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Исследуется способ аппроксимации граничных условий с произвольным поряд-
ком точности, основанный на односторонних многоточечных разностных аналогах
потоков максимально возможной точности на данном шаблоне. Рассматриваемая
технология универсальна в смысле однообразия алгоритма при любых порядках
точности схемы и в смысле независимости граничного условия от вида решаемого
уравнения. Исследована проблема реализации и разрешимости разностной задачи
путем приведения “длинных” граничных условий к эквивалентным двухточечным
условиям. Сформулированы условия диагонального преобладания в строках мат-
рицы приведенной системы, соответствующих граничным соотношениям. Показа-
но, что обсуждаемая универсальная технология расчета, в отличие от традици-
онных способов, не порождает проблем при расщеплении многомерных задач на
одномерные.
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Введение

Существует несколько способов аппроксимации граничных условий. Первый заключа-
ется в аппроксимации законов сохранения в балансной ячейке, составленной из частей
(в двумерном случае из четвертей) смежных ячеек сетки, примыкающих к данному уз-
лу сетки. При этом разностные законы сохранения формулируются единообразно для
внутренних и граничных балансных ячеек. Для задач с краевыми условиями второго
и третьего рода этот метод не позволяет достигнуть точности выше второго порядка,
хотя для задачи Дирихле известны балансные соотношения более высокого порядка [1].

Второй метод опирается на процедуру преобразования главного члена разложения
погрешности простого граничного условия, при котором старшие производные выра-
жаются из продолженной системы и полученный результат заменяется разностным вы-
ражением, компенсирующим главный член погрешности. С повышением порядка ап-
проксимации этим способом громоздкость разностных выражений возрастает, к тому
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же они зависят от решаемого дифференциального уравнения и его продолженной сис-
темы. В многомерном случае возникают серьезные проблемы, часто непреодолимые,
при расщеплении задачи на одномерные.

Удобнее применять иной способ, основанный на непосредственной многоточечной од-
носторонней аппроксимации потоков в граничном условии с необходимой точностью [2].
Такие граничные соотношения по построению универсальны в смысле единообразия их
структуры при различных порядках точности и в смысле их независимости от реша-
емого уравнения. Кроме того, в рамках этого технологичного подхода не возникает
никаких проблем при расщеплении задач на одномерные.

Платой за универсальность и простоту такой технологии является необходимость
использовать в аппроксимации потока много узлов сетки (т. е. увеличивать “длину”
разностного граничного условия), что приводит к нарушению трехдиагональной струк-
туры матриц, подлежащих обращению, и связанному с ним нарушению диагонального
преобладания в строках, соответствующих “длинным” граничным условиям.

В данной работе изучается вопрос о разрешимости такого рода задач и устойчивости
при реализации их методом прогонки. С этой целью схемы с “длинными” граничными
условиями приводятся с помощью локальных гауссовых процедур к эквивалентным
трехдиагональным системам, а условия разрешимости последних устанавливаются ис-
ходя из требования соблюдения диагонального преобладания в преобразованных стро-
ках, соответствующих граничным условиям.

Обсуждаемая технология применима для решения широкого класса краевых задач,
когда во внутренних узлах расчетной области на дробных шагах схемы трехточечные
на верхнем слое, а в формулировке граничных условий участвуют потоки. Это могут
быть, например, тепловые задачи, задачи для уравнения Пуассона, задачи исследования
колебаний мембраны, задачи оптики и теории упругости, задачи расчета течения вязкой
несжимаемой жидкости с так называемыми мягкими граничными условиями.

1. Традиционная аппроксимация граничных условий

Для простоты рассмотрим дифференциальное уравнение теплопроводности

𝜕𝑈

𝜕𝑡
= 𝜆

𝜕2𝑈

𝜕𝑥2
+ 𝑓, 𝑥 ∈ (𝑎, 𝑏), 𝑡 ∈ (0, 𝑇 ), (1)

и соответствующую двухслойную разностную схему с весами

𝑢𝑛+1 − 𝑢𝑛

𝜏
= 𝜆Λ[𝑢𝑛+1 + (1− 𝜎)𝑢𝑛] + 𝜑𝑛,

где Λ — трехточечный разностный аналог оператора двойного дифференцирования на
равномерной сетке 𝑥𝑖 = 𝑎+𝑖ℎ, 𝑖 = 0, . . . , 𝑁 , с шагом ℎ = (𝑏−𝑎)/𝑁 ; 𝑛 — номер временного
слоя сетки с постоянным шагом 𝜏 ; 𝜎 ∈ [0, 1] — вес схемы.

Известно, что при 𝜑𝑛 = 𝑓𝑛 + 𝑂(𝜏) погрешность схемы есть величина 𝑂(𝜏 + ℎ2),
при 𝜎 = 1/2 и 𝜑𝑛 = 𝑓𝑛+1/2 + 𝑂(𝜏 2) получается схема Кранка –Николсон, имеющая
погрешность 𝑂(𝜏 2 + ℎ2), а при специальном значении веса и специальной правой части

𝜎 = 𝜎0 =
1

2
− ℎ2

12𝜆𝜏
, 𝜑 = 𝑓 +

𝜏

2

𝜕𝑓

𝜕𝑡
+

ℎ2

12

𝜕2𝑓

𝜕𝑥2
+𝑂(𝜏 2 + ℎ4)

имеем схему Микеладзе [3], погрешность которой составляет величину 𝑂(𝜏 2 + ℎ4).
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Рассмотрим различные варианты разностных граничных условий для этих трех схем
в частном случае смешанной начально-краевой задачи

𝑈(𝑥, 0) = 𝑈0(𝑥), 𝜆
𝜕𝑈

𝜕𝑥
(𝑎, 𝑡) = 𝑞(𝑡), 𝑈(𝑏, 𝑡) = 𝑔(𝑡). (2)

С правым граничным условием проблем нет, оно может быть задано точно, а условие
на левой границе может аппроксимироваться по-разному. Самое грубое условие

𝜆∆+𝑢
𝑛+1
0 = 𝑞𝑛+1

0 , ∆+𝑢𝑖 =
𝑢𝑖+1 − 𝑢𝑖

ℎ
(3)

не годится ни для одной из рассматриваемых схем, так как оно понижает порядок
в целом до первого по ℎ.

Для повышения порядка вычислим погрешность аппроксимации граничного усло-
вия (3) в точке (𝑎, 𝑡𝑛+1) на достаточно гладких решениях краевой задачи (1), (2):

Ψ0 = 𝜆
𝜕𝑈

𝜕𝑥
+ 𝜆

ℎ

2

𝜕2𝑈

𝜕𝑥2
+𝑂(ℎ2)− 𝑞 =

ℎ

2

(︂
𝜕𝑈

𝜕𝑡
− 𝑓

)︂
+𝑂(ℎ2).

Заменяя здесь производную разделенной разностью с точностью до 𝑂(𝜏) и компенсируя
вычисленные главные члены погрешности в исходном граничном условии (3), получим
уточненное граничное условие

𝜆∆+𝑢
𝑛+1
0 = 𝑞𝑛+1

0 +
ℎ

2

(︀
∆𝑡𝑢

𝑛+1
0 − 𝑓𝑛+1

0

)︀
, ∆𝑡𝑢

𝑛+1 =
𝑢𝑛+1 − 𝑢𝑛

𝜏
, (4)

имеющее погрешность 𝑂(𝜏 + ℎ2). Оно по точности вполне подходит для самой простой
схемы, но не годится для двух других. Для схемы Кранка –Николсон подходит условие,
аналогичное (4), но усредненное по двум временным слоям:

𝜆∆+
𝑢𝑛+1
0 + 𝑢𝑛

0

2
= 𝑞

𝑛+1/2
0 +

ℎ

2

(︁
∆𝑡𝑢

𝑛+1
0 − 𝑓

𝑛+1/2
0

)︁
. (5)

Для повышения порядка аппроксимации до третьего в разложении погрешности необ-
ходимо удержать еще одно слагаемое:

Ψ0 =
ℎ

2

(︂
𝜕𝑈

𝜕𝑡
− 𝑓

)︂
+

ℎ2

6

𝜕

𝜕𝑥

(︂
𝜕𝑈

𝜕𝑡
− 𝑓

)︂
+𝑂(ℎ3). (6)

Сделав естественное для параболических задач предположение о предельном соотно-
шении шагов сетки 𝜏 = 𝑂(ℎ2), аппроксимируем выражения в скобках:

𝜕𝑈

𝜕𝑡
− 𝑓 = (∆𝑡𝑈 − 𝑓) +𝑂(𝜏),

𝜕

𝜕𝑥

(︂
𝜕𝑈

𝜕𝑡
− 𝑓

)︂
= ∆+(∆𝑡𝑈 − 𝑓) +𝑂(𝜏 + ℎ),

Подставляя эти выражения в (6) и компенсируя результат с обратным знаком в исход-
ном граничном условии (3), получим искомое условие с погрешностью 𝑂(𝜏 2 + ℎ3):

𝜆∆+𝑢
𝑛+1
0 −

(︂
ℎ

2
𝐸 +

ℎ2

6
∆+

)︂
∆𝑡𝑢

𝑛+1
0 = 𝑞𝑛+1

0 −
(︂
ℎ

2
𝐸 +

ℎ2

6
∆+

)︂
𝑓𝑛+1
0 . (7)
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Для построения еще более точной аппроксимации граничного условия необходимо вос-
пользоваться разложением погрешности до четвертого порядка:

Ψ0 =
ℎ

2

(︂
𝜕𝑈

𝜕𝑡
− 𝑓

)︂
+

ℎ2

6

𝜕

𝜕𝑥

(︂
𝜕𝑈

𝜕𝑡
− 𝑓

)︂
+ 𝜆

ℎ3

24

𝜕4𝑈

𝜕𝑥4
+𝑂(ℎ4)

и более точными разностными аппроксимациями слагаемых

𝜕𝑈

𝜕𝑡
− 𝑓 =

(︂
∆𝑡𝑈 +

𝜏

2

𝜕2𝑈

𝜕𝑡2
− 𝑓

)︂
+𝑂(𝜏 2),
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𝜆
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𝜕𝑥2
+ 𝑓

)︂
= ∆𝑡(𝜆∆

2
+𝑈 + 𝑓) +𝑂(𝜏 + ℎ),

𝜕

𝜕𝑥

(︂
𝜕𝑈

𝜕𝑡
− 𝑓

)︂
=

(︂
∆+ − ℎ

2
∆2

+

)︂
(∆𝑡𝑈 − 𝑓) +𝑂(𝜏 + ℎ2),

𝜆
𝜕4𝑈

𝜕𝑥4
=

𝜕2𝑈

𝜕𝑥2

(︂
𝜕𝑈

𝜕𝑡
− 𝑓

)︂
= ∆2

+(∆𝑡𝑈 − 𝑓) +𝑂(𝜏 + ℎ).

В результате получим граничное условие с погрешностью 𝑂(𝜏 2 + ℎ4):

𝜆∆+𝑢
𝑛+1
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ℎ
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6
∆+ +

(︂
𝜏ℎ

4
− ℎ3

24
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∆𝑡𝑢

𝑛+1 =

= 𝑞𝑛+1
0 −
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ℎ
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24
∆2

+

)︂
𝑓𝑛+1
0 +

𝜏ℎ

4
∆𝑡𝑓

𝑛+1
0 .

(8)

Шаблон данного условия имеет по три узла на верхнем и нижнем слоях.
Из приведенного примера видно, что в случае традиционных схем второго порядка

точности построение адекватного граничного условия осуществляется просто. Однако
построение высокоточного граничного условия является довольно сложным занятием,
а результат построения — громоздким. Кроме того, граничное условие повышенной
точности сложным образом связано с решаемым уравнением и его продолженной сис-
темой. Еще сложнее граничные условия многомерной задачи, так как в этом случае
замена старших производных по нормали из продолженной системы осуществляется
также через производные по касательным направлениям, а их аппроксимация приво-
дит к многомерному граничному условию, которое не только сложно реализовать при
расщеплении задачи на одномерные, но ввиду громоздкости даже затруднительно без-
ошибочно вывести.

Между тем описанный способ повышения порядка точности граничных условий яв-
ляется в практике вычислений основным, поскольку подавляющее большинство иссле-
дователей используют при расчетах традиционные схемы до второго порядка точно-
сти, а в этом случае при аппроксимации граничных условий попросту не возникает
масштабных сложностей. С другой стороны, именно сложность формулирования гра-
ничных условий выше второго порядка, опирающихся на продолженную систему, —
основное препятствие для широкого использования разностных схем высокой точности
при решении краевых задач более сложных, чем задача Дирихле. Таким образом, труд-
ности с аппроксимацией граничных условий препятствуют использованию компактных
схем, а предпочтение специалистами высокоточным схемам более простых схем не соз-
дает повода отойти от традиционного не универсального способа задания граничных
условий.
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2. Универсальные граничные условия

Для осуществления более удобного способа аппроксимируем поток одномерными много-
точечными односторонними разделенными разностями, не привлекая вовсе решаемого
дифференциального уравнения, и используем при этом столько узлов сетки, сколько
требуется для достижения необходимого порядка точности.

Такая технология, вероятно, впервые была применена в работе [2] при решении сме-
шанной краевой задачи для уравнения Пуассона в прямоугольной области по схемам
четвертого и шестого порядков точности. В расчетах на самых грубых сетках “длин-
ные” разностные граничные условия записывались на шаблоне, достигающем даже про-
тивоположной границы области. У оппонентов были сомнения в применимости такой
технологии, так как, во-первых, чередующиеся знаки коэффициентов в разностной ап-
проксимации потока якобы непременно должны были привести к потере устойчивости,
и, во-вторых, использование “длинных” условий якобы противоречит локальному ха-
рактеру граничного условия. Однако численные результаты работы [2] и многих после-
дующих расчетов, полученные при решении уравнений различных типов [4–7], никогда
не подтверждали справедливость этой критики. Таким образом, вопрос о теоретическом
обосновании технологии оставался открытым.

Итак, аппроксимируем производную на левой границе 𝑎 = 𝑥0 односторонней разде-
ленной разностью общего вида

∆𝑠𝑢0 =
1

ℎ

𝑠∑︁
𝑘=0

𝛼𝑘𝑢𝑘 ≈
𝜕𝑢

𝜕𝑥
(𝑥0),

а коэффициенты 𝛼𝑘 выберем так, чтобы порядок аппроксимации был наибольшим из
возможных. Отсюда для определения коэффициентов оператора ∆𝑠 получаем систему
линейных алгебраических уравнений

𝑠∑︁
𝑘=0

𝛼𝑘𝑘
𝑚 = 𝛿1𝑚, 𝑚 = 0, 1, . . . , 𝑠,

где 𝛿𝑖𝑗 — символ Кронекера. Погрешность аппроксимации есть 𝑂(ℎ𝑠). Система элемен-
тарно решается по правилу Крамера, явные выражения коэффициентов имеют вид

𝛼𝑘 =
(−1)𝑘+1

𝑘
𝐶𝑘

𝑠 , 𝑘 = 1, . . . , 𝑠, 𝛼0 = −(𝛼1 + 𝛼2 + · · ·+ 𝛼𝑠), (9)

где 𝐶𝑘
𝑠 — число сочетаний из 𝑠 по 𝑘. Коэффициенты левосторонней аппроксимации

производной ∆−𝑠𝑢 имеют те же выражения, но с обратным знаком.
Итак, при любом заданном порядке аппроксимации односторонние разностные про-

изводные определяются единообразно по очень простой формуле, что выгодно отличает
данную технологию от использования компактных граничных условий, опирающихся
на продолженную систему уравнений. При этом формула остается инвариантной отно-
сительно решаемого уравнения, что тоже привлекательно. Решается ли краевая задача
для уравнений теплопроводности, волнового, теории упругости, Пуассона или Навье –
Стокса, граничное условие не требуется формулировать заново. С помощью таких од-
носторонних аппроксимаций потоков очевидным образом формулируются с высокой
точностью также условия третьего рода и условия баланса потоков на границе раздела
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сред [4]. Равенство “длинных” разностных аналогов лево- и правосторонней производ-
ных можно использовать также в качестве условий гладкости в узлах интерполяции при
построении сплайнов с помощью разностных схем [5]. Кроме того, условие ∆−𝑠𝑢 = 0
может выступать в качестве “мягкого” граничного условия в выходном сечении канала
при расчете течений жидкости.

Реализация многоточечных граничных условий. Весьма часто на практике
шаблоны разностных схем, в том числе компактных схем третьего – четвертого поряд-
ков точности, не выходят за пределы трех узлов по 𝑥, что приводит к линейным алгебра-
ическим уравнениям с трехдиагональной матрицей. Однако многоточечные граничные
условия нарушают трехдиагональную структуру матриц. В случае постоянных коэф-
фициентов фрагмент расширенной матрицы системы с “длинным” граничным условием
на левой границе выглядит следующим образом:

𝛼0 𝛼1 𝛼2 𝛼3 · · · 𝛼𝑠−2 𝛼𝑠−1 𝛼𝑠 0 · · · ℎ𝑞
𝑎 𝑏 𝑐 0 · · · 0 0 0 0 · · · 𝐹1

0 𝑎 𝑏 𝑐 · · · 0 0 0 0 · · · 𝐹2

0 0 𝑎 𝑏 · · · · · · · · · · · · 0 · · · 𝐹3

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · · · · 𝑎 𝑏 𝑐 0 0 · · · 𝐹𝑠−2

0 · · · · · · · · · 0 𝑎 𝑏 𝑐 0 · · · 𝐹𝑠−1

.

Вектор F содержит слагаемые с результатами применения операторов на нижнем шаге
и правую часть схемы. Преобразование фрагмента к эквивалентному трехдиагональ-
ному осуществляется локальной гауссовой процедурой — вычитанием из длинной (ну-
левой) строки подходящей линейной комбинации строк с номерами 𝑘 = 1, . . . , 𝑠 − 1.
Следует заметить, что постоянство коэффициентов схемы не является лимитирующим
фактором для реализации описанного процесса.

Многоточечное граничное условие на правой границе преобразуется точно так же.
Если узел сетки лежит на границе раздела сред и в нем с погрешностью 𝑂(ℎ𝑠) поставле-
но условие равенства потоков, процедура приведения “длинного” условия к трехточеч-
ному выполняется аналогично с привлечением по (𝑠 − 1) разностных уравнений слева
и справа.

Двумерный случай. Рассмотрим смешанную краевую задачу для двумерного урав-
нения теплопроводности

𝜕𝑈

𝜕𝑡
= 𝜆

(︂
𝜕2𝑈

𝜕𝑥2
+

𝜕2𝑈

𝜕𝑦2

)︂
+ 𝑓, 𝑥 ∈ 𝐷, 𝑡 ∈ (0, 𝑇 ), (10)

в прямоугольной области 𝐷 = {(𝑥, 𝑦), 𝑥 ∈ (0, 𝑙𝑥), 𝑦 ∈ (0, 𝑙𝑦)} с начальным полем темпе-
ратур 𝑈(𝑥, 𝑦, 0) = 𝑈0(𝑥, 𝑦). Для простоты предположим, что на левой границе задана
первая производная

𝜕𝑈

𝜕𝑥
(0, 𝑦, 𝑡) = 𝑞(𝑦, 𝑡),

а на трех других участках границы задано решение 𝑈 , в частности на правой границе
𝑈(𝑙𝑥, 𝑦, 𝑡) = 𝜑(𝑦, 𝑡). В углах области предполагаются выполненными условия согласова-
ния, при которых пределы граничных условий в каждом углу области при стремлении
к нему точек по двум смежным участкам границы не противоречат одно другому.
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Аппроксимируем уравнение (10), например, схемой переменных направлений

𝑢𝑛+1/2 − 𝑢𝑛

𝜏/2
= 𝜆Λ𝑥𝑢

𝑛+1/2 + 𝜆Λ𝑦𝑢
𝑛 + 𝑓𝑛+1/2,

𝑢𝑛+1 − 𝑢𝑛+1/2

𝜏/2
= 𝜆Λ𝑥𝑢

𝑛+1/2 + 𝜆Λ𝑦𝑢
𝑛+1 + 𝑓𝑛+1/2.

Разностные аналоги граничных условий всегда ставятся только на целых шагах, в част-
ности, слева и справа имеем разностные граничные условия

𝐿ℎ𝑢
𝑛|𝑥=0 = 𝑞𝑛, 𝑢𝑛|𝑥=𝑙𝑥 = 𝜑𝑛, 𝑛 = 0, 1, . . . ,

где 𝐿ℎ — односторонняя многоточечная разностная аппроксимация оператора диффе-
ренцирования. Для того чтобы решить уравнение первого дробного шага, на верти-
кальных участках границы следует определить граничные условия для 𝑢𝑛+1/2, которые
требуется выводить как следствие самой схемы в дробных шагах и граничных условий
на целых шагах. Иначе схема в целых шагах не будет эквивалентна схеме в дробных
шагах [8]. С целью получения таких граничных условий вычтем из второго уравнения
первое и выразим отсюда величину на дробном шаге

𝑢𝑛+1/2 =
𝑢𝑛+1 + 𝑢𝑛

2
− 𝜆

𝜏 2

4
Λ𝑦

𝑢𝑛+1 − 𝑢𝑛

𝜏
,

а затем применим к обеим частям этого выражения операторы граничных условий.
В результате получим

𝐿ℎ𝑢
𝑛+1/2
0𝑗 =

𝑞𝑛+1
𝑗 + 𝑞𝑛𝑗

2
− 𝜆

𝜏 2

4
Λ𝑦

𝑞𝑛+1
𝑗 − 𝑞𝑛𝑗

𝜏
, 𝑢

𝑛+1/2
𝑁𝑥𝑗

=
𝜑𝑛+1
𝑗 + 𝜑𝑛

𝑗

2
− 𝜆

𝜏 2

4
Λ𝑦

𝜑𝑛+1
𝑗 − 𝜑𝑛

𝑗

𝜏
.

Вторыми слагаемыми порядка 𝑂(𝜏 2) без ущерба для точности можно пренебречь.
Следует заметить, что принудительное задание граничных условий для промежу-

точного шага без их вывода из граничных условий на целых шагах не является правиль-
ным действием, так как результат вывода существенно зависит от типа схемы в дробных
шагах. Например, в случае схемы приближенной факторизации

𝐴𝑥𝑢
𝑛+1/2 = 𝜆(Λ𝑥 + Λ𝑦)𝑢

𝑛 + 𝑓𝑛+1/2, 𝐴𝑦
𝑢𝑛+1 − 𝑢𝑛

𝜏
= 𝑢𝑛+1/2,

эквивалентной той же самой схеме в целых шагах, для ее промежуточного шага гра-
ничные условия следует ставить иначе:

𝐿ℎ𝑢
𝑛+1/2
0𝑗 = 𝐴𝑦

𝑞𝑛+1
𝑗 − 𝑞𝑛𝑗

𝜏
, 𝑢

𝑛+1/2
𝑁𝑥𝑗

= 𝐴𝑦

𝜑𝑛+1
𝑗 − 𝜑𝑛

𝑗

𝜏
.

Таким образом, одномерные граничные условия в многомерном случае остаются
инвариантными относительно решаемого уравнения и не порождают никаких проблем
при расщеплении задачи на одномерные. В противоположность ей многомерная аппрок-
симация граничных условий может создать серьезные препятствия при расщеплении,
иногда непреодолимые.
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3. Разрешимость системы при традиционной форме граничных
условий

Достаточным условием разрешимости системы и устойчивости метода прогонки для
системы линейных алгебраических уравнений с трехдиагональной матрицей является
диагональное преобладание. В рассматриваемом случае схем с весами обращения требу-
ет ее разностный оператор 𝐴 = 𝐸 − 𝜎𝜆𝜏Λ, для которого диагональные коэффициенты
матрицы 𝑏 = 1 + 2𝜎𝑟 > 0, где 𝑟 = 𝜆𝜏/ℎ2, а коэффициенты на побочных диагоналях
𝑎 = 𝑐 = −𝜎𝑟 < 0. Следовательно, для строк матрицы, соответствующих внутренним
узлам сетки, диагональное преобладание имеет место, так как 𝐷 = |𝑏|−|𝑎|−|𝑐| = 1 > 0.
Случай 𝜎 = 0 исключаем из рассмотрения, так как он соответствует явной схеме, не
требующей обращения матрицы.

Особое место занимает компактная схема 𝑂(𝜏 2 + ℎ4), так как в этом случае вес 𝜎
связан с соотношением шагов 𝑟 и параметры имеют вид

𝜎 =
1

2
− 1

12𝑟
, 𝑏 =

5

6
+ 𝑟, 𝑎 = 𝑐 =

1

12
− 𝑟

2
.

Если 𝑟 > 1/6, то внедиагональные коэффициенты 𝑎 = 𝑐 по-прежнему отрицательны, по-
этому 𝐷 = 1 > 0, а при 𝑟 < 1/6 они становятся положительными, однако диагональное
преобладание не нарушается, так как 𝐷 = |𝑏| − |𝑎| − |𝑐| = 2/3+ 2𝑟 > 0. При 𝑟 = 1/6 схе-
ма вырождается в явную, сохраняя четвертый порядок точности по пространственной
переменной.

Традиционная форма граничных условий. При традиционной аппроксимации
граничных условий Неймана в соответствующих строках матрицы также имеет место
диагональное преобладание, строгое или не строгое. Например, для двухточечных усло-
вий (3), (4), записанных (после сокращения на 𝜆) в виде 𝑑0𝑢0 + 𝑑1𝑢1 = 𝜑, коэффициент
𝑑0 равен −1 и −(1 + 1/(2𝑟)) соответственно, а 𝑑1 = 1 в обоих случаях. Для граничного
условия (5) 𝑑0 = −(1 + 1/𝑟), а 𝑑1 = 1. Таким образом, в простейшем случае (3) имеем
равенство |𝑑0| = |𝑑1|, а в других двух |𝑑0| > |𝑑1|.

Следует заметить, что при граничном условии третьего рода в сравнении с услови-
ем Неймана диагональное преобладание только усиливается, так как в этом случае от
отрицательной величины 𝑑0 дополнительно вычитается 𝛼ℎ, где 𝛼 — коэффициент теп-
лоотдачи. Это верно для любых разностных аппроксимаций граничных условий, и на
этом основании всюду в дальнейшем будет рассматриваться только условие Неймана
как наименее благоприятное для выполнения диагонального преобладания. Нестрогое
диагональное преобладание в строке, соответствующей условию Неймана, для условия
третьего рода становится строгим.

В связи со сказанным выше для уверенности в разрешимости системы и устойчивос-
ти прогонки представляется естественным требовать (нестрогого) диагонального преоб-
ладания в строках матрицы, полученных после преобразования “длинных” граничных
условий, в короткие двухточечные. Рассмотрим, например, трехточечное граничное ус-
ловие (8) для компактной схемы 𝑂(𝜏 2+ℎ4). Умножим его на ℎ и разделим на 𝜆, а затем
соберем в левой части все слагаемые со значениями решения на верхнем слое и перене-
сем все остальные слагаемые в правую часть. В результате получим уравнение вида[︂

(𝑢1 − 𝑢0)−
1

2𝑟
𝑢0 −

1

6𝑟
(𝑢1 − 𝑢0)−

(︂
1

4
− 1

24𝑟

)︂
(𝑢2 − 2𝑢1 + 𝑢0)

]︂𝑛+1

= Φ𝑛.
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После приведения подобных его левую часть представим в виде линейной комбинации
значений 𝑢0, 𝑢1, 𝑢2 с коэффициентами

𝑑0 = −5

4
− 7

24𝑟
, 𝑑1 =

3

2
− 1

4𝑟
, 𝑑2 = −1

4
+

1

24𝑟
.

С другой стороны, левая часть разностного уравнения, записанного в узле 𝑥1, представ-
ляет линейную комбинацию тех же трех неизвестных компонент решения с коэффици-
ентами −𝜎𝑟, 1 + 2𝜎𝑟 и −𝜎𝑟 соответственно. Разделив коэффициенты на 𝜎𝑟, упростим
их к виду −1, 𝐵, −1, где 𝐵 = (1+ 2𝜎𝑟)/(𝜎𝑟). Для компактной схемы 𝜎 = 1/2− 1/(12𝑟),
следовательно, в этом случае 𝐵 = 2 + 2/(𝑟 − 1/6).

Исключая из двух трехточечных уравнений 𝑢2, получим двухточечное граничное
условие с новыми коэффициентами

𝑑0 = −1− 1

3𝑟
, 𝑑1 = −1

6
− 1

4𝑟
− 2𝑟.

Условие диагонального преобладания |𝑑0| ≥ |𝑑1| для него эквивалентно неравенству

2𝑟2 − 5

6
𝑟 − 1

12
≤ 0,

которое выполняется при −1/12 ≤ 𝑟 ≤ 1/2. Так как соотношение шагов 𝑟 = 𝜆𝜏/ℎ2 по-
ложительно, окончательно получаем ограничение 𝑟 ≤ 1/2, при котором исходное гра-
ничное условие (8) эквивалентно двухточечному граничному условию с диагональным
преобладанием.

Граничное условие (7) третьего порядка аппроксимации является двухточечным
и имеет коэффициенты

𝑑0 = −1− 1

3𝑟
, 𝑑1 = 1− 1

6𝑟
.

Элементарный анализ свидетельствует о безусловном диагональном преобладании в дан-
ном граничном условии при любых значениях 𝑟.

4. Разрешимость при универсальных граничных условиях

Преобразуем “длинную” строку фрагмента матрицы системы, предполагая симметрию
𝑎 = 𝑐, при которой, не уменьшая общности, можно считать, что 𝑎 = 𝑐 = −1, 𝑏 = 𝐵 =
2+1/(𝜎𝑟). Вычтем из нее линейную комбинацию остальных 𝑠− 1 строк с коэффициен-
тами 𝛾𝑗 (𝑗 = 1, . . . , 𝑠 − 1) и выберем их так, чтобы элементы преобразованной строки,
выступающие за пределы трех диагоналей матрицы, обратились бы в нуль. Дополним
для удобства совокупность искомых коэффициентов двумя фиктивными (𝛾𝑠 и 𝛾𝑠+1)
и получим в результате задачу Коши для трехточечного разностного уравнения

−𝛾𝑗+1 +𝐵𝛾𝑗 − 𝛾𝑖−1 = 𝛼𝑗, 𝑗 = 2, . . . , 𝑠, 𝛾𝑠 = 𝛾𝑠+1 = 0.

Задача Коши сводится к двум рекуррентным соотношениям первого порядка

𝛾𝑗+1 − 𝑝𝛾𝑗 = 𝐼𝑗+1, 𝑗 = 1, . . . , 𝑠− 1, 𝛾𝑠 = 0, 𝐼𝑗+1 − 𝑞𝐼𝑗 = −𝛼𝑗, 𝑗 = 2, . . . , 𝑠, 𝐼𝑠+1 = 0,

где 𝑝 и 𝑞 — корни уравнения 𝜌2 − 𝐵𝜌 + 1 = 0 (вещественные и различные), причем по
теореме Виета 𝑝+ 𝑞 = 𝐵, 𝑝𝑞 = 1.
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Решая второе рекуррентное соотношение, получим

𝐼𝑗+1 = 𝑞𝑗
𝑠∑︁

ℓ=𝑗+1

𝑝ℓ𝛼ℓ.

Подставляя полученное выражение в правую часть первого рекуррентного соотношения
и решая его, получим

𝛾𝑗 = −
𝑠∑︁

𝑚=𝑗+1

𝑝𝑗−𝑚

𝑠∑︁
ℓ=𝑚

𝑞𝑚−ℓ−1𝛼ℓ =
1

𝑝− 𝑞

𝑠∑︁
ℓ=𝑗+1

(𝑞ℓ−𝑗 − 𝑝ℓ−𝑗)𝛼ℓ, 𝑗 = 1, . . . , 𝑠− 1.

Пользуясь данной общей формулой и вводя обозначения

𝑃 =
𝑠∑︁

ℓ=0

𝑝ℓ𝛼ℓ, 𝑄 =
𝑠∑︁

ℓ=0

𝑞ℓ𝛼ℓ, (11)

вычислим первые два из этих коэффициентов:

𝛾1 =
𝑞𝑃 − 𝑝𝑄

𝑝− 𝑞
− 𝛼0, 𝛾2 =

𝑞2𝑃 − 𝑝2𝑄

𝑝− 𝑞
− 𝛼0(𝑝+ 𝑞)− 𝛼1.

Отсюда в результате непосредственного вычисления получим коэффициенты преобра-
зованного (двухточечного) граничного соотношения:

𝑑0 = 𝛼0 + 𝛾1 =
𝑞𝑃 − 𝑝𝑄

𝑝− 𝑞
, 𝑑1 = 𝛼1 −𝐵𝛾1 + 𝛾2 =

𝑄− 𝑃

𝑝− 𝑞
.

Следовательно, критерий диагонального преобладания в строке преобразованного гра-
ничного условия |𝑑0| ≥ |𝑑1| для произвольного порядка 𝑠 имеет вид⃒⃒⃒⃒

𝑞𝑃 − 𝑝𝑄

𝑝− 𝑞

⃒⃒⃒⃒
≥

⃒⃒⃒⃒
𝑄− 𝑃

𝑝− 𝑞

⃒⃒⃒⃒
. (12)

Числители дробей в обеих частях (12) являются полиномами переменных 𝑝 и 𝑞, равны-
ми нулю при 𝑝 = 𝑞, значит, обе дроби сокращаются на разность 𝑝 − 𝑞, поэтому нера-
венство (12) является полиномиальным. Более того, ввиду теоремы Виета выражения
в обеих частях неравенства приводятся к виду полиномов от единственной переменной
𝐵 = 𝑝+𝑞. Заметим, что подстановка коэффициентов 𝛼ℓ в явном виде (9) в формулы (11)
приводит к достаточно простым выражениям вида 𝑃 = 𝑉 (𝑝), 𝑄 = 𝑉 (𝑞) через интеграл

𝑉 (𝑧) =

𝑧∫︁
1

(1− 𝜉)𝑠 − 1

𝜉
𝑑𝜉.

Если предположить для определенности, что 𝑝 — больший из двух корней, то крите-
рий (12) можно представить также в следующих эквивалентных формах:

𝑞𝑃 2 ≤ 𝑝𝑄2, 𝑃 2 ≤ 𝑝2𝑄2, 𝑞2𝑃 2 ≤ 𝑄2.

Таким образом, задача исследования условий диагонального преобладания (12) сво-
дится к полиномиальным или интегральным неравенствам, которые при любом порядке
𝑠 легко исследуются численно.



28 В.И. Паасонен

Примеры. Рассмотрим схему с весами при (𝑠+1)-точечном левом граничном усло-
вии, аппроксимирующем с погрешностью 𝑂(ℎ𝑠) условие Неймана.

1. При 𝑠 = 2 имеем

𝑉 (𝑧) =
1

2
𝑧2 − 2𝑧 +

3

2
.

Легко видеть, что в этом случае 𝑑0 = −1, 𝑑1 = 2− 𝐵/2, откуда следует условие диаго-
нального преобладания 2 ≤ 𝐵 ≤ 6, которое выполняется при условии 4𝜎𝑟 ≥ 1.

Таким образом, для абсолютно устойчивой схемы с весом 𝜎 ≥ 1/2 требование диа-
гонального преобладания ограничивает снизу соотношение шагов 𝑟 ≥ 1/(4𝜎). В част-
ности, для схемы Кранка –Николсон 𝑟 ≥ 1/2, а для чисто неявной схемы 𝑟 ≥ 1/4.

Для схемы с весом 𝜎 < 1/2 условие диагонального преобладания вместе с условием
устойчивости дает допустимый промежуток для соотношения шагов

1

4𝜎
≤ 𝑟 ≤ 1

2(1− 2𝜎)
,

не пустой при 𝜎 ∈ [1/4, 1/2); при меньшем весе (𝜎 < 1/4) диагональное преобладание
в приведенном граничном условии не может быть достигнуто.

2. При 𝑠 = 3

𝑉 (𝑧) = −1

3
𝑧3 +

3

2
𝑧2 − 3𝑧 +

11

6
.

В результате преобразования первой строки получим двухточечное граничное условие
с коэффициентами

𝑑0 = −𝐵

3
− 1

3
, 𝑑1 =

𝐵2

3
− 3

2
𝐵 +

8

3
.

Условие диагонального преобладания сводится к неравенству

𝐵2 − 11

2
𝐵 + 7 ≤ 0 ⇐⇒ 2 ≤ 𝐵 ≤ 7

2
,

которое дает ограничение 3𝜎𝑟 ≥ 2. Например, для чисто неявной схемы и схемы Кран-
ка –Николсон получаются соответственно ограничения снизу на соотношение шагов
𝑟 ≥ 2/3 и 𝑟 ≥ 4/3.

При 𝜎 < 1/2 пара ограничений по требованиям устойчивости и диагонального пре-
обладания

2

3𝜎
≤ 𝑟 ≤ 1

2(1− 2𝜎)

имеет непустое пересечение только в случае 𝜎 ∈ [4/11, 1/2).
Если рассмотренное выше граничное условие третьего порядка точности с 𝑠 = 3

используется в сочетании с компактной схемой 𝑂(𝜏 2 + ℎ4), то получается ограничение

3

2

(︂
1

2
− 1

12𝑟

)︂
𝑟 ≥ 1 ⇐⇒ 𝑟 ≥ 3

2
.

3. Рассмотрим случай, когда компактная схема 𝑂(𝜏 2 + ℎ4) снабжена левым “длин-
ным” граничным условием с 𝑠 = 4, согласованным по порядку точности с разностным
уравнением. В этом случае

𝑉 (𝑧) =
1

4
𝑧4 − 4

3
𝑧3 + 3𝑧2 − 4𝑧 +

25

12
.

Коэффициенты двухточечного условия имеют вид
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𝑑0(𝐵) =
1

4
𝐵2 − 4

3
𝐵 +

2

3
, 𝑑1(𝐵) = −1

4
𝐵3 +

4

3
𝐵2 − 11

4
𝐵 +

8

3
.

Графики модулей полиномов 𝑑0(𝐵), 𝑑1(𝐵) изображены на рисунке. Корни квадратного
трехчлена 𝐷0(𝐵) суть 𝑏1 ≃ 0.559 и 𝑏2 ≃ 4.775, а полином третьей степени имеет един-
ственный вещественный корень 𝑏0 ≃ 2.739, лежащий между этими значениями. Интере-
сующее нас неравенство |𝑑0(𝐵)| ≥ |𝑑1(𝐵)| справедливо на промежутке 𝐵 ∈ [𝐵1, 𝐵2], где
𝐵1 ≃ 1.431, 𝐵2 ≃ 3.355. Так как в данном случае 𝐵 = 2 + 2/(𝑟 − 1/6), для 𝑟 получается
допустимый интервал 𝑟 ≥ 𝑟0 ≃ 1.644.

Таким образом, преобразованные (двухточечные) граничные соотношения, эквива-
лентные разностным граничным условиям различных порядков точности, во всех слу-
чаях имеют нестрогое диагональное преобладание при некоторых необременительных
ограничениях на соотношение шагов сетки. Следует заметить, что диагональное преоб-
ладание дает достаточное, но не необходимое условие разрешимости системы и устойчи-
вости прогонки; на практике устойчивость счета обычно наблюдается и при не слишком
грубых нарушениях этого условия.

Полученные выше результаты базируются лишь на том, что схема требует обра-
щения симметричного трехточечного оператора 𝐸 − 𝜎𝜏𝜆Λ с отрицательными равными
внедиагональными коэффициентами 𝑎 = 𝑐 = −𝜎𝑟 < 0 (𝑟 = 𝜆𝜏/ℎ2) и положительным
диагональным коэффициентом 𝑏 = 1 + 2𝜎𝑟, поэтому выводы справедливы для любых
задач c таким оператором на верхнем слое независимо от вида аппроксимируемого диф-
ференциального уравнения, в том числе для итерационных схем решения стационар-
ных задач. Заметим, что в случае уравнения колебаний оператор на верхнем слое имеет
несколько иной вид 𝐸 − 𝜎𝜆2𝜏 2Λ, однако коэффициенты для него имеют совершенно то
же выражение, меняется только определение параметра 𝑟 — здесь это квадрат пара-
метра Куранта 𝑟 = (𝜆𝜏/ℎ)2. Для системы уравнений упругости операторы на верхнем
слое схем аналогичны.

Если в исходном уравнении имеются конвективные члены, то обращать требуется
асимметричные операторы вида 𝐸 − 𝜎𝜏𝜆Λ+ 𝛾𝑎𝜏∆, где ∆ — оператор разделенной раз-
ности, односторонней или центральной. Очевидно, в этом случае при стремлении шагов
сетки к нулю коэффициенты конвективных слагаемых, имеющие порядок 𝑂(𝜏/ℎ), ста-
новятся ничтожными в сравнении с коэффициентами диссипативных членов 𝑂(𝜏/ℎ2),
поэтому при малых шагах такой оператор близок с симметричному оператору 𝐸−𝜎𝜏Λ.
В связи с этим критерии диагонального преобладания в таких преобразованных асим-
метричных системах при достаточно малых шагах близки к полученным выше. Сум-

Иллюстрация к анализу граничного условия четвертого порядка точности
Illustration to the analysis of the boundary condition of the fourth order of accuracy
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мируя сказанное, можно утверждать, что проведенный анализ имеет отношение к зна-
чительно более широкому кругу задач, чем задача для уравнения теплопроводности,
взятая здесь в качестве простого примера. При этом, как показано выше, выводы спра-
ведливы и для многомерных задач, решаемых методом дробных шагов.
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Abstract

One of the ways of setting the difference boundary conditions with high order of accuracy is
based on the direct multi-point one-sided approximation of the flows. Such boundary relations,
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unlike traditional ones, are universal in the sense of uniformity of their structure at different orders
of accuracy, as well as in the sense of their independence from the differential equation being solved.
In addition, this technology does not create any obstacles in splitting multidimensional problems
into one-dimensional ones, since the boundary conditions turn out to be the same universal one-
dimensional ones at the intermediate steps. However, the number of nodes in the boundary relation
stencil, i. e. the “length” of the boundary condition, increases as the order of accuracy of the scheme
increases. This leads to a violation of the traditional tridiagonal structure of the matrices to be
reversed, and a related violation of the diagonal predominance in the rows corresponding to “long”
boundary conditions. Although extensive experience of applying universal boundary conditions in
numerical simulations of various types of boundary value problems has not revealed violations of
computational stability, this technique required a theoretical justification.

This paper addresses the question of the solvability of such problems and the stability of
calculations when they are implemented by the proposed method. For this purpose, matrix rows
with “long” boundary conditions are reduced by means of local Gaussian procedures to equivalent
short two-point rows, and the solvability and stability conditions for solutions of the transformed
systems are established based on the requirement of a diagonal predominance in the transformed
rows corresponding to the boundary conditions.

A general criterion for diagonal predominance in a transformed string is formulated for an
arbitrary order of flow approximation. For several difference schemes up to the fourth order of
accuracy, it is found that the criterion is satisfied unconditionally or under not burdensome restricti-
ons on the ratio of grid steps.

Keywords: multipoint flow approximation, high-accuracy boundary conditions, diagonal
domination, compact difference scheme.

Citation: Paasonen V.I. The solvability of difference schemes with universal approximation
of flows in boundary conditions. Computational Technologies. 2024; 29(1):18–31.
DOI:10.25743/ICT.2024.29.1.003. (In Russ.)

Acknowledgements. The research results presented in Sect. 1–3 (related to the development of
the idea) were obtained within the framework of the state assignment of the Ministry of Education
and Science of Russia for the FRC ICT. The research results presented in Sect. 4 (related to the
derivation of the general criterion of diagonal predominance for boundary conditions of arbitrary
order of accuracy) were obtained by a grant from the Russian Science Foundation (project No. 20-
11-20040, https://rscf.ru/project/20-11-20040/).

References

1. Ilin V.P. Balance approximations of increased accuracy for the Poisson equation. Siberian Mathemati-
cal Journal. 1996; 37(1):130–146. DOI:10.1007/BF02104764.

2. Valiullin A.N., Safin R.I., Paasonen V.I. On a splitting scheme with increased order of approxi-
mation of boundary value problems for the Poisson equation. Chislennye Metody Mekhaniki Sploshnoy
Sredy. 1972; 3(1):17–25. (In Russ.)

3. Mikeladze Sh.E. Numerische integration der gleichungen vom elliptischen und parabolischen typus.
Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya. 1941; 5(1):57–74. (In Russ.)

4. Paasonen V.I. Compact difference schemes for inhomogeneous boundary value problems. Russian
Journal Numerical Analysis Mathematical Modelling. 2004; 19(1):65–81.

5. Paasonen V.I. High-order methods for construction of hyperbolic splines. Computational Technolo-
gies. 2007; 12(2):115–121. (In Russ.)

6. Ichetovkin D.A., Paasonen V.I. Numerical investigation of high-order schemes in domains with
checked structure. Computational Technologies. 2010; 15(6):81–87. (In Russ.)

7. Paasonen V.I. On application of compact schemes for the wave equation in piece wise homogeneous
media. Computational Technologies. 2010; 15(5):92–98. (In Russ.)

8. Yanenko N.N. The method of fractional steps. The solution of problems of mathematical physics in
several variables. Berlin: Springer-Verlag; 1971: 160. DOI:10.1007/978-3-642-65108-3.

https://rscf.ru/project/20-11-20040/

	Традиционная аппроксимация граничных условий
	Универсальные граничные условия
	Разрешимость системы при традиционной форме граничных условий
	Разрешимость при универсальных граничных условиях

