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При решении на адаптивных сетках задач с пограничными и внутренними сло-
ями весьма желательно пользоваться разностными схемами, сходящимися равно-
мерно относительно малого параметра при стремлении шагов сетки к нулю. Одна-
ко равномерно сходящиеся схемы обычно имеют лишь первый порядок точности,
а схемы высокой точности не сходятся равномерно. В работе исследуются свойства
оригинальной модификации противопоточной схемы и построенных на ее основе
двух гибридных схем, имеющих второй порядок точности и сходящихся равномер-
но по малому параметру. На модельной задаче с пограничным слоем экспоненци-
ального типа на специальных адаптивных сетках проведены сравнения численных
результатов, подтвердивших эффективность построенных гибридных схем в срав-
нении с известными однородными схемами.

Ключевые слова: равномерная сходимость, адаптивная сетка, пограничный слой,
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Введение

Важное место в различных разделах науки занимают задачи, которые описываются
системами уравнений с малым параметром (коэффициентом диффузии, вязкости) при
старших производных, хорошей и одновременно простой моделью которых является
краевая задача

−𝜀𝑢𝑥𝑥 + 𝑎(𝑥)𝑢𝑥 + 𝑐(𝑥)𝑢 = 𝑓(𝑥), 𝑥 ∈ (0, 1), 𝑢(0) = 𝑢0, 𝑢(1) = 𝑢1. (1)

Таким задачам присущи решения с пограничными и внутренними слоями различных
типов, сложные для численного моделирования. При их численной реализации размер
шага сетки лимитируется чрезвычайно малой шириной слоя при быстром изменении
решения в нем, что в случае равномерных сеток заставляет формировать чрезвычайно
густую сетку всюду, в том числе в областях умеренного изменения решения. Следова-
тельно, для проведения успешных и экономичных расчетов целесообразно использовать
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неравномерные сетки со сгущениями, характер которых согласован с расположением,
видом и масштабом слоев. При этом весьма желательно использовать сеточные мето-
ды, имеющие достаточно хорошую точность и сходящиеся равномерно по малому па-
раметру. Обычно эти требования альтернативны: схемы высокой точности не сходятся
равномерно по малому параметру, а равномерно сходящиеся схемы имеют лишь первый
порядок точности.

Часто при решении краевых задач заранее известны место расположения слоя и ха-
рактер поведения решения в нем, что позволяет задать явно подходящее преобразо-
вание для генерации адаптивной сетки, а не решать совместно с основным уравне-
нием дифференциальное уравнение для координатного отображения. Для уравнений
типа (1) первые формулы координатных преобразований с явной зависимостью от ма-
лого параметра предложены в работах [1–3]. На их основе были разработаны численные
алгоритмы для решения задач с экспоненциальными слоями [4–6]. Однако указанные
выше зависимости оказались пригодными исключительно для экспоненциальных сло-
ев. Для неэкспоненциальных слоев (степенных, логарифмических, смешанных) первые
результаты по построению координатных отображений с явной зависимостью от 𝜀 опуб-
ликованы в работах [7–9].

Для всех указанных выше методов построения адаптивных сеток сходимость, рав-
номерная по 𝜀, доказана для классической противопоточной схемы (см., например, [9]).
Доказательство опирается на оценки производных решения и на свойство обратной
монотонности [9, 10], вытекающее из диагонального преобладания матрицы противопо-
точной схемы.

Однако известны интересные аналоги противопоточной схемы, которые могут по-
служить материалом для построения равномерно сходящихся схем второго порядка.
Одна из них, известная как схема Булеева [11], отличается от классической наличием
специального положительного коэффициента при второй производной, с помощью кото-
рого изящно компенсируется главный член погрешности односторонней аппроксимации
конвективного члена. В работе [12] предложена другая оригинальная модификация про-
тивопоточной схемы, повышающая точность в сравнении с классической схемой. Идея
состоит в том, что в уравнении (1) все слагаемые, кроме первого, аппроксимируются
симметрично относительно полуцелого узла с той стороны, где аппроксимируется по-
ток. Погрешность схемы составляет величину 𝑂(𝜀ℎ) формально первого порядка, но
при малой вязкости достигающую второго порядка вне слоя. В работе [13] на специ-
альной кусочно-равномерной сетке Шишкина [3] (с мелким шагом ℎ = 𝑂(𝜀/𝑁) в слое
и крупным 𝐻 = 𝑂(1/𝑁) вне слоя, где 𝑁 — общее число шагов сетки) для сохранения
в целом второго порядка предложена гибридная схема, представляющая собой ком-
бинацию схемы [12] вне слоя с центрально-разностной схемой внутри слоя. Равномер-
ная сходимость этой гибридной схемы достигается тем, что диагональное преобладание
центрально-разностной схемы обеспечивается именно малостью шага в слое.

В работе [14] проведено сравнение схем до четвертого порядка точности для реше-
ния задач со слоями различных типов, а в работе [15] испытано несколько популярных
схем на адаптивных сетках, в том числе схема Булеева [11], имеющая формально второй
порядок аппроксимации всюду. Однако анализ погрешности схемы при наличии слоев
показал [15], что вне слоя ее порядок, к сожалению, падает до первого. По этой причине
расчеты по ней при малой вязкости вне слоя не лучше, чем по простой противопоточной
схеме первого порядка, хотя внутри слоя реальная точность выше. Это легко наблюда-
ется на решениях, вариация которых вне слоя существенна. Если же слой примыкает
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к области покоя, где вариация решения мала, то понижение порядка схемы вне слоя не
имеет возможности проявиться.

В целом ряде численных экспериментов [16] показано, что специальные сетки [17]
с постепенным изменением шага неизменно дают более качественные расчеты, чем ку-
сочно-равномерные сетки [3] с резкой сменой шага. В связи с этим возник вопрос, воз-
можно ли применение аналога гибридной схемы [13] в общем случае неравномерных
сеток. Проблема заключается в том, что при изменении размера шага сетки в пределах
слоя (в отличие от его постоянства на сетке [3]) для аналога центрально-разностной
схемы сложно гарантировать диагональное преобладание по всей ширине слоя.

Поэтому основным пунктом данной работы стало исследование другой гибридной
схемы, в которой внутри слоя вместо центрально-разностной схемы используется схе-
ма Булеева [11]. Такой выбор сделан в связи с аппроксимационными свойствами схемы
Булеева, имеющей второй порядок в слое, где модификация [12] его теряет, и наоборот,
имеющей первый порядок вне слоя, где [12] имеет второй. Этот симбиоз одновременно
имеет и второй порядок аппроксимации всюду, и безусловное диагональное преоблада-
ние при любой вязкости и любых шагах, оно в свою очередь влечет свойство обратной
монотонности, из которого по технологии [9, 10] доказывается сходимость, равномерная
относительно малого параметра.

1. Разностные схемы

Существуют различные схемы для решения задачи (1). Обычно входящая в оценку
ошибки константа зависит от параметра 𝜀, стремясь к бесконечности при 𝜀 → 0, что
означает неравномерный характер сходимости схемы относительно малого параметра 𝜀.
Для решения задач со сломи желательно использовать схемы, равномерно сходящие-
ся при стремлении к нулю малого параметра. На равномерных, а также и на произ-
вольных неравномерных сетках это невозможно. Однако на некоторых специальных
последовательностях неравномерных сеток [1, 3, 8], зависящих от малого параметра,
для простейшей противопоточной схемы равномерная сходимость доказана.

Противопоточная классическая схема имеет вид

−𝜀Λ𝑢𝑖 + 𝑎𝑖∆±𝑢𝑖 + 𝑐𝑖𝑢𝑖 = 𝑓𝑖, (2)

где ∆± — простейшие односторонние аналоги оператора дифференцирования (∆− при
𝑎𝑖 > 0 и ∆+ в противном случае), а Λ = 2(∆+ − ∆−)/𝑠 — аналог оператора двойного
дифференцирования, 𝑠 = ℎ+ + ℎ− — сумма местных значений шага сетки справа ℎ+

и слева ℎ− от данного узла.
Для большинства схем второго порядка, построенных на основе комбинаций левой

и правой разделенных разностей, например для схемы

−𝜀Λ𝑢𝑖 + 𝑎𝑖∆𝑢𝑖 + 𝑐𝑖𝑢𝑖 = 𝑓𝑖, ∆ =
∆−ℎ+ +∆+ℎ−

𝑠
, (3)

при равномерной сетке, превращающейся в схему с центральной разностью, диагональ-
ное преобладание имеет место лишь при достаточно малых шагах сетки. При его на-
рушении расчеты могут сопровождаться осцилляциями, и чем меньше коэффициент
вязкости, тем более детальной должна быть сетка, чтобы осцилляции прекратились.
Это определенно свидетельствует об отсутствии равномерной по малому параметру
сходимости схемы.
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В схеме Булеева [11]

−𝜀
1

1 +𝑅
Λ𝑢𝑖 + 𝑎𝑖∆±𝑢+ 𝑐𝑖𝑢𝑖 = 𝑓𝑖, 𝑅 =

|𝑎𝑖|ℎ±

2𝜀
, (4)

за счет специального коэффициента при второй производной формальный порядок
аппроксимации повышается до второго и вместе с тем сохраняется противопоточная
структура с присущим ей диагональным преобладанием. Знаки ± берутся так же, как
в схеме (2), в зависимости от знака коэффициента 𝑎𝑖.

Модификация [12] классической противопоточной схемы (2) имеет вид

−𝜀Λ𝑢𝑖 + 𝑎𝑖±1/2∆±𝑢𝑖 + (𝑐𝑢)𝑖±1/2 = 𝑓𝑖±1/2, (5)

где все величины на полушаге определяются как полусуммы 𝑣𝑖±1/2 = (𝑣𝑖 + 𝑣𝑖±1)/2,
а в индексах ± означает минус при 𝑎𝑖 > 0 и плюс — в противном случае.

Очевидно, в полуцелой точке 𝑥𝑖 ± ℎ±/2 все слагаемые схемы (5), кроме первого,
аппроксимированы симметрично, а следовательно со вторым порядком. Разложение
первого слагаемого в центральной точке шаблона имеет вид

Λ𝑢𝑖 =

(︂
𝑢𝑥𝑥 +

ℎ+ − ℎ−

3
𝑢𝑥𝑥𝑥

)︂
(𝑥𝑖) +𝑂(ℎ2), (6)

в полуцелом узле 𝑧𝑖 = 𝑥𝑖±ℎ±/2 ввиду равенства 𝑥𝑖 = 𝑧𝑖∓ℎ±/2 оно преобразуется к виду

Λ𝑢𝑖 =

(︂
𝑢𝑥𝑥 ∓

ℎ± + 2ℎ∓

6
𝑢𝑥𝑥𝑥

)︂
(𝑧𝑖) +𝑂(ℎ2).

Отсюда следует формальная аппроксимация схемы (5) с погрешностью 𝑂(𝜀ℎ+ ℎ2).
Главные члены разложения погрешности схемы Булеева (4) и модифицированной

противопоточной схемы (5) имеют соответственно вид

Ψ1 = −𝜀
𝑅2

1 +𝑅
𝑢𝑥𝑥 +

|𝑎(𝑥𝑖)|ℎ2
± − 2(ℎ+ − ℎ−)𝜀

6
𝑢𝑥𝑥𝑥 + . . . Ψ2 = −𝜀

ℎ± + 2ℎ∓

6
𝑢𝑥𝑥𝑥 + . . .

В экспоненциальном слое масштаба 𝑘 производные решения 𝑢(𝑚) = 𝑂(1/𝜀𝑘+𝑚−1), шаги
сетки ℎ± = 𝑂(𝜀/𝑁), разность соседних шагов ℎ+ − ℎ− = 𝑂(𝜀/𝑁2), где 𝑁 — общее
число шагов сетки, поэтому внутри слоя схемы имеют соответственно второй и первый
порядки:

Ψ1 =
1

𝑁2𝜀𝑘
, Ψ2 =

1

𝑁𝜀𝑘
.

Вне слоя производные ограничены константами, не зависящими от малого параметра,
шаги сетки ℎ± = 𝑂(1/𝑁), а их разность ℎ+ − ℎ− = 𝑂(1/𝑁2), поэтому здесь

Ψ1 =
1

𝑁2𝜀+𝑁
, Ψ2 =

𝜀

𝑁
+

1

𝑁2
.

Тогда при умеренных 𝜀 = 𝑂(1) вне слоя погрешности имеют соответственно второй
и первый порядки, но при малых 𝜀 ∼ 1/𝑁 и ниже, наоборот, первый и второй.

С учетом сказанного выше представляет интерес исследовать численно две гибрид-
ные схемы. Первая — это прямое обобщение на случай неравномерных сеток комбина-
ции [13], состоящей из модификации (5) вне слоя и схемы (3) с центральной разностью
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в слое. В оригинальной реализации [13] используется равномерная сетка в слое, и диа-
гонального преобладания легко добиться, ограничив шаг в слое. При неравномерной
сетке шаг от самого малого постепенно увеличивается по мере удаления от границы,
и в этом случае следует контролировать диагональное преобладание во всей ширине
слоя. Однако следует заметить, что вполне естественное сгущение сетки внутри слоя
само по себе является фактором, уменьшающим размеры шагов и способствующим
выполнению этого свойства. Во второй гибридной схеме мы намерены вместо схемы
с центральной разностью (3) в слое использовать схему Булеева (4). Эта идея пред-
ставляется полезной, поскольку этим всюду в области достигается и второй порядок
аппроксимации, и безусловное диагональное преобладание, не требующее контроля.

2. Специальные сетки

Алгоритмы построения специальных (явно задаваемых и сгущающихся в слоях) се-
ток, используемых в данной работе, подробно описаны в [14, 15] и основаны на мето-
дах, изложенных в монографии [17]. Для генерации разностных сеток, сгущающихся
в экспоненциальных слоях возле точки 𝑥0 = 0, строится преобразование класса 𝐶 𝑙[0, 1],
устраняющее в слое экспоненциальные особенности масштаба 𝑘 до порядка 𝑛 (т. е. обес-
печивающее ограниченность производных решения до порядка 𝑛 по новой переменной).
С этой целью вблизи 𝜉 = 0 определим функцию 𝑥 = 𝑋(𝜉, 𝜀, . . . ) в виде

𝑥 = 𝑋(𝜉, 𝜀, 𝑘, 𝑛, 𝑎) = 𝜀𝑘
(︀
(1− 𝑑𝜉)−1/𝑎 − 1

)︀
, 0 ≤ 𝜉 ≤ 𝜉0, (7)

где 𝑑 = (1− 𝜀𝑘𝛽)/𝜉0 ≥ 1 +𝑚1 > 1, 𝛽 = 𝑎/(1 + 𝑛𝑎), при этом 𝑎 — константа, отделенная
от нуля (𝑎 ≥ 𝑚2 > 0). Для экспоненциальных слоев константа 𝑎 может быть задана
произвольно, а для степенных слоев первого рода должна удовлетворять некоторому
ограничению сверху. Такое преобразование в частном случае 𝑎 = 1 было впервые опуб-
ликовано в [2], а при произвольном 𝑎 > 1 — в [7]. Для других типов слоев (степенных
второго рода, логарифмических, смешанных) вместо функции (7) необходимо исполь-
зовать иные зависимости. Подробности изложены в [14, 15].

На оставшуюся часть отрезка 𝜉0 < 𝜉 ≤ 1 функция 𝑥 = 𝑋(𝜉, . . . ) с заданной степенью
гладкости 𝑙 в точке склейки продолжается полиномом, который строится как разложе-
ние в окрестности точки 𝜉0 по формуле Тейлора функции 𝑋(𝜉, . . . ) со специальным
остаточным членом, сформированной по функции и ее производным, явно определяе-
мым. Затем построенная таким образом составная функция нормируется к значению
𝑋(1, . . . ), в результате получается отображение 𝑥 = 𝜑(𝜉, . . . ) = 𝑋(𝜉, . . . )/𝑋(1, . . . ) на
единичный отрезок, которое генерирует сетку на отрезке 0 ≤ 𝑥 ≤ 1. При этом уз-
лы исходной сетки, расположенные левее точки 𝜉0, отображаются в слой, а остальные
узлы отображаются в область вне слоя. Очевидно, при равномерной исходной сетке чис-
ло 𝜉0 означает долю числа шагов сетки, попадающих в слой. В случае 𝜉0 = 1 функция
𝑥 = 𝜑(𝜉, . . . ) определяется на всем промежутке без склейки с полиномом, это иногда
целесообразно в случае логарифмических и смешанных слоев.

3. Результаты численных экспериментов

Все численные эксперименты проведены на тестовой задаче

−𝜀 𝑢𝑥𝑥 − 𝑢𝑥 + (2𝑥+ 1)𝑢 = sin(𝜋𝑥), 𝑢(0) = 0, 𝑢(1) = 0.
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Коэффициент при первой производной отрицателен и отделен от нуля, поэтому
(см. [17]) около нуля решение имеет единственный экспоненциальный пограничный
слой масштаба 𝑘 = 1. Результаты расчета на сетке с числом шагов 𝑁 = 20 при вяз-
кости 𝜀 = 10−3 и значениях параметров преобразования 𝑎 = 2, 𝜉0 = 0.5, 𝑙 = 1, 𝑛 = 2
приведены на рис. 1. Сплошными линиями изображено точное решение в исходных
физических 𝑢(𝑥) и в новых 𝑈(𝜉) = 𝑢(𝑥(𝜉)) переменных, а решения разностных схем
изображены пунктирами и маркерами в новых переменных. Результаты в полной мере
соответствуют ожиданиям.

Противопоточная схема (2) и схема с центральной разностью (3) имеют большие
ошибки всюду, причем последняя сильно осциллирует, схема Булеева (4) точнее в слое,
чем вне слоя, а модифицированная схема (5) — наоборот. Комбинация модифицирован-
ной схемы со схемой с центральной разностью несколько точнее однородной модифи-
цированной схемы. Но лучше всех других результатов выглядит расчет по гибридной
схеме, составленной из схемы Булеева и модифицированной противопоточной схемы.
На рис. 2 представлены результаты решения этой же задачи, но на сетке с удвоенным
числом шагов. Результаты расчетов на более детальной сетке расположились более ком-
пактно, однако легко заметить, что и здесь схемы ранжируются по точности в том же
порядке.

В табл. 1 приведены оценки ошибок в 𝐶-норме, полученные по четырем однородным
схемам и двум гибридным — модифицированной вне слоя, скомбинированной в слое со
схемой с центральными разностями (комбинация 1) или со схемой Булеева (комбина-
ция 2). Из таблицы видно, что результаты по гибридным схемам точнее результатов по
однородным схемам, причем наиболее точной оказалась вторая гибридная схема.

В табл. 2 даны результаты серии расчетов, проведенной для этой же задачи по
всем вышеназванным схемам на сетках с довольно большим, но фиксированным числом
шагов 𝑁 = 640. Переменным в этой серии является стремящийся к нулю параметр
вязкости 𝜀. Из табл. 2 видно, что по всем схемам, за исключением схемы с центральной
разностью, ошибки крайне слабо зависят от значения 𝜀, что свидетельствует об их
равномерной сходимости по малому параметру. Схема с центральной разностью при

Рис. 1. Расчет экспоненциального слоя на сетке с 𝑁 = 20
Fig. 1. Calculation of the exponential layer on a grid with 𝑁 = 20
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Рис. 2. Расчет экспоненциального слоя на сетке с 𝑁 = 40
Fig. 2. Calculation of the exponential layer on a grid with 𝑁 = 40

Т а б л и ц а 1. Оценки ошибок на сгущающихся сетках при 𝜀 = 10−3

Table 1. Error estimates on condensing grids at 𝜀 = 10−3

𝑁
Противо-
поточная

Модифици-
рованная

Центрально-
разностная

Схема
Булеева Комбинация 1 Комбинация 2

20 3.24e−01 3.29e−01 3.32e−01 3.24e−01 3.29e−01 3.29e−01
40 2.10e−02 1.67e−02 1.93e−01 1.09e−02 9.47e−03 3.55e−03
80 1.10e−02 8.38e−03 3.75e−03 6.58e−03 2.38e−03 8.96e−04
160 5.58e−03 4.172−03 9.76e−04 3.58e−03 6.03e−04 2.36e−04
320 2.81e−03 2.08e−03 2.48e−04 1.85e−03 1.47e−04 6.96e−05
640 1.41e−03 1.04e−03 6.23e−05 9.20e−04 3.43e−05 2.11e−05
1280 7.06e−04 5.19e−04 1.56e−05 4.30e−04 7.41e−06 6.79e−06

Т а б л и ц а 2. Оценки ошибок при 𝜀 → 0 на сетках с 640 шагами
Table 2. Error estimates at 𝜀 → 0 on grids with 640 steps

𝜀
Противо-
поточная

Модифици-
рованная

Центрально-
разностная

Схема
Булеева Комбинация 1 Комбинация 2

10−2 1.22e−03 9.38e−04 6.37e−05 3.84e−04 1.62e−04 1.72e−04
10−4 1.47e−03 1.07e−03 6.88e−05 9.98e−04 3.85e−05 1.68e−05
10−6 1.50e−03 1.09e−03 3.05e−01 1.02e−03 3.84e−05 1.70e−05
10−8 1.50e−03 1.10e−03 4.60e+00 1.02e−03 3.84e−05 1.71e−05
10−10 1.51e−03 1.10e−03 4.60e+00 1.02e−03 3.84e−05 1.71e−05

Т а б л и ц а 3. Оценки порядка точности при 𝜀 → 0 на сетках с 640 шагами
Table 3. Accuracy order estimates at 𝜀 → 0 on grids with 640 steps

𝜀
Противо-
поточная

Модифици-
рованная

Центрально-
разностная

Схема
Булеева Комбинация 1 Комбинация 2

1.0e−02 0.990 0.996 1.993 1.508 1.018 1.099
1.0e−04 0.995 1.002 10.552 0.966 1.996 1.888
1.0e−06 0.994 1.001 3.893 0.963 1.979 1.910
1.0e−08 0.994 1.001 0.813 0.963 1.888 1.911
1.0e−10 0.994 1.001 0.813 0.963 1.774 1.911
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умеренной вязкости имеет неплохую точность, однако при уменьшении вязкости теряет
ее ввиду нарушения диагонального преобладания. Точность второй гибридной схемы
более чем вдвое выше точности первой.

В табл. 3 приведены апостериорные оценки порядка точности, достигнутого различ-
ными схемами на сетках равной мощности, в широком интервале изменения вязкости от
10−2 до 10−10. Данные таблицы свидетельствуют об определенной стабильности в целом
значений реальных порядков точности при изменении вязкости и об их соответствии
теоретическим ожиданиям, подтверждая равномерную сходимость. Колебания и паде-
ние порядка точности центрально-разностной схемы при изменении малого параметра
связано с ее немонотонностью, отсутствием равномерной сходимости и поэтому склон-
ностью к осцилляциям.

Заключение

Резюмируя сказанное выше, можно сделать следующие выводы.
1. Первая гибридная схема, предложенная в [13] для частного случая кусочно рав-

номерных адаптивных сеток [3], может успешно применяться также и на специ-
альных неравномерных сетках с более естественным плавным изменением шага
сетки в слое. Однако на неравномерных сетках диагональное преобладание ана-
лога центрально-разностной схемы, используемой с слое, не гарантируется авто-
матически, его необходимо специально контролировать. Эта гибридная схема на
сетках [17] имеет второй порядок и в экспериментах дает более точные результаты,
чем известные однородные схемы, обнаруживая при этом признаки сходимости,
равномерной по малому параметру.

2. Предложенная в данной работе вторая гибридная схема, использующая вместо
центрально-разностного аналога схемы монотонную схему Булеева, имеет всюду
второй порядок аппроксимации и, как показывают расчеты, несколько превос-
ходит по точности первую гибридную схему. При любых значениях вязкости эта
схема всюду имеет безусловное диагональное преобладание, что гарантирует свой-
ство обратной монотонности и, как следствие, равномерную по малому параметру
сходимость.

3. Результаты численных экспериментов показали для всех схем с диагональным
преобладанием весьма слабую зависимость ошибки от стремящегося к нулю ма-
лого параметра и стабильность реальных порядков точности, близких к теоре-
тическим ожиданиям, что свидетельствует о равномерной по 𝜀 сходимости схем
и подтверждает их порядки точности.

4. Синтез удачно скомбинированных гибридных схем и специальных сеток, постро-
енных с использованием априорной информации о поведении решений в слоях,
дает возможность достигать равномерной по 𝜀 сходимости со вторым порядком
и практически без усложнения алгоритмов существенно повышать реальную точ-
ность приближенных решений задач со слоями в широком диапазоне изменения
малого параметра.

Благодарности. Работа выполнена в рамках государственного задания Минобрнауки
России для Федерального исследовательского центра информационных и вычислитель-
ных технологий.
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Abstract

Boundary and interior layers present serious difficulties for the efficient calculation of equations
modelling many technical applications, in particular, those having a small parameter before the
higher derivatives. Due to this phenomenon, developing uniformly convergent algorithms for solving
such problems are difficult.

Resources provided by numerical schemes and adaptive grids can significantly reduce the adverse
effects on the accuracy of numerical experiments due to the layers. An efficient and popular scheme
for solving two-point singularly-perturbed problems with layers is the upwind difference scheme.
However, this scheme provides convergence of the first order only.

In this paper, we are focused on two second-order uniformly convergent finite difference algorithms
for solving two-point singularly-perturbed problems. The proposed algorithms apply a hybrid scheme
based on the midpoint upwind approximation, Buleev’s scheme and special layer-resolving grids
designed for solving problems with exponential and power layers of the first type.

Numerical experiments conducted out for singularly perturbed problems confirm the efficiency
of the algorithms for various values of the small parameter and show that the proposed method
provides competitive results compared to other methods available in the literature.
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