительно начала выделенной памяти, которое принимается
за нуль. Шаг смещения составляет 4 байта. Если в конкретном смещении (например,
0x8) имеется виртуальный регистр, то в память по данному смещению записывается
значение 1, в противном случае записывается нуль. При использовании этой памяти
пользовательским приложением для чтения или записи в виртуальный регистр проис-
ходит следующее: если в памяти с указанным смещением записано значение 1, то этот
виртуальный регистр существует и продолжается запрошенное пользовательской про-
граммой действие (чтение или запись). В противном случае эмулятор выдает сообщение
об обращении к несуществующему виртуальному регистру.

Для большинства устройств требуется эмуляция работы прерываний. При помощи
прерываний устройство сообщает о произошедшем событии — ошибке, завершении по-



Тестирование операций графической обработки. . . 103

ставленной задачи и т. д. Эмулятор предоставляет два режима работы прерываний —
основной и принудительный. Основной режим сообщает пользовательскому приложе-
нию о прерывании, следуя логике работы эмулируемого устройства. Принудительный
режим заставляет эмулируемое устройство немедленно выдать прерывание требуемого
типа. Второй режим используется в основном для тестирования различных ситуаций по
обработке ошибок. Работа с прерываниями выполняется в отдельном потоке, что обес-
печивает асинхронную работу эмулятора при обработке прерывания пользовательским
приложением.

Для работы с прерываниями при инициализации эмулятора пользовательское при-
ложение привязывает функцию, которая будет вызвана при срабатывании прерывания.
Нижний уровень эмулятора может значительно различаться для каждого эмулируе-
мого устройства, так как именно здесь происходит эмуляция поведения устройства.
Однако можно выделить базовую функциональность, которая будет присутствовать
в большинстве эмулируемых видеокарт, а именно: регистры устройства, обработка ко-
мандного буфера и изменение состояния устройства, обработка инструкций.

При инициализации эмулятора создаются регистры эмулируемого устройства (на-
звание регистра, определение смещения регистра относительно начального адреса, зна-
чение при сбросе, возможность записи в регистр, функции-обработчики чтения и за-
писи в регистр). Для большинства регистров применяются стандартные обработчики
чтения и записи, которые осуществляют атомарное чтение или запись нового значения.
Если, например, для регистра требуется определенное поведение при записи, то для
него используется отдельный обработчик записи, который выполняет дополнительные
действия помимо записи нового значения. Эмулятор также позволяет работать с регист-
рами устройства без использования некоторых механизмов проверки для внутренних
нужд (например, запись значения в регистр прерывания, который запрещает запись
извне).

Большинство видеокарт используют командные буферы для задания новых состоя-
ний устройства. Несмотря на то что представление командного буфера уникально для
каждой архитектуры графического чипа, они используются для одного и того же —
изменения параметров устройства и входных данных для выполнения расчетов или
прорисовки в указанный буфер. Основные параметры, которые могут быть измене-
ны командным буфером, схожи у большинства видеокарт: задание буферов вершин
и индексов, задание шейдерных программ, задание параметров отображения (размер
видимой области, границы области отсечения прорисовки (scissor) и т. д.), задание па-
раметров прорисовки и т. д.

Важной частью эмуляции видеокарты является обработка инструкций шейдерной
программы. Каждая архитектура графических чипов обладает уникальным набором
команд, однако инструкции можно разделить на несколько категорий:

– арифметические (сложение, вычитание, умножение, деление, получение и сохра-
нение значений и т. д.);

– логические (обработка условий, циклов, вызов подпроцедур и т. д);
– работа с текстурами (получение данных текстуры, различные преобразования
этих данных).

Для эмуляции инструкций графического типа могут быть применены интерпрета-
тор или JIT-компилятор. Интерпретатор инструкций проще в реализации, но произво-
дительность обработки инструкций может быть не очень высокой. Подход с использо-
ванием JIT-компилятора для обработки инструкций позволяет преобразовать эмулиру-



104 А.М. Гиацинтов, К.А. Мамросенко

емую инструкцию в одну или несколько инструкций архитектуры используемого цен-
трального процессора. Этот подход более трудоемкий, но позволяет получить лучшую
производительность по сравнению с интерпретатором. На текущий момент эмулятор
использует интерпретатор для эмуляции инструкций графического чипа.

Каждый графический чип имеет конвейер, который в той или иной степени соот-
ветствует конвейеру, используемому в высокоуровневых графических интерфейсах про-
граммирования (API), таких как OpenGL и DirectX. Конвейер состоит из таких этапов,
как: обработка вершин вершинным шейдером, теселляция вершин (опционально), об-
работка примитивов геометрическим шейдером (опционально), растеризация треуголь-
ников, обработка растеризированного изображения пиксельным (фрагментным) шейде-
ром. Для вычислительных задач существует отдельный конвейер. Для задач отрисовки
используются вершинный и пиксельный шейдеры, остальные типы шейдеров применя-
ются значительно реже. Соответственно, для задач отрисовки эмулятор должен реа-
лизовать, как минимум, обработку вершинных шейдеров, растеризацию и обработку
пиксельных шейдеров.

При реализации конвейера прорисовки встает вопрос о визуализации результатов.
Существует два основных варианта прорисовки — с использованием центрального про-
цессора и аппаратного ускорения (обычно это 3D-ускорители). Первый вариант обес-
печивает максимальную точность визуализации, но он медленный по скорости. Второй
вариант позволяет отображать результаты прорисовки в реальном масштабе времени,
но может отличаться от эталонного изображения в зависимости от применяемого ап-
паратного обеспечения и драйверов. На данный момент разрабатываемый эмулятор
не обладает средствами отрисовки. В первую очередь будет разрабатываться вариант
с использованием CPU, т. е. программная визуализация. В дальнейшем эмулятор бу-
дет предоставлять пользователю выбор — максимальная точность визуализации, но
медленная скорость или возможные артефакты изображения, но высокая скорость от-
рисовки.

5. Результаты и обсуждение

Разработанный эмулятор использован при тестировании компонентов графической сис-
темы, связанных с ускорением графических операций. Несмотря на то что разраба-
тываемый эмулятор имеет ограниченную функциональность, он может использоваться
для стабилизации компонентов графической системы и графических драйверов. Одним
из его основных преимуществ является запуск драйвера графического ускорителя на
инструментальной машине с возможностью пошаговой отладки. Применение эмулято-
ра позволило воспроизвести ошибки, которые на реальной аппаратуре имели характер
“плавающих” и были тяжело воспроизводимы.

Заключение

Разработанная архитектура эмулятора позволяет эмулировать графические чипы раз-
личной сложности и упрощает разработку и отладку программных компонентов, за-
висящих от графических ускорителей, таких как графические системы и драйверы.
Кроме того, за счет возможности интеграции в существующие эмуляторы, такие как
QEMU, разрабатываемый эмулятор может быть использован для тестирования значи-



Тестирование операций графической обработки. . . 105

тельного количества программного обеспечения, задействующего графические ускори-
тели при помощи высокоуровневого API OpenGL, DirectX и им подобных. Полученные
результаты позволяют решить ряд задач, которые затруднительно выполнить извест-
ными методами отладки для заданного типа программного обеспечения. В дальнейшем
планируется доработать эмулятор для возможности отображения результатов эмуля-
ции на экране и использовать его при создании новых перспективных графических
ускорителей.

Благодарности. Публикация выполнена в рамках НИР ФГУ ФНЦ НИИСИ РАН по
теме � FNEF-2024-0003 “Методы разработки аппаратно-программных платформ на ос-
нове защищенных и устойчивых к сбоям систем на кристалле и сопроцессоров искус-
ственного интеллекта и обработки сигналов”.

Список литературы

[1] Drozdov A.Y., Fonin Y.N., Perov M.N., Vedishcheva T.S., Novoselova Y.K.

An approach to cross-platform drivers development. Moscow: IEEE Press; 2015: 54–57.
DOI:10.1109/EnT.2015.14.

[2] Embedded systems in the Internet of Things. Benisontech. Available at: https://

benisontech.com/embedded-systems-in-the-internet-of-things.

[3] Godunov A.N. Real-time operating system Baget 3.0. Software & Systems. 2010; 4(92):16–19.

[4] Godunov A.N., Soldatov V.A. Baget real-time operating system family (features,
comparison, and future development). Programming and Computer Software. 2014;
40(5):259–264. DOI:10.1134/S036176881405003X.

[5] Chen I.-H., King C.-T., Chen Y.-H., Lu J.-M. Full system emulation of embedded
heterogeneous multicores based on QEMU. IEEE 24th International Conference on Parallel
and Distributed Systems (ICPADS). 2018; 771–778. DOI:10.1109/PADSW.2018.8645045.

[6] Wu Y., Xuejun Z., Huaxian L., Xiangmin G. Design and realization of display control
software in integrated avionic system for general aviation based on the VxWorks. IEEE
13th World Congress on Intelligent Control and Automation (WCICA). 2018; 1295–1299.
DOI:10.1109/WCICA.2018.8630561.

[7] Kui R., Huai-Liang T. Design and implementation of a graphics display system based
on RTOS. IEEE Fifth International Conference on Computational and Information Sciences
(ICCIS). 2013; 84–87. DOI:10.1109/ICCIS.2013.30.

[8] Yoon J., Baek N., Lee H. ARINC661 graphics rendering based on OpenVG and its
use cases with wireless communications. Wireless Personal Communications. 2017; 175–185.
DOI:10.1007/s11277-015-3163-y.

[9] Girard S.R., Legault V., Bois G., Boland J.-F. Avionics graphics hardware
performance prediction with machine learning. Scientific Programming. 2019; 1–15.
DOI:10.1155/2019/9195845.

[10] Gong X., Ubal R., Kaeli D. Multi2Sim Kepler: a detailed architectural GPU simulator.
IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS).
2017; 269–278. DOI:10.1109/ISPASS.2017.7975298.

[11] Power J., Hestness J., Orr M.S., Hill M.D., Wood D.A. gem5-gpu: a hete-
rogeneous CPU-GPU simulator. IEEE Computer Architecture Letters. 2015; (14):34–36.
DOI:10.1109/LCA.2014.2299539.

[12] Dow H.-K., Huang C.-H., Lai C.-H., Tsao K.-H., Tseng S.-C., Wu K.-Y.,

Wu T.-H., Yang H.-C., Zhang Jain D.-J., Chang Y.-N., Haga S.W., Hsiao S.-F.,

https://benisontech.com/embedded-systems-in-the-internet-of-things
https://benisontech.com/embedded-systems-in-the-internet-of-things


106 А.М. Гиацинтов, К.А. Мамросенко

Huang I.-J., Kuang S.-R., Lee C.-N. An OpenGL ES 2.0 3D graphics SoC with versatile
HW/SW development support. VLSI Design, Automation and Test (VLSI-DAT). 2015; 1–4.
DOI:10.1109/VLSI-DAT.2015.7114496.

[13] Mehmood M.A., Ain Q.U., Akram A., Qadeer A., Waheed A. Emulating an Octeon
MIPS64 based embedded system on X86 in QEMU. IEEE 19th International MultiTopic
Conference (INMIC). 2016; 1–7. DOI:10.1109/INMIC.2016.7840110.

[14] Bian X. Implement a virtual development platform based on QEMU. IEEE International
Conference on Green Informatics (ICGI). 2017; 93–97. DOI:10.1109/ICGI.2017.19.

[15] Wei H.-L., King C.-T., Das B., Peng M.-C., Wang C.-C., Huang H.-L.,

Lu J.-M. Application specific component-service-aware trace generation on AndroidQEMU.
30th IEEE International System-on-Chip Conference (SOCC). 2017; 316–321.
DOI:10.1109/SOCC.2017.8226069.

[16] Almeida R., Novais L., Naia N., Faria R., Cabral J. Reliable software design aided
by QEMU simulation. 22nd IEEE International Conference on Industrial Technology (ICIT).
2021; 797–804. DOI:10.1109/ICIT46573.2021.9453486.

[17] Dileep K.P., Devesh G., Raghavendra Rao A., Suman M., Srikanth S.V. Verification
of Linux device drivers using device virtualization. 2nd International Conference on Computing
for Sustainable Global Development (INDIACom). 2015; 694–698.

[18] Markovic A., Markovic S., Rikalo A., Jovanovic P. Adding support for nanomips
architecture to QEMU emulator. 26th Telecommunications Forum (TELFOR). 2018; 1–4.
DOI:10.1109/TELFOR.2018.8611981.

[19] Reitz J., Gugenheimer A., Rosmann J. Virtual hardware in the loop: hybrid simulation of
dynamic systems with a virtualization platform. IEEE Winter Simulation Conference (WSC).
2020; 1027–1038. DOI:10.1109/WSC48552.2020.9383963.

[20] Lupori L., Rosario V., Borin E. Towards a high-performance RISC-V emulator.
IEEE Symposium on High Performance Computing Systems (WSCAD). 2018; 213–220.
DOI:10.1109/WSCAD.2018.00041.

[21] Wang Z., Zheng F., Lin J., Fan G., Dong J. SEGIVE: a practical framework of secure GPU
execution in virtualization environment. IEEE 39th International Performance Computing and
Communications Conference (IPCCC). 2020; 1–10. DOI:10.1109/IPCCC50635.2020.9391574.

[22] Lee S., Yoo S. Breaching GPU data on a cloud VM. IEEE 13th International Conference
on Information and Communication Technology Convergence (ICTC). 2022; 205–207.
DOI:10.1109/ICTC55196.2022.9952730.

[23] Oliveira P.R., Meireles M., Maia C., Pinho L.M., Gouveia G., Esteves J. Emulation-
in-the-loop for simulation and testing of real-time critical CPS. IEEE Industrial Cyber-Physical
Systems (ICPS). 2018; 258–263. DOI:10.1109/ICPHYS.2018.8387669.

[24] Giatsintov A., Mamrosenko K., Bazhenov P. Architecture of the graphics system for
embedded real-time operating systems. Tsinghua Science and Technology. 2023; (28):541–551.
DOI:10.26599/TST.2022.9010028.

[25] Behera D., Jena U.R. Detailed review on embedded MMU and their performance
analysis on test benches. IEEE International Conference on Computational
Intelligence for Smart Power System and Sustainable Energy (CISPSSE). 2020; 1–6.
DOI:10.1109/CISPSSE49931.2020.9212265.

[26] Weisner R. How memory allocation affects performance in multi-threaded programs. Avai-
lable at: https://www.oracle.com/technical-resources/articles/it-infrastructure/

dev-memalloc.html.

https://www.oracle.com/technical-resources/articles/it-infrastructure/dev-memalloc.html
https://www.oracle.com/technical-resources/articles/it-infrastructure/dev-memalloc.html


Тестирование операций графической обработки. . . 107

Вычислительные технологии, 2024, том 29, � 4, с. 95–109.© ФИЦ ИВТ, 2024 ISSN 1560-7534

Computational Technologies, 2024, vol. 29, no. 4, pp. 95–109. © FRC ICT, 2024 eISSN 2313-691X

INFORMATION TECHNOLOGIES

DOI:10.25743/ICT.2024.29.4.007

Testing graphics processing operations with graphics accelerator emulation

A.M. Giatsintov*, K.A. Mamrosenko

Scientific Research Institute for System Analysis of the RAS, 117278, Moscow, Russia
*Corresponding author: Alexander M. Giatsintov, e-mail: giatsintov@niisi.ras.ru
Received October 20, 2023, revised November 13, 2023, accepted November 20, 2023.

Abstract

Nowadays, an increasing number of problems require the use of hardware accelerators to reduce
the time required for calculations as well as for displaying their results. An important aspect of
working with graphics operations is to achieve correctness for execution of operations and debugging
of both subsystems and drivers involved in displaying of graphics information. This paper presents
the architecture of an emulator of the graphics accelerator designed to diagnose and correct hard-
to-detect errors within components of the graphics subsystem. Unlike the known solutions, the
developed architecture allows using the emulator as a part of system emulators such as a QEMU
and as an attached library for a driver of the graphics accelerator. The architecture of the developed
emulator can be divided into several layers: the upper level provides API for application interaction
with the emulator (initialization, programming of registers of the virtual device, etc.); the middle
level performs service functions necessary for correct work of the emulator (memory management,
thread pooling, checking if the emulated device has the requested register, etc.); the lower level
performs emulation of a particular graphics chip. The virtual chip is controlled by reading and
writing to the device registers — the emulator provides separate functions for these operations. One
of the main advantages is the ability to run the graphics accelerator driver on a tool machine with
capability for step-by-step debugging. The emulator allows detecting some intermittent errors that
were hard to reproduce on real hardware.

Keywords: visualization, graphics system, rendering, operating system, emulation, QEMU.

Citation: Giatsintov A.M., Mamrosenko K.A. Testing graphics processing operations
with graphics accelerator emulation. Computational Technologies. 2024; 29(4):95–109.
DOI:10.25743/ICT.2024.29.4.007. (In Russ.)

Acknowledgements. The publication was carried under state contract FNEF-2024-0003
“Methods of development of hardware and software platforms based on secure and fault-tolerant
systems-on-chips and coprocessors for artificial intelligence and signal processing”.

References

1. Drozdov A.Y., Fonin Y.N., Perov M.N., Vedishcheva T.S., Novoselova Y.K. An approach
to cross-platform drivers development. Moscow: IEEE Press; 2015: 54–57. DOI:10.1109/EnT.2015.14.

2. Embedded systems in the Internet of Things. Benisontech. Available at: https://benisontech.com/
embedded-systems-in-the-internet-of-things.

3. Godunov A.N. Real-time operating system Baget 3.0. Software & Systems. 2010; 4(92):16–19.
4. Godunov A.N., Soldatov V.A. Baget real-time operating system family (features, comparison,

and future development). Programming and Computer Software. 2014; 40(5):259–264.
DOI:10.1134/S036176881405003X.

https://benisontech.com/embedded-systems-in-the-internet-of-things
https://benisontech.com/embedded-systems-in-the-internet-of-things


108 А.М. Гиацинтов, К.А. Мамросенко

5. Chen I.-H., King C.-T., Chen Y.-H., Lu J.-M. Full system emulation of embedded heterogeneous
multicores based on QEMU. IEEE 24th International Conference on Parallel and Distributed Systems
(ICPADS). 2018; 771–778. DOI:10.1109/PADSW.2018.8645045.

6. Wu Y., Xuejun Z., Huaxian L., Xiangmin G. Design and realization of display control software
in integrated avionic system for general aviation based on the VxWorks. IEEE 13th World Congress on
Intelligent Control and Automation (WCICA). 2018; 1295–1299. DOI:10.1109/WCICA.2018.8630561.

7. Kui R., Huai-Liang T. Design and implementation of a graphics display system based on RTOS.
IEEE Fifth International Conference on Computational and Information Sciences (ICCIS). 2013;
84–87. DOI:10.1109/ICCIS.2013.30.

8. Yoon J., Baek N., Lee H. ARINC661 graphics rendering based on OpenVG and its use
cases with wireless communications. Wireless Personal Communications. 2017; 175–185.
DOI:10.1007/s11277-015-3163-y.

9. Girard S.R., Legault V., Bois G., Boland J.-F. Avionics graphics hardware performance predicti-
on with machine learning. Scientific Programming. 2019; 1–15. DOI:10.1155/2019/9195845.

10. Gong X., Ubal R., Kaeli D. Multi2Sim Kepler: a detailed architectural GPU simulator. IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS). 2017;
269–278. DOI:10.1109/ISPASS.2017.7975298.

11. Power J., Hestness J., Orr M.S., Hill M.D., Wood D.A. gem5-gpu: a heterogeneous CPU-GPU
simulator. IEEE Computer Architecture Letters. 2015; (14):34–36. DOI:10.1109/LCA.2014.2299539.

12. Dow H.-K., Huang C.-H., Lai C.-H., Tsao K.-H., Tseng S.-C., Wu K.-Y., Wu T.-H.,

Yang H.-C., Zhang Jain D.-J., Chang Y.-N., Haga S.W., Hsiao S.-F., Huang I.-J.,

Kuang S.-R., Lee C.-N. An OpenGL ES 2.0 3D graphics SoC with versatile HW/SW
development support. VLSI Design, Automation and Test (VLSI-DAT). 2015; 1–4.
DOI:10.1109/VLSI-DAT.2015.7114496.

13. Mehmood M.A., Ain Q.U., Akram A., Qadeer A., Waheed A. Emulating an Octeon MIPS64
based embedded system on X86 in QEMU. IEEE 19th International MultiTopic Conference (INMIC).
2016; 1–7. DOI:10.1109/INMIC.2016.7840110.

14. Bian X. Implement a virtual development platform based on QEMU. IEEE International Conference
on Green Informatics (ICGI). 2017; 93–97. DOI:10.1109/ICGI.2017.19.

15. Wei H.-L., King C.-T., Das B., Peng M.-C., Wang C.-C., Huang H.-L., Lu J.-M.Application
specific component-service-aware trace generation on AndroidQEMU. 30th IEEE International System-
on-Chip Conference (SOCC). 2017; 316–321. DOI:10.1109/SOCC.2017.8226069.

16. Almeida R., Novais L., Naia N., Faria R., Cabral J. Reliable software design aided by QEMU
simulation. 22nd IEEE International Conference on Industrial Technology (ICIT). 2021; 797–804.
DOI:10.1109/ICIT46573.2021.9453486.

17. Dileep K.P., Devesh G., Raghavendra Rao A., Suman M., Srikanth S.V. Verification of
Linux device drivers using device virtualization. 2nd International Conference on Computing for
Sustainable Global Development (INDIACom). 2015; 694–698.

18. Markovic A., Markovic S., Rikalo A., Jovanovic P. Adding support for nanomips ar-
chitecture to QEMU emulator. 26th Telecommunications Forum (TELFOR). 2018; 1–4.
DOI:10.1109/TELFOR.2018.8611981.

19. Reitz J., Gugenheimer A., Rosmann J. Virtual hardware in the loop: hybrid simulation of
dynamic systems with a virtualization platform. IEEE Winter Simulation Conference (WSC). 2020;
1027–1038. DOI:10.1109/WSC48552.2020.9383963.

20. Lupori L., Rosario V., Borin E. Towards a high-performance RISC-V emulator. IEEE Symposium
onHighPerformanceComputing Systems (WSCAD). 2018; 213–220.DOI:10.1109/WSCAD.2018.00041.

21. Wang Z., Zheng F., Lin J., Fan G., Dong J. SEGIVE: a practical framework of secure GPU
execution in virtualization environment. IEEE 39th International Performance Computing and Com-
munications Conference (IPCCC). 2020; 1–10. DOI:10.1109/IPCCC50635.2020.9391574.

22. Lee S., Yoo S. Breaching GPU data on a cloud VM. IEEE 13th International Confe-
rence on Information and Communication Technology Convergence (ICTC). 2022; 205–207.
DOI:10.1109/ICTC55196.2022.9952730.

23. Oliveira P.R., Meireles M., Maia C., Pinho L.M., Gouveia G., Esteves J. Emulation-in-
the-loop for simulation and testing of real-time critical CPS. IEEE Industrial Cyber-Physical Systems
(ICPS). 2018; 258–263. DOI:10.1109/ICPHYS.2018.8387669.



Тестирование операций графической обработки. . . 109

24. Giatsintov A., Mamrosenko K., Bazhenov P. Architecture of the graphics system for
embedded real-time operating systems. Tsinghua Science and Technology. 2023; (28):541–551.
DOI:10.26599/TST.2022.9010028.

25. Behera D., Jena U.R. Detailed review on embedded MMU and their performance analysis on test
benches. IEEE International Conference on Computational Intelligence for Smart Power System and
Sustainable Energy (CISPSSE). 2020; 1–6. DOI:10.1109/CISPSSE49931.2020.9212265.

26. Weisner R. How memory allocation affects performance in multi-threaded programs. Available at:
https://www.oracle.com/technical-resources/articles/it-infrastructure/dev-memalloc.

html.

https://www.oracle.com/technical-resources/articles/it-infrastructure/dev-memalloc.
html

	Анализ предшествующих работ
	Графическая система ОСРВ
	Отладка графической системы и операций прорисовки
	Эмулятор графического ускорителя
	Результаты и обсуждение

