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The main focus of our paper is a novel approach to enhance the MDY conjugate
gradient direction. The key modification involves incorporating a third term, which
plays a crucial role in determining the descent direction. By introducing this additional
term, we transform the MDY conjugate gradient direction into a three-term conjugate
gradient direction. This modification aims to improve the convergence properties of
the algorithm and enhance its performance in solving optimization problems.

In comparison to traditional MDY conjugate gradient methods, our approach demon-
strates improved convergence properties and achieves higher solution quality. Numer-
ical results confirm the superiority of our proposed method in terms of optimization
performance. This highlights the potential of our modified approach to effectively
tackle a wide range of optimization problems in various domains. The results of our
numerical experiments provide strong evidence of the efficacy of our modified three-
term conjugate gradient direction.
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Introduction

Nonlinear conjugate gradient (NCG) algorithms have demonstrated their effectiveness in
addressing large-scale unconstrained optimization problems [1–6]. These types of problems
are commonly expressed in the following general format

min {𝑓(𝑥) : 𝑥 ∈ R𝑛} ,

where, 𝑓 : R𝑛 → R is continuously differentiable function.
The NCG method generates a sequence {𝑥𝑘}𝑘∈N for an initial starting point 𝑥0 ∈ R𝑛

using the iterative formula

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘, 𝑘 ≥ 0,
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where, 𝑥𝑘 represents the current iterate point, and 𝛼𝑘 > 0 denotes the step length of the line
search. The search direction, 𝑑𝑘 ∈ R𝑛 is defined by

𝑑𝑘 =

{︂
−𝑔𝑘 if 𝑘 = 0,
−𝑔𝑘 + 𝛽𝑘𝑑𝑘−1 if 𝑘 ≥ 1,

where 𝑔𝑘 = ∇𝑓(𝑥𝑘) represents the gradient of the function 𝑓 at point 𝑥𝑘, and the parameter
𝛽𝑘 ∈ R* is known as the conjugate gradient coefficient. There are several classical formulas
for 𝛽𝑘, including the Hestenes – Stiefel [7] (1952), Fletcher Reeves [8] (1964), Polak –Ribiére –
Polyak [9, 10] (1969), Conjugate Descent [11] (1987), Liu – Storey [12] (1991), Dai –Yuan [13]
(1999) formulas, which are respectively

𝛽HS
𝑘 =

𝑔𝑡𝑘𝑦𝑘−1

𝑑𝑡𝑘−1𝑦𝑘−1

, 𝛽FR
𝑘 =

‖𝑔𝑘‖2

‖𝑔𝑘−1‖2
, 𝛽PRP

𝑘 =
𝑔𝑡𝑘𝑦𝑘−1

‖𝑔𝑘−1‖2
,

𝛽CD
𝑘 =

‖𝑔𝑘‖2

−𝑔𝑡𝑘−1𝑑𝑘−1

, 𝛽LS
𝑘 =

𝑔𝑡𝑘𝑦𝑘−1

−𝑔𝑡𝑘−1𝑑𝑘−1

, 𝛽DY
𝑘 =

‖𝑔𝑘‖2

𝑑𝑡𝑘−1𝑦𝑘−1

,

where 𝑦𝑘−1 = 𝑔𝑘 − 𝑔𝑘−1 and | · | is the Euclidean norm.

In unconstrained optimization problems, there exist various methods for selecting 𝛽𝑘,
commonly referred to as classical conjugate gradient methods. Numerous researchers have
introduced modifications to 𝛽𝑘. For instance, Yu.E. Nesterov, A.V. Gasnikov and their
colleagues, who have presented a lot of work in this field, are among the references [14–17].
On the other hand, Hager and Zhang [18] proposed a modification of the HS method, which
is known as the CG-DESCENT method, as follows

𝛽𝑁+
𝑘 = max

{︀
𝛽𝑁
𝑘 , 𝜂𝑘

}︀
,

where,

𝛽𝑁
𝑘 = 𝛽HS

𝑘 − 2 ‖𝑦𝑘−1‖2

(𝑦𝑡𝑘−1𝑑𝑘−1)2
𝑔𝑡𝑘𝑑𝑘−1, 𝜂𝑘 =

−1

‖𝑑𝑘‖2min {‖𝑔𝑘‖ .𝜂}
.

By introducing a constant 𝜂 > 0, this modification demonstrates that the resulting descent
vector is more efficient when combined with an inexact line search. On the other hand,
H. Liu, S. Sun and X. Li [19] introduced a modification to the classical DY method in order
to achieve 𝛽MDY

𝑘 (modification for Dai –Yuan method), it is given by

𝛽MDY
𝑘 =

‖𝑔𝑘‖2

𝜇|𝑑𝑡𝑘−1𝑔𝑘|+ 𝑑𝑡𝑘−1𝑦𝑘−1

, 𝜇 > 1. (1)

Which satisfies the sufficient descent condition 𝑔𝑡𝑘𝑑𝑘 ⩽ −(1 − 1/𝜇)‖𝑔𝑘‖2, and is globally
convergent when combined the Wolfe line search [20, 21], as give by

𝑓(𝑥𝑘 + 𝛼𝑘𝑑𝑘)− 𝑓(𝑥𝑘) ⩽ 𝜌𝛼𝑘𝑔
𝑡
𝑘𝑑𝑘, (2)

𝑔𝑡𝑘𝑑𝑘−1 ⩾ 𝜎𝑔𝑡𝑘−1𝑑𝑘−1, (3)

where 0 < 𝜌 < 𝜎 < 1.
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To enhance the efficiency of classical conjugate gradient directions in large-scale problems,
researchers have recently proposed three-term conjugate gradient (TTCG) directions. Many
of these directions are derived from the classical conjugate gradient direction. Beale [22] was
the first to introduce a TTCG direction using 𝛽HS

𝑘 , in the form

𝑑𝑘 = −𝑔𝑘 + 𝛽HS
𝑘 𝑑𝑘−1 + 𝛾𝑘𝑑𝑙,

where, 1 ⩽ 𝑙 < 𝑘 and 𝛾𝑘 =
𝑔𝑡𝑘𝑦𝑙
𝑑𝑡𝑙𝑦𝑙

. Nazareth [23] proposed the TTCG direction to obtain

𝑑𝑘 = −𝑦𝑘−1 +

(︂
𝑦𝑡𝑘−2𝑦𝑘−2

𝑦𝑡𝑘−2𝑑𝑘−2

)︂
𝑑𝑘−2 +

(︂
𝑦𝑡𝑘−1𝑦𝑘−1

𝑦𝑡𝑘−1𝑑𝑘−1

)︂
𝑑𝑘−1.

Zhang et al [24, 25] introduced a three term PRP conjugate gradient method (TTPRP) and
a three term FR conjugate gradient method (TTFR). These two modifications ensure that
a descent direction is obtained, and when combined with Armijo line search, they guarantee
global convergence. Building upon these ideas, Zhang et al. [26] proposed a three term
HS conjugate gradient method (TTHS), which also provides a descent direction and global
convergence with the standard Wolfe line search. For further exploration in this category,
we can provide you with some references [27–33].

Our work focuses on the development of a new TTCG (three-term conjugate gradient) di-
rection, which involves incorporating an additional term, 𝜔𝑘𝑠𝑘−1, into the classical MDY con-
jugate gradient direction. The parameter 𝜔𝑘 is chosen to satisfy the condition 𝑔𝑡𝑘𝑑𝑘=−‖𝑔𝑘‖2,
ensuring the formulation of the desired equation. By introducing this new direction, we
aim to guarantee a descent direction and establish the global convergence of our method by
adhering to the Wolfe line search conditions (2), (3).

To assess the effectiveness of our proposed TTCG method, we conducted a series of
numerical experiments. These experiments involved measuring various factors, including
computation time, the number of iterations, and the number of gradient evaluations. These
quantitative evaluations were carried out to validate and demonstrate the efficacy of our
novel approach.

1. New three-term conjugate gradient direction

In this section, our study focuses on modifying the direction of the MDY conjugate gradient.
Firstly, we start with the classical DY conjugate gradient direction, which can be expressed
using the following formula

𝑑𝑘 =

{︂
−𝑔𝑘, 𝑘 = 0,
−𝑔𝑘 + 𝛽DY

𝑘 𝑑𝑘−1, 𝑘 ≥ 1,

where, 𝛽DY
𝑘 =

‖𝑔𝑘‖2

𝑑𝑡𝑘−1𝑦𝑘−1

.

Secondly, H. Liu, S. Sun and X. Li [19] introduced a modification to the classical DY
method in order to obtain the conjugate gradient direction. This modification can be repre-
sented by the following formula

𝑑𝑘 =

{︂
−𝑔0, 𝑘 = 0,
−𝑔𝑘 + 𝛽MDY

𝑘 𝑑𝑘−1, 𝑘 ≥ 1,

where the parameter 𝛽MDY
𝑘 is defined in equation (1).
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In our new method, we have modified the MDY conjugate gradient direction to a three
term conjugate gradient direction by introducing the additional term 𝜔𝑘𝑠𝑘−1. We refer to
this modified direction as TTMDY. Therefore, the new direction can be obtained by

𝑑𝑘 =

{︂
−𝑔0, 𝑘 = 0,
−𝑔𝑘 + 𝛽MDY

𝑘 𝑑𝑘−1 − 𝜔𝑘𝑠𝑘−1, 𝑘 ≥ 1.
(4)

Where, the term 𝜔𝑘 determined by our method to verify the descent direction, and 𝑠𝑘−1 =
𝑥𝑘 − 𝑥𝑘−1 = 𝛼𝑘−1𝑑𝑘−1.

We have
𝑑𝑘 = −𝑔𝑘 + 𝛽MDY

𝑘 𝑑𝑘−1 − 𝜔𝑘𝑠𝑘−1.

By multiplying it by 𝑔𝑡𝑘 and utilizing equation (1), we obtain

𝑔𝑡𝑘𝑑𝑘 = −‖𝑔𝑘‖2 +
‖𝑔𝑘‖2

𝜇|𝑑𝑡𝑘−1𝑔𝑘|+ 𝑑𝑡𝑘−1𝑦𝑘−1

𝑔𝑡𝑘𝑑𝑘−1 − 𝜔𝑘𝑔
𝑡
𝑘𝑠𝑘−1.

So, for
𝑔𝑡𝑘𝑑𝑘 = −‖𝑔𝑘‖2 . (5)

We find

𝜔𝑘 =
‖𝑔𝑘‖2 𝑔𝑡𝑘𝑑𝑘−1

(𝜇|𝑑𝑡𝑘−1𝑔𝑘|+ 𝑑𝑡𝑘−1𝑦𝑘−1)𝑔𝑡𝑘𝑠𝑘−1

∀𝑘 ∈ N. (6)

Proposition 1. 𝜔𝑘 is well defined

|𝜔𝑘|=

⃒⃒⃒⃒
⃒ ‖𝑔𝑘‖2 𝑔𝑡𝑘𝑑𝑘−1

(𝜇|𝑑𝑡𝑘−1𝑔𝑘|+ 𝑑𝑡𝑘−1𝑦𝑘−1)𝑔𝑡𝑘𝑠𝑘−1

⃒⃒⃒⃒
⃒⩽ ‖𝑔𝑘‖2 |𝑔𝑡𝑘𝑑𝑘−1|

(𝜇|𝑑𝑡𝑘−1𝑔𝑘|+ 𝑑𝑡𝑘−1𝑦𝑘−1) |𝑔𝑡𝑘𝑠𝑘−1|
⩽

‖𝑔𝑘‖2 |𝑔𝑡𝑘𝑑𝑘−1|
𝑑𝑡𝑘−1𝑦𝑘−1 |𝑔𝑡𝑘𝑠𝑘−1|

.

By the Wolfe line search condition (3), and 𝑠𝑘−1 = 𝛼𝑘−1𝑑𝑘−1, we have

|𝜔𝑘| ⩽
‖𝑔𝑘‖2

𝛼𝑘−1(1− 𝜎)
⃒⃒
𝑑𝑡𝑘−1𝑔𝑘−1

⃒⃒ . (7)

The following theorem is required to prove the descent direction of proposed method.

Theorem 1. If 𝜇 > 1and the definition of 𝜔𝑘 given by equation (6), then 𝑑𝑘 is a descent
direction for all 𝑘 ∈ N. This condition must be satisfied

𝑔𝑡𝑘𝑑𝑘 = −‖𝑔𝑘‖2 ∀𝑘 ⩾ 0. (8)

Proof. For 𝑘 = 0, we have 𝑑0 = −𝑔0, then

𝑔𝑡0𝑑0 = −‖𝑔0‖2 .

For 𝑘 ⩾ 1, from condition (5), we can deduce that the descent direction satisfies. ■

Algorithm 1. We present our algorithm in the following steps
Step0: Choose a starting point 𝑥0 ∈ R𝑛 and the parameter 𝜇 > 1, 𝜀 > 0.
Compute 𝑓0 = 𝑓(𝑥0) and 𝑔0 = ∇𝑓(𝑥0).
Set 𝑑0 = −𝑔0 and 𝑘 = 0.
Step1: If ‖𝑔𝑘‖ ≤ 𝜀 stop.
Otherwise, go to step2.
Step2: Determine the step lenght 𝛼𝑘 with Wolfe line search conditions (2), (3).
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Step3: Compute 𝑔𝑘 = ∇𝑓(𝑥𝑘), 𝑦𝑘 = 𝑔𝑘 − 𝑔𝑘−1 and 𝑠𝑘 = 𝑥𝑘 − 𝑥𝑘−1.
Step4: Calculate the direction 𝑑𝑘 = −𝑔𝑘 +𝛽MDY

𝑘 𝑑𝑘−1−𝜔𝑘𝑠𝑘−1. with 𝛽MDY
𝑘 formula (1) with

𝜇 > 1 and 𝜔𝑘 defined by (6).
Step5: Generate the next iterate by 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘.
Step6: Set 𝑘 = 𝑘 + 1, then return to Step1.

2. Global convergence

In this section, we focus on examining the global convergence of algorithm 1. Therefore, it
is essential to consider the following two fundamental assumptions.

Assumption 1. Let 𝑓 : R𝑛 −→ R. The level set 𝛤 = {𝑥 ∈ R𝑛 : 𝑓(𝑥) ≤ 𝑓(𝑥0)} is
bounded.

Assumption 2. 𝑓 is a continuously differentiable function in a neighborhood ℵ of 𝛤 .
Namely, there exists a constant 𝜒 > 0, such that

‖𝑥‖ ⩽ 𝜒 ∀𝑥 ∈ ℵ. (9)

Its gradient 𝑔(𝑥) is Lipschitz continuous in ℵ, namely, there exists a constant 𝐿 > 0, such
that

|| 𝑔(𝑥1)− 𝑔(𝑥2) ||⩽ 𝐿 || 𝑥1 − 𝑥2 || ∀𝑥1, 𝑥2 ∈ ℵ. (10)

Remark 1. Applying assumptions 1 and 2, we can conclude that for all 𝑥 ∈ ℵ there
exists a positive constant 𝜈 > 0, satisfying the following condition

|| 𝑔(𝑥) ||≤ 𝜈 ∀𝑥 ∈ ℵ. (11)

In order to establish the global convergence of our method, we rely on the following two
results.

Lemma 1. Assuming that assumptions 1 and 2 are satisfied, let’s consider the sequence
{𝑥𝑘}𝑘∈N generated by algorithm 1. Additionally, let 𝑑𝑘 ∈ R be a descent direction based
on the condition (8), and 𝛼𝑘 be obtained through Wolfe line search (2), (3). If we have the
following condition

∞∑︁
𝑘=0

1

|| 𝑑𝑘 ||2
= ∞. (12)

Then

lim
𝑘→∞

inf || 𝑔𝑘 ||= 0.

Lemma 2. [34] Suppose that assumptions 1 and 2 hold, and the sequence {𝑥𝑘}𝑘∈N
is generated by the algorithm 1. Additionally, let 𝑑𝑘 ∈ R be a descent direction by the
condition (8), and 𝛼𝑘 satisfies the Wolfe line search (2), (3). Then, under these conditions,
we can conclude that

𝛼𝑘−1 ⩾
(1− 𝜎) | 𝑔𝑡𝑘−1𝑑𝑘−1 |

𝐿 || 𝑑𝑘−1 ||2
. (13)
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Proof. By using the Wolfe conditions (2), (3), along with applying the Cauchy Schwarz
inequality and the condition (10), we get

𝐿𝛼𝑘−1 ‖𝑑𝑘−1‖2 ⩾ 𝑑𝑡𝑘−1(𝑔𝑘 − 𝑔𝑘−1) ⩾ (1− 𝜎) | 𝑔𝑡𝑘−1𝑑𝑘−1 | .

Hence, we have demonstrated the validity of (13). ■

Remark 2. From lemma 1, it follows that the value of 𝛼𝑘 obtained through algorithm 1
is not equal to zero. Consequently, there exists a positive constant 𝜁 > 0 such that

𝛼𝑘 ⩾ 𝜁 ∀𝑘 ≥ 0. (14)

To establish the global convergence of our modified algorithm 1, we introduce the follow-
ing theorem:

Theorem 2. Let {𝑥𝑘}𝑘∈N be the sequence generated by algorithm 1, with 𝑑𝑘 calculated
using (4) such that it satisfies the condition for being a descent direction according to (8).
Additionally, 𝛼𝑘 is obtained through the Wolfe line search (2), (3). Assuming that assump-
tions 1 and 2 hold and the condition (12) is satisfied, then

lim
𝑘→∞

inf || 𝑔𝑘 ||= 0. (15)

Proof. We will prove by contradiction. Let’s assume that (15) is not true, which means
there exists 𝜀 > 0 such that for all 𝑘 ⩾ 0, the following condition holds

|| 𝑔𝑘 ||> 𝜀 ∀𝑘 ≥ 0. (16)

By using the definition of 𝛽MDY
𝑘 and the Wolfe line search condition (3), we get

⃒⃒
𝛽MDY
𝑘

⃒⃒
=

⃒⃒⃒⃒
⃒ ‖𝑔𝑘‖2

𝜇|𝑑𝑡𝑘−1𝑔𝑘|+ 𝑑𝑡𝑘−1𝑦𝑘−1

⃒⃒⃒⃒
⃒ ⩽ ‖𝑔𝑘‖2

𝑑𝑡𝑘−1𝑦𝑘−1

.

By the Wolfe line search condition (3), we get

⃒⃒
𝛽MDY
𝑘

⃒⃒
⩽

‖𝑔𝑘‖2

(1− 𝜎)
⃒⃒
𝑑𝑡𝑘−1𝑔𝑘−1

⃒⃒ . (17)

On the other hand, considering the definition of 𝑑𝑘 as given in equation (4), we have

𝑑𝑘 = −𝑔𝑘 + 𝛽MDY
𝑘 𝑑𝑘−1 − 𝜔𝑘𝑠𝑘−1.

This implies
‖𝑑𝑘‖ ⩽ ‖𝑔𝑘‖+

⃒⃒
𝛽MDY
𝑘

⃒⃒
‖𝑑𝑘−1‖+ |𝜔𝑘| ‖𝑠𝑘−1‖ .

From (17) and (7), we have

‖𝑑𝑘‖ ⩽ ‖𝑔𝑘‖+
‖𝑔𝑘‖2

(1− 𝜎)
⃒⃒
𝑑𝑡𝑘−1𝑔𝑘−1

⃒⃒ ‖𝑑𝑘−1‖+
‖𝑔𝑘‖2

𝛼𝑘−1(1− 𝜎)
⃒⃒
𝑑𝑡𝑘−1𝑔𝑘−1

⃒⃒ ‖𝑠𝑘−1‖ .

As 𝑠𝑘1 = 𝛼𝑘−1𝑑𝑘−1, so

‖𝑑𝑘‖ ⩽ ‖𝑔𝑘‖+
‖𝑔𝑘‖2

(1− 𝜎)
⃒⃒
𝑑𝑡𝑘−1𝑔𝑘−1

⃒⃒ ‖𝑑𝑘−1‖+
‖𝑔𝑘‖2 ‖𝑑𝑘−1‖

(1− 𝜎)
⃒⃒
𝑑𝑡𝑘−1𝑔𝑘−1

⃒⃒ .
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From 𝛼𝑘−1𝑑𝑘−1 = ‖𝑥𝑘 − 𝑥𝑘−1‖, (11), (9) and (14), we get

‖𝑑𝑘‖ ⩽ 𝜈 + 2
𝜈2𝜒

𝜁(1− 𝜎)
⃒⃒
𝑑𝑡𝑘−1𝑔𝑘−1

⃒⃒ .
By (8) and (16), we have

‖𝑑𝑘‖ ⩽ 𝛥.

Where 𝛥 = 𝜈 + 2
𝜈2𝜒

𝜁(1− 𝜎)𝜀2
.

Therefore, by applying Lemma 1, we can conclude that equation (15) is true. This contradicts
equation (16), leading us to the conclusion that (15) holds. Thus, we have proven (15). ■

3. Numerical results

In this section, we provide numerical test results that compare the performance of our TTCG
algorithm 1, which implements the Wolfe line search conditions (2), (3) with 𝜌 = 0.0001
and 𝜎 = 0.1, using the parameter 𝜇 = 1.1. We compare it with three conjugate gradient
methods MDY (1) with the parameter 𝜇 = 1.1, TTFR [25] with Armijio line search and
CG-DESCENT as presented in [18]. For that we selected 50 unconstrained optimization
test problems from [35] and each problem was tested with varying numbers of variables:
2, 50, 100, 200, 500, 1000, 2000, 3000, . . . , 3500. In all the algorithms the same stopping
criterion |𝑔𝑘|2 ≤ 10−7 and we considered in this numerical study the maximum number of
iterations is limited to 50 000. All code implementations were compiled in MATLAB 2013,
using the compiler settings on a PC machine with an Intel Core i3-2348M CPU @ 2.30 GHz
and 4.00 GB RAM. To compare the performance of the algorithms, we utilized performance
profiles, as provided by Dolan and Moré [36]. This allowed us to assess and compare the
performance of each algorithm objectively.

Figures 1–3 display the performance profiles of TTMDY versus MDY, TTFR and
CG-DESCENT based on CPU time, the number of iterations, and the number of gradient
evaluations, respectively. These profiles provide a visual representation of the performance

Fig. 1. Performance profile for CPU time
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Fig. 2. Performance profile for the number of iterations

Fig. 3. Performance profile for the number of gradient evaluations

of the algorithms in terms of these metrics, which were evaluation using the profiles of Dolan
and Moré.

Based on the analysis of Fig. 1–3, it is evident that our TTCG algorithm 1 outperforms
the other algorithms in terms of efficiency in terms of time, number of iterations, and error.
This suggests that our algorithm provides better results and requires fewer resources to
converge to the desired solution.

Conclusion

The three-term conjugate gradient method has emerged as a vital tool for tackling large-
scale unconstrained optimization problems. In this paper, we have presented a new TTCG
direction, known as TTMDY, which is derived from the classical MDY conjugate gradient
direction. The TTMDY direction satisfies the descent condition, ensuring effective opti-
mization, and we have demonstrated its global convergence by employing the Wolfe line
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search. Through extensive numerical experiments, we have obtained compelling results,
including measurements of time, number of iterations, and number of gradient evaluations.
These results unequivocally demonstrate that our proposed TTCG algorithm surpasses other
methods in terms of both speed and efficiency. This clear advantage positions our chosen
method as superior to alternative approaches.

Looking ahead, our work opens up several promising perspectives for further research.
Firstly, investigating the application of the TTMDY direction to constrained optimization
problems could provide valuable insights into its adaptability and performance in more com-
plex scenarios. Additionally, exploring variations or extensions of the TTCG method, such
as incorporating different line search conditions or considering different step size selection
strategies, could lead to even more efficient and accurate optimization algorithms.
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Аннотация

В этой статье основное внимание уделяется представлению нового подхода к улучшению
метода сопряженного градиента MDY. Cущественная модификация предполагает включение
третьего члена, который играет решающую роль в определении направления спуска. Вво-
дя этот дополнительный член, мы преобразуем направление сопряженного градиента MDY
в трехчленное направление сопряженного градиента. Целью данной модификации является
улучшение свойств сходимости алгоритма и повышение его производительности при решении
оптимизационных задач.

По сравнению с традиционными методами сопряженных градиентов MDY наш подход
демонстрирует улучшенные свойства сходимости и обеспечивает более высокое качество ре-
шения. Численные результаты подтверждают превосходство предложенного метода с точки
зрения производительности оптимизации. Это подчеркивает потенциал предложенного моди-
фицированного подхода для эффективного решения широкого спектра задач оптимизации
в различных областях. Результаты численных экспериментов убедительно свидетельствуют
об эффективности метода модифицированного направления трехчленного сопряженного гра-
диента.

Ключевые слова: направление сопряженного градиента, направление трехчленного сопря-
женного градиента, условие спуска, глобальная сходимость, условия поиска линии Вульфа,
численные тесты.
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