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The main focus of our paper is a novel approach to enhance the MDY conjugate
gradient direction. The key modification involves incorporating a third term, which
plays a crucial role in determining the descent direction. By introducing this additional
term, we transform the MDY conjugate gradient direction into a three-term conjugate
gradient direction. This modification aims to improve the convergence properties of
the algorithm and enhance its performance in solving optimization problems.

In comparison to traditional MDY conjugate gradient methods, our approach demon-
strates improved convergence properties and achieves higher solution quality. Numer-
ical results confirm the superiority of our proposed method in terms of optimization
performance. This highlights the potential of our modified approach to effectively
tackle a wide range of optimization problems in various domains. The results of our
numerical experiments provide strong evidence of the efficacy of our modified three-
term conjugate gradient direction.

Keywords: conjugate gradient direction, three-term conjugate gradient direction,
descent condition, global convergence, Wolfe line search conditions, numerical tests.

Citation: Meansri K., Benrabia N., Ghiat M., Guebbai H., Hafaidia I.
Introducing TTMDY, a three-term modified DY conjugate gradient direction for
large-scale unconstrained problems. Computational Technologies. 2024; 29(3):81-91.
DOI:10.25743/1CT.2024.29.3.007.

Introduction

Nonlinear conjugate gradient (NCG) algorithms have demonstrated their effectiveness in
addressing large-scale unconstrained optimization problems [1H6]. These types of problems
are commonly expressed in the following general format

min {f(x): x € R"},

where, f : R" — R is continuously differentiable function.
The NCG method generates a sequence {xj},.y for an initial starting point zo € R”
using the iterative formula
Tpy1 = Tp + apdy, k >0,

81



82 K. Meansri, N. Benrabia, M. Ghiat, H. Guebbai, 1. Hafaidia

where, x; represents the current iterate point, and «; > 0 denotes the step length of the line
search. The search direction, dj € R" is defined by

[ -a it k=0,
Tl —gk + Bediy ik > 1,

where g = V f(xy) represents the gradient of the function f at point xy, and the parameter
Br € R* is known as the conjugate gradient coefficient. There are several classical formulas
for By, including the Hestenes—Stiefel [7] (1952), Fletcher Reeves [8] (1964), Polak —Ribiére —
Polyak [9,10] (1969), Conjugate Descent [11] (1987), Liu—Storey [12] (1991), Dai— Yuan [13]
(1999) formulas, which are respectively
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where y_1 = gr — gr—1 and | - | is the Euclidean norm.

In unconstrained optimization problems, there exist various methods for selecting S,
commonly referred to as classical conjugate gradient methods. Numerous researchers have
introduced modifications to f;. For instance, Yu.E. Nesterov, A.V. Gasnikov and their
colleagues, who have presented a lot of work in this field, are among the references [14-17].
On the other hand, Hager and Zhang [18] proposed a modification of the HS method, which
is known as the CG-DESCENT method, as follows

]JgV+:ma‘X{ﬁIJcVank}7

where,
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By introducing a constant n > 0, this modification demonstrates that the resulting descent
vector is more efficient when combined with an inexact line search. On the other hand,
H. Liu, S. Sun and X. Li [19] introduced a modification to the classical DY method in order

to achieve SMPY (modification for Dai—Yuan method), it is given by

2
MDY ”gk”

= ;o> 1 (1)
g pldl,_ gl + df,_yk—

Which satisfies the sufficient descent condition gidy < —(1 — 1/u)||gr]|?, and is globally
convergent when combined the Wolfe line search [20, 21], as give by

[z + ardy) — f(zr) < pakgrds, (2)
Grdi—1 > 09l _1dy_1, (3)

where 0 < p <o < 1.
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To enhance the efficiency of classical conjugate gradient directions in large-scale problems,
researchers have recently proposed three-term conjugate gradient (TTCG) directions. Many
of these directions are derived from the classical conjugate gradient direction. Beale [22] was
the first to introduce a TTCG direction using 515, in the form

dp = —gi + Bidy_1 + dy,

t
where, 1 <1 < k and 7, = % Nazareth [23] proposed the TTCG direction to obtain
19

t t
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dp = —Yp—1 + (1:2—) dp—2 + (fl—) dp—1.
yk_Qdk—Q yk_ldk—l

Zhang et al |24} [25] introduced a three term PRP conjugate gradient method (TTPRP) and
a three term FR conjugate gradient method (TTFR). These two modifications ensure that
a descent direction is obtained, and when combined with Armijo line search, they guarantee
global convergence. Building upon these ideas, Zhang et al. [26] proposed a three term
HS conjugate gradient method (TTHS), which also provides a descent direction and global
convergence with the standard Wolfe line search. For further exploration in this category,
we can provide you with some references [27-33].

Our work focuses on the development of a new TTCG (three-term conjugate gradient) di-
rection, which involves incorporating an additional term, wy s, _1, into the classical MDY con-
jugate gradient direction. The parameter wy, is chosen to satisfy the condition g!dy =—|gx||?,
ensuring the formulation of the desired equation. By introducing this new direction, we
aim to guarantee a descent direction and establish the global convergence of our method by
adhering to the Wolfe line search conditions , .

To assess the effectiveness of our proposed TTCG method, we conducted a series of
numerical experiments. These experiments involved measuring various factors, including
computation time, the number of iterations, and the number of gradient evaluations. These
quantitative evaluations were carried out to validate and demonstrate the efficacy of our
novel approach.

1. New three-term conjugate gradient direction

In this section, our study focuses on modifying the direction of the MDY conjugate gradient.
Firstly, we start with the classical DY conjugate gradient direction, which can be expressed
using the following formula

dk — { — 9k, k= 07

—gk + BPVdr1, k>1,

gl
where, fPY = 20
¥ dz_lyk—l
Secondly, H. Liu, S. Sun and X. Li [19] introduced a modification to the classical DY
method in order to obtain the conjugate gradient direction. This modification can be repre-

sented by the following formula
d. = —9o, k= 07
T o+ B d, k21

where the parameter 3MPY is defined in equation .
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In our new method, we have modified the MDY conjugate gradient direction to a three
term conjugate gradient direction by introducing the additional term wgsg_1. We refer to
this modified direction as TTMDY. Therefore, the new direction can be obtained by

—4o, k= 07
= 4
a { —gi + BV — wisp—1, k> 1. (4)

Where, the term wy, determined by our method to verify the descent direction, and s,_; =
T — Tp—1 = Qgp_1dp_1.
We have
dy = =g + By DY djp—1 — WySk—1.

By multiplying it by g}, and utilizing equation ([1|), we obtain
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Proposition 1. wy is well defined
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|wi| =

By the Wolfe line search condition (3)), and sx_1; = ay_1dk_1, we have

|wk| < .
S o (1— o) |di_ gr |

The following theorem is required to prove the descent direction of proposed method.

Theorem 1. If u > land the definition of wy given by equation (@, then dy is a descent
direction for all k € N. This condition must be satisfied

ghd = = llgxl® Yk > 0. (8)
Proof. For k = 0, we have dy = —gp, then

2
godo =~ llgoll”-
For k > 1, from condition , we can deduce that the descent direction satisfies. |

Algorithm 1. We present our algorithm in the following steps
Step0: Choose a starting point xy € R™ and the parameter y > 1, ¢ > 0.
Compute fo = f(zo) and go = V (o).
Set do = —4go and k = 0.
Stepl: If ||gx|| < e stop.
Otherwise, go to step2.
Step2: Determine the step lenght o with Wolfe line search conditions , .
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Step3: Compute g, = Vf(x), ys = gk — gr—1 and s, = T — Tp_1.

Step4: Calculate the direction dy = —gy + BYPYdg_1 — wisk_1. with BMPY formula (1)) with
1> 1 and wy defined by @

Stepbd: Generate the next iterate by zp11 = xx + agdy.

Step6: Set k = k + 1, then return to Stepl.

2. Global convergence

In this section, we focus on examining the global convergence of algorithm I} Therefore, it
is essential to consider the following two fundamental assumptions.

Assumption 1. Let f : R" — R. The level set I' = {z € R": f(x) < f(zo)} is
bounded.

Assumption 2. f is a continuously differentiable function in a neighborhood W of I".
Namely, there exists a constant y > 0, such that

lz]| < x Vo € N. (9)

Its gradient g(x) is Lipschitz continuous in R, namely, there exists a constant L > 0, such
that

|| g(x1) — g(@2) [|[< L || 71 — 22 || Vi, xy €N (10)

Remark 1. Applying assumptions [I] and [2| we can conclude that for all z € X there
exists a positive constant v > 0, satisfying the following condition

| g(z) ||I<Kv VzeX (11)

In order to establish the global convergence of our method, we rely on the following two
results.

Lemma 1. Assuming that assumptions [1| and [2| are satisfied, let’s consider the sequence
{@k}en generated by algorithm . Additionally, let di, € R be a descent direction based

on the condition (§)), and aj be obtained through Wolfe line search , . If we have the
following condition

=1
= 0. 12
24T (12

Then
lim inf || gx ||= 0.
k—o00

Lemma 2. [34] Suppose that assumptions |1| and 2| hold, and the sequence {x}, .y
is generated by the algorithm [T Additionally, let dy € R be a descent direction by the
condition , and oy, satisfies the Wolfe line search , . Then, under these conditions,
we can conclude that
(1—0) | geydi-1|

L || de—y [|?

(13)

1 =
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Proof. By using the Wolfe conditions , , along with applying the Cauchy Schwarz
inequality and the condition , we get

Loy ||dp—1))* > di_y (gx — ge1) = (1 — o) | gh_ydir | -
Hence, we have demonstrated the validity of . |

Remark 2. From lemmal[I] it follows that the value of ay, obtained through algorithm
is not equal to zero. Consequently, there exists a positive constant ( > 0 such that

ap > ¢ Yk > 0. (14)

To establish the global convergence of our modified algorithm [T} we introduce the follow-
ing theorem:

Theorem 2. Let {w}}, oy be the sequence generated by algorithm |1}, with dj, calculated
using such that it satisfies the condition for being a descent direction according to (@
Additionally, oy is obtained through the Wolfe line search (@, (@ Assuming that assump-
tions cmd hold and the condition (@ 18 satisfied, then

lim inf || g ||= 0. (15)
k—o0
Proof. We will prove by contradiction. Let’s assume that is not true, which means
there exists € > 0 such that for all £ > 0, the following condition holds
| g l|>¢e Vk=0. (16)

By using the definition of SYPY and the Wolfe line search condition ({3)), we get

2 2
’6£ADY| _ Hgk” < ||9kH '
pldy ygel + df_yyra | T diyyka

By the Wolfe line search condition , we get

2
MDY | 9wl ‘ 17
‘6k‘ ‘ (1 - U) \di,lgk_ﬂ ( )

On the other hand, considering the definition of dj as given in equation (4)), we have
di = =gk + Bp >V dj—1 — wiSp-1.
This implies
il < Nlgill + |8 | -]l + loi] [l -
From and , we have

2
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As s, = ag_1dg_1, SO

llgxl” | di—1]|
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ldll < llgell + k]l +
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From oy_1di_1 = ||xp — x4, , @D and , we get

VQX
§(1 - U) ‘d};,lgk—ﬂ '

[dell < v +2

By and , we have
]l < A.

V2X

C(1—o0)e?
Therefore, by applying Lemma , we can conclude that equation is true. This contradicts
equation , leading us to the conclusion that holds. Thus, we have proven . [ |

Where A =v +2

3. Numerical results

In this section, we provide numerical test results that compare the performance of our TTCG
algorithm , which implements the Wolfe line search conditions , with p = 0.0001
and ¢ = 0.1, using the parameter ;4 = 1.1. We compare it with three conjugate gradient
methods MDY with the parameter p = 1.1, TTFR [25] with Armijio line search and
CG-DESCENT as presented in [18]. For that we selected 50 unconstrained optimization
test problems from [35] and each problem was tested with varying numbers of variables:
2, 50, 100, 200, 500, 1000, 2000, 3000, ..., 3500. In all the algorithms the same stopping
criterion |gg|* < 1077 and we considered in this numerical study the maximum number of
iterations is limited to 50 000. All code implementations were compiled in MATLAB 2013,
using the compiler settings on a PC machine with an Intel Core i3-2348M CPU @ 2.30 GHz
and 4.00 GB RAM. To compare the performance of the algorithms, we utilized performance
profiles, as provided by Dolan and Moré [36]. This allowed us to assess and compare the
performance of each algorithm objectively.

Figures display the performance profiles of TTMDY versus MDY, TTFR and
CG-DESCENT based on CPU time, the number of iterations, and the number of gradient
evaluations, respectively. These profiles provide a visual representation of the performance
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Fig. 1. Performance profile for CPU time
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Fig. 3. Performance profile for the number of gradient evaluations

of the algorithms in terms of these metrics, which were evaluation using the profiles of Dolan
and Moré.

Based on the analysis of Fig. [[H3] it is evident that our TTCG algorithm [I] outperforms
the other algorithms in terms of efficiency in terms of time, number of iterations, and error.
This suggests that our algorithm provides better results and requires fewer resources to
converge to the desired solution.

Conclusion

The three-term conjugate gradient method has emerged as a vital tool for tackling large-
scale unconstrained optimization problems. In this paper, we have presented a new TTCG
direction, known as TTMDY, which is derived from the classical MDY conjugate gradient
direction. The TTMDY direction satisfies the descent condition, ensuring effective opti-
mization, and we have demonstrated its global convergence by employing the Wolfe line
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search. Through extensive numerical experiments, we have obtained compelling results,
including measurements of time, number of iterations, and number of gradient evaluations.
These results unequivocally demonstrate that our proposed TTCG algorithm surpasses other
methods in terms of both speed and efficiency. This clear advantage positions our chosen
method as superior to alternative approaches.

Looking ahead, our work opens up several promising perspectives for further research.

Firstly, investigating the application of the TTMDY direction to constrained optimization
problems could provide valuable insights into its adaptability and performance in more com-
plex scenarios. Additionally, exploring variations or extensions of the TTCG method, such
as incorporating different line search conditions or considering different step size selection
strategies, could lead to even more efficient and accurate optimization algorithms.
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AnHOTaUs

B sT0i1 crarbe ocnoBHOE BHUMAHUE Y/IEJISETCs MPEJICTABIEHUIO HOBOTO MOJIXOA K YIIy4IIEHUIO
Meroza cotpsikerHoro rpajguenta MDY. CymiectBennast MouduKaIUs IPEJIIOIAraeT BKIIOUEHNE
TPEThEro 4YjeHa, KOTOPbII HI'DAET PENIAIONLYI0 POJIb B ONpEJeeHNN HallpaBJieHus ciiycka. Bso-
JIst 9TOT JIOTIOJIHUTEJIBHBIA JIeH, MBI IIpeoOpa3yeM HAIPaBJIEHUE COIpPsKeHHOTo rpajueHta MDY
B TPEXUJIEHHOE HAIIPABJIEHUE COIPSKEHHOIrO rpaguenTta. lle/nbio maHHON MOAMMUKAIINN SIBJISAETCH
YIIyUIlIeHUE CBONCTB CXOJIMMOCTHU AJITOPUTMA U TOBBIIIEHUE €0 MPOU3BOIUTEILHOCTH MIPU PEIeHUN
OIITUMHM3aIIMOHHBIX 3a/Jda4.

Ilo cpaBHeHMIO ¢ TPaJIUIMOHHBIMHA METOJAMH CONPsKEHHBIX T'pajaueHToB MDY Hamr momaxo
JEMOHCTPUPYET YJIYUIIIEHHBIE CBOWCTBA CXOAUMOCTH U ODecrevunBaeT 0oJiee BBICOKOE KAUeCTBO pe-
menus. JucC/IeHHbIE PEe3YJIbTATHI [MOITBEPXKIAIOT IPEBOCXO/ICTBO IPEIJIOKEHHOI'O METO/A C TOYKHU
3peHus] TPOU3BOJUTETBHOCTH ONTUMHU3AIUN. DTO MOMIEPKUBAET MTOTEHITUAJ TTPEJJIOKEHHOTO MOJIH-
dunupoBaHHOro MOAX0MA A ID@PEKTUBHOTO PEIIEHUs IIMPOKOr0 CIIEKTPa 3a/ad ONTUMHU3AIITT
B pa3/IMIHBIX 00J1acTsIX. Pe3yIbTarhl YMC/IEHHBIX YKCIEPUMEHTOB yOEIUTE/IbHO CBUIETEBCTBYIOT
006 3 PEKTUBHOCTH METOIa MOANMUIIMPOBAHHOIO HAIIPABIEHNS TPEXWIEHHOIO COMPSI)KEHHOTO T'Pa-
JIMEHTA.

Karouesvie crosa: HATIpaBICHUE CONPSIZKEHHOT'O I'PAINEHTa, HAIIPABICHAE TPEXIJICHHOTO COIPSsI-
JKEHHOT'O T'DAJIMEeHTa, YCJIOBUE CIIyCKa, TVIODAJIbHAS CXOJUMOCTb, YCJIOBUS IMOMCKa JinHUU Byibda,
YUCJIEHHBbIE TE€CTHI.
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