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In this paper, we present an exact algorithm for optimizing a linear fractional
function with interval coefficients over the integer efficient set of a chance constrained
multiple objective stochastic integer linear programming (CCMOSILP) problem. At
first, a convex combination of the left and right values of the interval coefficients are
used in place of the intervals and consequently the problem is reduced to a linear
deterministic programming problem. Then we convert the CCMOSILP problem into
a deterministic problem by using known distribution function of random variables.
The basic idea of the computation phase of the algorithm is to solve the problem
using a sequence of progressively more constrained integer linear fractional programs
that progressively improves the value of the linear criteria and eliminates undesirable
points from further consideration. To demonstrate the proposed algorithm a numerical
example is solved.
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Introduction

Multiobjective stochastic optimization is one of the important fields of study in operations
research. Many real-world problems involve multiple objectives with random parameters.
Due to the conflict between objectives, finding a feasible solution that simultaneously opti-
mizes all objectives is usually impossible. Consequently, in practice, decision makers want to
explore and understand the trade off between objectives before choosing a suitable solution.

The multiobjective stochastic program (MOSP) problem was studied by Teghem et al. [1]
who presented interactive methods in stochastic programming, PROTRADE of Goicoechea
et al. [2], and PROMISE of Urli and Nadeau [3]. These methods have been successfully
tested in real world contexts. Ben Abdelaziz et al. [4] proposed a compromise chance con-
strained approach to solve a MOSP portfolio selection problem. The chance constrained
programming (CCP) technique is one which can be used to solve problems involving chance
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constraints, i. e., constraints having finite probability of being violated. The CCP was orig-
inally developed by Charnes and Cooper [5] and has, in recent years, been generalized in
several directions and has various applications.

We consider the chance constraints multiple objective stochastic integer linear program-
ming (CCMOSILP) problem [6]:

(𝐶𝐶𝑀𝑂𝑆𝐼𝐿𝑃 )

⎧⎪⎪⎨⎪⎪⎩
min 𝑍𝑘 =

𝑛∑︀
𝑖=1

𝐶𝑘
𝑖 (𝜉)𝑥𝑖, where 𝑘 = 1, . . . , 𝐾,

s. t. 𝑋 = (𝑥1, . . . , 𝑥𝑛) ∈ 𝐷,
P(𝑇 (𝜉)𝑋 ≥ ℎ(𝜉)) ≥ 𝛼.

(1)

We assume throughout the paper that 𝐷𝑐𝑠 = 𝐷 ∩ [P(𝑇 (𝜉)𝑋 ≥ ℎ(𝜉)) ≥ 𝛼] ̸= ∅, where
𝐷 = 𝑆 ∩ Z which 𝑆 = {𝑋 ∈ R𝑛 : 𝐴𝑋 = 𝑏,𝑋 ≥ 0} is a nonempty bounded polyhedron. 𝑆 is
the set of deterministic constraints with 𝐴 is (𝑚× 𝑛) matrix and 𝑏 is 𝑚 vector; 𝐶𝑘, 𝑇 and
ℎ are random matrices of dimension (1 × 𝑛), (𝑚 × 𝑛) and (𝑚 × 1) respective defined on
some probability space (Ξ,𝒜,P), with Ξ is a set of outcomes 𝜉 (e. g. the results of random
experiments), a collection 𝒜 of subsects A ⊂ Ξ called events and P is the partially known
probability distribution that assigns to each A ∈ 𝒜 the probability of occurrence, 𝛼 are
specified probabilities. Let E𝑐𝑠 denote the set of efficient solutions, whose definition will be
given in the next section.

In many situations, the decision maker faces a large number of different efficient solu-
tions and the selection of his/her preferred solutions becomes a very hard task. A way of
assessing some preferred solution is by optimizing a function (utility function written as
a function of decision variables), particularly linear, optimization over the efficient set, an
appropriate approach that has received increasing attention in recent years. In [7] Philip
first studied the problem and suggested an algorithm based on moving to adjacent efficient
vertices when the function is a linear function. Later, Isermann and Steuer [8] outlined
a similar procedure for solving the problem of optimizing over the efficient set, where the
objective function is one of the multiobjective linear programming. Abbas and Chaabane
(2006) [9], proposed a method for the optimization over the efficient set of a multiple ob-
jective integer linear programming (MOILP), where different types of cuts are imposed in
such a way that the improvement of the objective value at each iteration is guaranteed.
Jorge [10], Chaabane and Pirlo [11], developed another approach that defines a sequence
of progressively more constrained single-objective integer problems that successively elim-
inates undesirable points. Zerdani and Mouläı [12] developed an approach that optimizes
an arbitrary linear function over an integer efficient set of multi objective linear fractional
programming (MOLFP) problem without explicitly having to enumerate all the efficient
solutions. Recently, Younsi and Mouläı [13] have optimized a stochastic linear over the ef-
ficient set of the multi objective stochastic integer linear programming problem, it is based
on Jorge’s approach [10] with the concepts L-shaped integer method, using an augmented
weighted Tchebychev program to generate the set of nondominated objective vectors.

In management science, there are numerous decision marking problems where the objec-
tive functions are linear fractional functions with interval coefficients. This type of functions
can be found in game theory, portfolio selection, agriculture based management systems, in
which the coefficients are not certain when they are modelled mathematically. The basic
problem 𝑃𝐸 that we investigate is to minimize a main linear fractional function with interval
coefficients Φ over the set E𝑐𝑠:
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(𝑃𝐸)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min Φ(𝑋) =

𝛿 +
𝑛∑︀

𝑖=1

𝑃𝑖𝑥𝑖

𝛽 +
𝑛∑︀

𝑖=1

𝑄𝑖𝑥𝑖

,

s. t. 𝑋 ∈ E𝑐𝑠.

(2)

Here 𝛿, 𝑃𝑖, 𝛽 and 𝑄𝑖 are an intervals which represents the uncertain coefficients of the
objective function, ∀𝑖 = 1, . . . , 𝑛, with 𝛿 = [𝛿1, 𝛿2], 𝛽 = [𝛽1, 𝛽2], 𝑃𝑖 = [𝑝1𝑖 , 𝑝

2
𝑖 ] and 𝑄𝑖 = [𝑞1𝑖 , 𝑞

2
𝑖 ].

The main difficulty of the problem arises from the nonconvexity of the efficient set
E𝑐𝑠, which is the union of several faces of 𝐷𝑐𝑠 (the problem is to be solve without solv-
ing CCMOSILP).

Associated with 𝑃𝐸, the relaxed problem is

(𝑅𝑐𝑠)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min Φ(𝑋) =

𝛿 +
𝑛∑︀

𝑖=1

𝑃𝑖𝑥𝑖

𝛽 +
𝑛∑︀

𝑖=1

𝑄𝑖𝑥𝑖

,

s. t. 𝑋 ∈ 𝐷𝑐𝑠.

(3)

It has also been assumed that 𝛽 +
𝑛∑︀

𝑖=1

𝑄𝑖𝑥𝑖 > 0 for all 𝑋 = (𝑥1, . . . , 𝑥𝑛) ∈ 𝐷𝑐𝑠.

In this paper, we focus on the problem of optimizing a linear fractional function with
interval coefficients Φ, over the efficient set of a MOSILP with a joint chance constraint. We
address the general case where Φ is reduced into a deterministic linear fractional function.
Then, the stochastic objective function is converted into deterministic function. We also
transform the chance constraint into a deterministic constraints by using known inverse
distribution function. A direct approach could consist of finding all efficient solutions of the
CCMOSILP problem and then finding the best value of Φ on that set. This approach is
not appropriate for practical purposes, because of the difficulty of determining the set of
all efficient solutions. We thus propose an implicit technique that avoids searching for all
efficient solutions but guarantees finding one that minimize Φ.

The structure of the paper is organized as follows: Section 1 presents the formulation
of chance constrained and describes the process of transforming CCMOSILP problem into
an equivalent deterministic and compiles the basic result used throughout the manuscript.
Section 2 presents new approach for reducing the fractional function with interval coefficients
into an deterministic function. A proposition is provided to support this approach. Section 3
is devoted to proposed the different steps of present method and the algorithm. Two propo-
sitions are provided to justify finiteness and convergence of the algorithm. An extensive
numerical example is solved in Section 4 to show the optimum of proposed problem (2).

1. Chance constrained and efficiency testing

1.1. Chance constrained programming

Use of chance constrained programming (CCP) introduces a new requirement upon decision
makers. This approach was first introduced by Charnes et al. [14], where the objective is often
an expectational functional as we used earlier (the E-model), or the V-model minimizes the
generalized mean square of the objective functions, or the P-model maximizes the probability
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of aspiration levels of the objective functions. Another variation includes an objective that is
a quantile of a random function [15]. Ben Abdelaziz et al. [4] proposed a compromise chance
constrained approach to solve multiobjective stochastic programming problem of a portfolio
selection.

Since 𝐶𝑘
𝑖 (𝜉) are uniformly distributed random variables, the 𝑘th objective function,

𝑍𝑘(𝑋), will also be uniformly distributed random variable. The mean of 𝑍𝑘 is given by

̃︀𝑍𝑘 = 𝐸𝑠𝑝(𝑍𝑘) =
𝑛∑︁

𝑖=1

𝐸𝑠𝑝[𝐶𝑘
𝑖 (𝜉)]𝑥𝑖, 𝑘 = 1, . . . , 𝐾,

where 𝐸𝑠𝑝(𝐶𝑘
𝑖 (𝜉)) is the mean value of 𝐶𝑘

𝑖 (𝜉), 𝑘 = 1, . . . , 𝐾, denoted 𝐸𝑠𝑝(𝐶𝑘
𝑖 (𝜉)) = ̃︀𝐶𝑘

𝑖 ,

assuming that all coefficients of ̃︀𝐶𝑘
𝑖 are integers.

Thus, a deterministic linear program with a single chance constraint problem can be
formulated as follows:

(𝑀𝑂𝑆𝐼𝐿𝑃 )

⎧⎪⎪⎨⎪⎪⎩
min ̃︀𝑍𝑘 =

𝑛∑︀
𝑖=1

̃︀𝐶𝑘
𝑖 𝑥𝑖, 𝑘 = 1, . . . , 𝐾,

s. t. 𝑋 ∈ 𝐷,
P(𝑇𝑗(𝜉)𝑋 ≥ ℎ𝑗(𝜉)) ≥ 𝛼𝑗, 𝑗 = 1, . . . , 𝐽,

(4)

where 𝛼𝑗 is some confidence level, typically 90 or 95%, at least, the satisfaction degree on
the realization of the uncertain constraints.

For stochastic linear programs with single chance constraint, convexity statements have
been derived without the joint convexity assumption on ℎ𝑗(𝜉) − 𝑇𝑗(𝜉)𝑋; for special distri-
butions and special intervals for the values of 𝛼𝑗. In particular, when each 𝑗 corresponds
to a distinct linear constraint and 𝑇𝑗 is a fixed row vector, then obtaining a deterministic
equivalent of (4) is fairly straightforward. In this case, P(𝑇𝑗𝑋 ≥ ℎ𝑗(𝜉)) = 𝐹𝑗(𝑇𝑗𝑋), where
𝐹𝑗(·) and 𝐹−1

𝑗 (·) represent the distribution function and the inverse distribution function
of a uniform variable ℎ𝑗 respectively, we have P(𝑇𝑗𝑋 ≥ ℎ𝑗(𝜉)) = 𝐹𝑗(𝑇𝑗𝑋) ≥ 𝛼𝑗 or equiva-
lently 𝑇𝑗𝑋 ≥ 𝐹−1

𝑗 (𝛼𝑗), where 𝐹−1
𝑗 (𝛼𝑗) is assumed to be the smallest real value 𝜂 such that

𝐹𝑗(𝜂) ≥ 𝛼𝑗. Hence in this special case any single chance constraint turns out to be just
a linear constraint, and the only additional work to do is to compute 𝐹−1

𝑗 (𝛼𝑗).
Thus, the chance constrained programming problem can be stated as a deterministic

linear programming problem:

(𝑀𝐶𝑃 )

⎧⎪⎪⎨⎪⎪⎩
min ̃︀𝑍𝑘 =

𝑛∑︀
𝑖=1

̃︀𝐶𝑘
𝑖 𝑥𝑖, 𝑘 = 1, . . . , 𝐾,

s. t. 𝑋 ∈ 𝐷,
𝑇𝑗𝑋 ≥ 𝐹−1

𝑗 (𝛼𝑗), 𝑗 = 1, . . . , 𝐽.

(5)

We assume throughout the paper that

𝐷𝑐𝑠 = {𝑋 ∈ R𝑛 : 𝐴𝑋 = 𝑏, 𝑇𝑗𝑋 ≥ 𝐹−1
𝑗 (𝛼𝑗), 𝑗 = 1, . . . , 𝐽,𝑋 ≥ 0, integer}

is not empty.
In the sense of MCP programming, 𝐾 objective are usually simultaneously each other in

nature and concept of optimal solution gives place to concept of Pareto optimal (efficient,
non dominated), for which the improvement of one objective function is attained only by
sacrificing another objective function. The solution to the problem (5) is to find all solutions
that are efficient in the sense of the following definition:
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Definition 1.1. A point 𝑋* ∈ 𝐷𝑐𝑠 is said to be an efficient solution for (5) if and only if

there does not exist another point 𝑋(1) ∈ 𝐷𝑐𝑠 such that ̃︀𝑍𝑘(𝑋(1)) ≤ ̃︀𝑍𝑘(𝑋*), 𝑘 ∈ {1, . . . , 𝐾}
and ̃︀𝑍𝑘(𝑋(1)) < ̃︀𝑍𝑘(𝑋*) for at least one 𝑘 ∈ {1, . . . , 𝐾}.

In this subsection we pay attention to some basic results which can help the reader to
understand the algorithm in Section 3.

1.2. Efficiency testing

The following result [16] is used in various steps of the algorithm to test the efficiency of
a given feasible solution of problem (5).

Let 𝑋0 be an arbitrary element of the region 𝐷𝑐𝑠; 𝑋
0 ∈ E𝑐𝑠 if and only if the optimal

value of the objective function Θ is null in the following integer linear programming problem:

(𝑃 (𝑋0))

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min Θ = −

𝐾∑︀
𝑘=1

Ψ𝑘,

s. t.

⎧⎨⎩
𝑋 ∈ 𝐷𝑐𝑠,̃︀𝐶𝑘𝑋 +Ψ𝑘 = ̃︀𝐶𝑘𝑋0,
Ψ𝑘 ≥ 0, integer.

(6)

As is well-known, if the optimal value Θ = 0, then 𝑋0 ∈ E𝑐𝑠. Otherwise, any opti-
mal solution �̂�0 of (6) is proved to be an efficient solution of (5) and its criterion vector

dominates ̃︀𝐶𝑋0.

2. Construction of deterministic fractional function

2.1. The basic interval arithmetic

All lower case letters denote real numbers and the upper case letters denote the interval
numbers or the closed intervals on R:

𝐴 = [𝑎1, 𝑎2] = {𝑎 : 𝑎1 ≤ 𝑎 ≤ 𝑎2},

where 𝑎1 and 𝑎2 are the left and right values of the interval 𝐴 on the real line R, respectively.
If 𝑎1 = 𝑎2, then 𝐴 = [𝑎, 𝑎] is a real number.

Let * ∈ {+,−, ·,÷} be a binary operation on the set of real numbers. If 𝐴 and 𝐵 are
closed intervals, then

𝐴 *𝐵 = {𝑎 * 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}

defines a binary operation on the set of closed intervals. In the case of division, it is assumed
that 0 /∈ 𝐵. See [17, 18] for more information about interval arithmetic.

If 𝜇 is a scalar, then

𝜇 · 𝐴 = 𝜇 · [𝑎1, 𝑎2] =
{︂

𝜇 · [𝑎1, 𝑎2] for 𝜇 ≥ 0,
𝜇 · [𝑎1, 𝑎2] for 𝜇 < 0.

The extended addition (+) and extended subtraction (−) are defined as follows:

𝐴+𝐵 = [𝑎1 + 𝑏1, 𝑎2 + 𝑏2], 𝐴−𝐵 = [𝑎1 − 𝑏2, 𝑎2 − 𝑏1].



Optimizing a linear fractional function with interval coefficients . . . 77

2.2. The best objective

The importance and motivation for converting the function into a deterministic function
of problem (3) has been discussed extensively in the literature. For example, Effati and
Pakdaman [19] discussed solving procedure of interval valued linear fractional programming
model (LFPM). In [20] a generalized confidence interval estimation method is used, to ob-
tain the left and right values of interval estimated linear fractional programming model
(INLFPM). Borza et al. [21] proposed a method on variable transformation by Charnes and
Cooper and convex combination of the left and right values of the intervals. In this section we
offer an approach that consists in reduceing the function of problem (3) into a deterministic
fractional function using convex combination.

Proposition 2.1. In the objective function of problem (3) only the left values of the nu-
merator intervals and only the right values of the denominator intervals are used to (obtain)
achieve the best objective.

Proof. Minimize objective function

Φ(𝑋) =

[𝛿1, 𝛿2] +
𝑛∑︀

𝑖=1

[𝑝1𝑖 , 𝑝
2
𝑖 ]𝑥𝑖

[𝛽1, 𝛽2] +
𝑛∑︀

𝑖=1

[𝑞1𝑖 , 𝑞
2
𝑖 ]𝑥𝑖

is equivalent to minimize its numerator and maximize its denominator. Using the convex
combination of the intervals yields the following objective function:

[𝛿1, 𝛿2] +
𝑛∑︀

𝑖=1

[𝑝1𝑖 , 𝑝
2
𝑖 ]𝑥𝑖

[𝛽1, 𝛽2] +
𝑛∑︀

𝑖=1

[𝑞1𝑖 , 𝑞
2
𝑖 ]𝑥𝑖

=

𝜆0𝛿
1 + (1− 𝜆0)𝛿

2 +
𝑛∑︀

𝑖=1

(𝜆𝑖𝑝
1
𝑖 + (1− 𝜆𝑖)𝑝

2
𝑖 )𝑥𝑖

(1− 𝜆0)𝛽1 + 𝜆0𝛽2 +
𝑛∑︀

𝑖=1

((1− 𝜆𝑖)𝑞1𝑖 + 𝜆𝑖𝑞2𝑖 )𝑥𝑖

.

Let ̂︀𝑋 = (̂︀𝑥1, . . . , ̂︀𝑥𝑛) be a point of the feasible region of problem (3), with 𝜆0, 𝜆𝑖 ∈ [0, 1],
(𝛿1 − 𝛿2) < 0, (𝑝1𝑖 − 𝑝2𝑖 ) < 0, (𝛽2 − 𝛽1) > 0 and (𝑞2𝑖 − 𝑞1𝑖 ) > 0 then the objective function can
be written as:

𝜆0(𝛿
1 − 𝛿2) +

𝑛∑︀
𝑖=1

𝜆𝑖(𝑝
1
𝑖 − 𝑝2𝑖 )̂︀𝑥𝑖 +

(︂
𝛿2 +

𝑛∑︀
𝑖=1

𝑝2𝑖 ̂︀𝑥𝑖

)︂
𝜆0(𝛽2 − 𝛽1) +

𝑛∑︀
𝑖=1

𝜆𝑖(𝑞2𝑖 − 𝑞1𝑖 )̂︀𝑥𝑖 +

(︂
𝛽1 +

𝑛∑︀
𝑖=1

𝑞1𝑖 ̂︀𝑥𝑖

)︂ .

On the other hand, for all index 𝑖 = 1, . . . , 𝑛:

𝜆0(𝛿
1 − 𝛿2) +

𝑛∑︁
𝑖=1

𝜆𝑖(𝑝
1
𝑖 − 𝑝2𝑖 )̂︀𝑥𝑖 +

(︃
𝛿2 +

𝑛∑︁
𝑖=1

𝑝2𝑖 ̂︀𝑥𝑖

)︃
>

> (𝛿1 − 𝛿2) +
𝑛∑︁

𝑖=1

(𝑝1𝑖 − 𝑝2𝑖 )̂︀𝑥𝑖 +

(︃
𝛿2 +

𝑛∑︁
𝑖=1

𝑝2𝑖 ̂︀𝑥𝑖

)︃
= 𝛿1 +

𝑛∑︁
𝑖=1

𝑝1𝑖 ̂︀𝑥𝑖,

and

𝜆0(𝛽
2 − 𝛽1) +

𝑛∑︁
𝑖=1

𝜆𝑖(𝑞
2
𝑖 − 𝑞1𝑖 )̂︀𝑥𝑖 +

(︃
𝛽1 +

𝐼∑︁
𝑖=1

𝑞1𝑖 ̂︀𝑥𝑖

)︃
<

< (𝛽2 − 𝛽1) +
𝐼∑︁

𝑖=1

(𝑞2𝑖 − 𝑞1𝑖 )̂︀𝑥𝑖 +

(︃
𝛽1 +

𝑛∑︁
𝑖=1

𝑞1𝑖 ̂︀𝑥𝑖

)︃
= 𝛽2 +

𝑛∑︁
𝑖=1

𝑞2𝑖 ̂︀𝑥𝑖.
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The following inequality is obtained

𝜆0(𝛿
1 − 𝛿2) +

𝑛∑︀
𝑖=1

𝜆𝑖(𝑝
1
𝑖 − 𝑝2𝑖 )̂︀𝑥𝑖 +

(︂
𝛿2 +

𝑛∑︀
𝑖=1

𝑝2𝑖 ̂︀𝑥𝑖

)︂
𝜆0(𝛽2 − 𝛽1) +

𝑛∑︀
𝑖=1

𝜆𝑖(𝑞2𝑖 − 𝑞1𝑖 )̂︀𝑥𝑖 +

(︂
𝛽1 +

𝑛∑︀
𝑖=1

𝑞1𝑖 ̂︀𝑥𝑖

)︂ >

𝛿1 +
𝑛∑︀

𝑖=1

𝑝1𝑖 ̂︀𝑥𝑖

𝛽2 +
𝑛∑︀

𝑖=1

𝑞2𝑖 ̂︀𝑥𝑖

.

The right hand side of the above inequality can be considered as a lower bound for the
objective function of the problem (3). Therefore the problem (3) can be reduced to the
following problem:

(𝑅𝐸𝑐𝑠)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min Φ(𝑋) =

𝛿1 +
𝑛∑︀

𝑖=1

𝑝1𝑖𝑥𝑖

𝛽2 +
𝑛∑︀

𝑖=1

𝑞2𝑖 𝑥𝑖

,

s. t. 𝑋 ∈ 𝐷𝑐𝑠

(7)

and we write the problem (2) using this proposition, we have the following problem:

(𝑃𝐸𝑐𝑠)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min Φ(𝑋) =

𝛿1 +
𝑛∑︀

𝑖=1

𝑝1𝑖𝑥𝑖

𝛽2 +
𝑛∑︀

𝑖=1

𝑞2𝑖 𝑥𝑖

,

s. t. 𝑋 ∈ E𝑐𝑠.

(8)

Different approaches have been proposed in the literature to solve problem (7) integer
linear fractional programming problems [22–25]. The approach adopted to solve the prob-
lem (7) at the 𝑙th iteration, is the Granot’s method (see [24]), which is mainly based on the
evaluation of the reduced gradient vector 𝛾𝑗 and Gomory cuts, if necessary, we obtain an
integer feasible solution. The following theorem allows us to find the optimal solution of (7).

Theorem 2.1 (see [25]). The point 𝑋1 of 𝐷𝑐𝑠 is an optimal solution of problem (7) if and
only if the reduced gradient vector 𝛾 = 𝛽2𝑝1 − 𝛿1𝑞2 is such that 𝛾𝑗 ≥ 0 for all 𝑗 ∈ 𝑁𝑙 (𝑁𝑙

is the set of indices of nonbasic variables of 𝑋1), where 𝛽2, 𝑝1, 𝛿1 and 𝑞2 are the updated
values of 𝛽2, 𝑝1, 𝛿1 and 𝑞2 respectively.

3. Description of the method

The considered problem presents three principal basic ideas. First one, we reduce the linear
objective function with intervals coefficients by the best objective. The second idea is to
compute the inverse of the distribution function of variable ℎ𝑗(𝜉) for transformed the chance
constraints of the problem (5). Finally, we characterize an efficient solution by solving the
efficiency test (problem (6), see [16]) and we reduce progressively the admissible domain
by adding more constraints in order to present the detailed steps of algorithm that solves
problem (8).
Step 1. Starting with an optimal solution of an (7) problem and successive Gomory cuts, if

necessary, we obtain an integer feasible solutions. The obtained solution is then tested
for efficiency by solving (𝑃 (𝑋1)), terminating if it finds that it is efficient, or obtaining

an efficient solution �̂�1, whose criterion vector dominates ̃︀𝐶𝑋1.



Optimizing a linear fractional function with interval coefficients . . . 79

Step 2. It may happen that the obtained efficient solution is not better than an equiva-
lent efficient solution on the main objective function Φ(𝑋). Therefore, the following
problem has to be solved before reducing the current admissible region.

min{Φ(𝑋)| ̃︀𝐶𝑋 = ̃︀𝐶�̂�1,Φ(𝑋) ≤ (Φ(�̂�1)− 𝑒), 𝑋 ∈ 𝐷𝑐𝑠},

where 𝑒 > 0 is a positive small enough value to avoid falling on the same solution �̂�1.
If the problem is unfeasible and if Φ(�̂�1) ≤ Φ𝑜𝑝𝑡, 𝑋𝑜𝑝𝑡 = �̂�1 and Φ𝑜𝑝𝑡 = Φ(�̂�1) have
been updated as a consequence of having found a new better efficient solution of (5).
Otherwise, a new efficient solution �̈�1 is then generated and if 𝜑(�̈�1) is inferior from
the optimal value, update 𝑋𝑜𝑝𝑡 = �̈�1 and Φ𝑜𝑝𝑡 = Φ(�̈�1).

Step 3. After 𝑙 steps of the process, the feasible set 𝐷𝑐𝑠 is reduced gradually by eliminating
all dominated solutions by ̃︀𝐶�̂� 𝑙−1 (see Sylva and Crema [26]) with the cut Φ(𝑋) ≤ Φ𝑜𝑝𝑡

that insure that the new optimal solution 𝑋 𝑙 of the problem (9) improves the opti-
mum value. The resolution of the following problem (9) enables us to perform this

elimination assuming that all coefficients of ̃︀𝐶 are integers.

(𝑅𝐸𝑙
𝑐𝑠)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
min Φ(𝑋) =

𝛿1 +
𝑛∑︀

𝑖=1

𝑝1𝑖𝑥𝑖

𝛽2 +
𝑛∑︀

𝑖=1

𝑞2𝑖 𝑥𝑖

,

s. t. 𝑋 ∈ 𝐻𝑐𝑠,
Φ(𝑋) ≤ Φ𝑜𝑝𝑡,

(9)

where 𝐻𝑐𝑠 = 𝐷𝑐𝑠 −
𝑙⋃︀

𝑠=1

𝐷𝑠 and 𝐷𝑠 =
{︁
𝑋 ∈ Z𝑛| ̃︀𝐶𝑋 ≥ ̃︀𝐶𝑋𝑠

}︁
.
{︁ ̃︀𝐶𝑋𝑠

}︁𝑙

𝑠=1
is a subset of

nondominated criteria vectors for problem (5), with {𝑋𝑠, 𝑠 = 1, . . . , 𝑙−1} are solutions
of (5) obtained at iterations 1, 2, . . . , 𝑙 − 1 respectively.

𝐻𝑐𝑠 =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

̃︀𝐶𝑘𝑋 ≤ ( ̃︀𝐶𝑘𝑋𝑠 − 1)𝑦𝑠𝑘 +𝑀𝑘(1− 𝑦𝑠𝑘),
𝐾∑︀
𝑘=1

𝑦𝑠𝑘 ≥ 1,

𝑦𝑠𝑘 ∈ {0, 1},
𝑋 ∈ 𝐷𝑐𝑠,
for all 𝑘 = 1, 2, . . . , 𝐾, 𝑠 = 1, 2, . . . , 𝑙,

where 𝑀𝑘 is an upper bound for the 𝑘th objective function of problem (5). In practice,

𝑀𝑘 can be taken, e. g., as the optimal value of the linear problem max{ ̃︀𝐶𝑘𝑋|𝑋 ∈
𝐷𝑐𝑠, 𝑋 ≥ 0, integer}. Note that when 𝑦𝑠𝑘 = 0, the constraint is not restrictive and
when 𝑦𝑠𝑘 = 1, a strict improvement is forced in the 𝑘th objective function evaluated at
�̈� 𝑙 or �̂� 𝑙, and

Φ(𝑋) ≤ Φ𝑜𝑝𝑡 ⇔
𝛿1+

𝑛∑︀
𝑖=1

𝑝1𝑖𝑥𝑖

𝛽2+
𝑛∑︀

𝑖=1

𝑞2𝑖 𝑥𝑖

≤ Φ𝑜𝑝𝑡 ⇔

(︃
𝛿1 +

𝑛∑︁
𝑖=1

𝑝1𝑖𝑥𝑖

)︃
−Φ𝑜𝑝𝑡

(︃
𝛽2 +

𝑛∑︁
𝑖=1

𝑞2𝑖 𝑥𝑖

)︃
≤ 0 ⇔

⇔
𝑛∑︁

𝑖=1

(𝑝1𝑖 − Φ𝑜𝑝𝑡𝑞
2
𝑖 )𝑥𝑖 ≤ (−𝛿1 + Φ𝑜𝑝𝑡𝛽

2).
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Proposition 3.1. Let �̂� 𝑙 be an optimal solution to the problem 𝑃 (𝑋 𝑙) (where 𝑋 𝑙 is an
optimal solution to the problem (9)). If Φ(�̂�) = Φ(𝑋 𝑙) then �̂� 𝑙 is an optimal solution to the
problem (8).

Proof. Let us suppose on the contrary that �̂� 𝑙 is not an optimal solution of (8). There
exists another point denoted �̄� ∈ 𝐸𝑐𝑠 such that Φ(�̄�) < Φ(�̂� 𝑙). But on the other hand
Φ(�̂� 𝑙) = Φ(𝑋 𝑙), therefore Φ(�̄�) < Φ(𝑋 𝑙). Thus, it is contradicting the assumption that 𝑋 𝑙

is an optimal solution to the problem (7).

3.1. Algorithm

Step 0. Initialization:
� In chance constrained programming, we transform the chance constraints into
deterministic constraints by using known inverse distribution function. And using
the mathematical means we determine the compromise function for each criterion.

� Using the lower bound of the objective function (the best objective) instead of
the fractional linear function with interval coefficients.

� Solving the linear problem max{ ̃︀𝐶𝑘𝑋|𝑋 ∈ 𝐷𝑐𝑠} for determined 𝑀𝑘 the optimal
value of objective function 𝑘.

� 𝑙 = 1, Φ𝑜𝑝𝑡 = +∞ and 𝐻1
𝑐𝑠 = 𝐷𝑐𝑠, 𝑒 = 0.01.

� Find an optimal solution 𝑋1 of (7).
Step 1. � If Θ = 0, then 𝑋 𝑙 is an optimal solution of (8), the algorithms is terminated.

Else, find an optimal solution �̂� 𝑙 of (𝑃 (𝑋 𝑙)).
� If Φ(𝑋 𝑙) = Φ(�̂� 𝑙), then �̂� 𝑙 solves (8), the algorithms is terminated. Otherwise,
go to Step 2.

Step 2. Find an equivalent efficient solution improving the main objective, with the same
criteria vector by solving the problem

min
{︁
Φ(𝑋)| ̃︀𝐶𝑋 = ̃︀𝐶�̂� 𝑙, Φ(𝑋) ≤ (Φ(�̂� 𝑙)− 0.01), 𝑋 ∈ 𝐷𝑐𝑠

}︁
. (10)

� If the problem (10) is unfeasible, if Φ(�̂� 𝑙) ≤ Φ𝑜𝑝𝑡, set𝑋𝑜𝑝𝑡 = �̂� 𝑙 and Φ𝑜𝑝𝑡 = Φ(�̂� 𝑙).
Go to Step 3.

� Otherwise (problem (10) is feasible), let �̈� 𝑙 be an optimal solution of the prob-
lem (10), if Φ(�̈� 𝑙) ≤ Φ𝑜𝑝𝑡, set 𝑋𝑜𝑝𝑡 = �̈� 𝑙 and Φ𝑜𝑝𝑡 = Φ(�̈� 𝑙). Go to Step 3.

Step 3. Set 𝑙 = 𝑙 + 1, and solve the problem

(𝑅𝐸𝑙
𝑐𝑠)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min Φ =

𝛿1 +
𝑛∑︀

𝑖=1

𝑝1𝑖𝑥𝑖

𝛽2 +
𝑛∑︀

𝑖=1

𝑞2𝑖 𝑥𝑖

,

s. t. 𝑋 ∈ 𝐻 𝑙
𝑐𝑠 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑋 ∈ 𝐻 𝑙−1

𝑐𝑠 ,̃︀𝐶𝑘𝑋 − ( ̃︀𝐶𝑘𝑋𝑜𝑝𝑡 − 1−𝑀𝑘)𝑦𝑙𝑘 ≤ 𝑀𝑘,
𝐾∑︀
𝑘=1

𝑦𝑙𝑘 ≥ 1,

𝑦𝑙𝑘 ∈ {0, 1}, 𝑘 = 1, 2, . . . , 𝐾,
𝑛∑︀

𝑖=1

(𝑝1𝑖 − Φ𝑜𝑝𝑡𝑞
2
𝑖 )𝑥𝑖 ≤ −𝛿1 + Φ𝑜𝑝𝑡𝛽

2.

(11)
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� If 𝐻 𝑙
𝑐𝑠 = ∅. The algorithms is terminated. 𝑋𝑜𝑝𝑡 is an optimal solution for the

linear fractional program (8).
� Otherwise, let 𝑋 𝑙 be an optimal solution of the problem (11). Solve the problem
𝑃 (𝑋 𝑙) and go to Step 1.

Proposition 3.2. This algorithm solves problem (8) in a finite number of steps.

Proof. After transforming the chance constrained programming into an equivalent determin-
istic constraint, the set 𝐷𝑐𝑠 of feasible solution of problem, being compact contains a finite
number of integer solutions. During iteration 𝑘, either a cut Φ(𝑋) ≤ Φ𝑜𝑝𝑡 is applied, the
domain is strictly reduced and one new efficient solution is generated, with three points of
stop, leading to convergence of the algorithm in a finite number of steps.

4. Example illustrative

Let the main problem be:

(𝑃𝐸)

⎧⎨⎩ min Φ(𝑋) =
[1, 10]𝑥1 + [1, 4]𝑥2 + [−1, 1]

[1, 5]𝑥1 + [0.9, 1]𝑥2 + [−1.5,−1]
,

s. t. 𝑋 = (𝑥1, 𝑥2) ∈ E𝑐𝑠.

The problem is reduced to the following problem:

(𝑃𝐸𝑐𝑠)

⎧⎨⎩ min Φ(𝑥) =
𝑥1 + 𝑥2 − 1

5𝑥1 + 𝑥2 − 1
,

s. t. 𝑋 ∈ E𝑐𝑠.

Initialization: we look at the following stochastic multiobjective linear integer program
with chance constraints: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

min 𝑍1 = 𝑐11(𝜉)𝑥1 + 𝑐12(𝜉)𝑥2,
min 𝑍2 = 𝑐21(𝜉)𝑥1 + 𝑐22(𝜉)𝑥2,
s. t. 𝑥1 ≤ 5,

𝑥1 + 𝑥2 ≤ 10,
−𝑥2 ≥ ℎ1(𝜉),
3𝑥1 + 2𝑥2 ≥ ℎ2(𝜉),
𝑋 > 0, integer.

Moreover, the density functions for the random coefficients 𝑐𝑘𝑖 (𝜉) are uniformly distributed
as follows:

𝑐11(𝜉)⇝ 𝑈 [−6, 2], 𝑐12(𝜉)⇝ 𝑈 [−8, 10], 𝑐21(𝜉)⇝ 𝑈 [−2, 4], 𝑐22(𝜉)⇝ 𝑈 [−3,−1].

Compute the mean value of random coefficients for both objectives functions:

̃︀𝑍1 = 𝐸𝑠𝑝(𝑍1(𝑥, 𝜉)) = 𝐸𝑠𝑝(𝐶1
1(𝜉))𝑥1+𝐸𝑠𝑝(𝐶1

2(𝜉))𝑥2 =
1

2
(2−6)𝑥1+

1

2
(10−8)𝑥2 = −2𝑥1+𝑥2,

̃︀𝑍2 = 𝐸𝑠𝑝(𝑍2(𝑥, 𝜉)) = 𝐸𝑠𝑝(𝐶2
1(𝜉))𝑥1+𝐸𝑠𝑝(𝐶2

2)(𝜉)𝑥2 =
1

2
(−2+4)𝑥1+

1

2
(−3−1)𝑥2 = 𝑥1−2𝑥2.

The density functions of both random variables ℎ1(𝜉) and ℎ2(𝜉) are uniform as follows.

ℎ1(𝜉)⇝ 𝑈 [−10,−7] and ℎ2(𝜉)⇝ 𝑈 [1, 6].
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We assume that the desirable safety probability 95% is realized.

P(−𝑥2 ≥ ℎ1(𝜉)) ≥ 0.95 =⇒ 𝐹1(−𝑥2) ≥ 0.95 =⇒ −𝑥2 ≥ 𝐹−1
1 (0.95),

P(3𝑥1 + 2𝑥2 ≥ ℎ2(𝜉)) ≥ 0.95 =⇒ 𝐹2(3𝑥1 + 2𝑥2) ≥ 0.95 =⇒ 3𝑥1 + 2𝑥2 ≥ 𝐹−1
2 (0.95),

𝐹−1
1 (𝛼) = 𝑎+ 𝛼(𝑏− 𝑎) ⇒ 𝐹−1

1 (0.95) = −10 + 0.95(−7 + 10) = −7.15,

𝐹−1
2 (𝛼) = 𝑎+ 𝛼(𝑏− 𝑎) ⇒ 𝐹−1

2 (0.95) = 1 + 0.95(6− 1) = 5.75.

Therefore, the chance constraints of the CCP problem (12) are equivalent to the following
constraints: {︂

−𝑥2 ≥ −7.15,
3𝑥1 + 2𝑥2 ≥ 5.75.

We get the following deterministic equivalent problem:

(𝑀𝐶𝑃 )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

min ̃︀𝑍1 = −2𝑥1 + 𝑥2,

min ̃︀𝑍2 = 𝑥1 − 2𝑥2,
s. t. 𝑥1 ≤ 5,

𝑥1 + 𝑥2 ≤ 10,
−𝑥2 ≥ −7.15,
3𝑥1 + 2𝑥2 ≥ 5.75,
𝑋 > 0, integer.

(12)

The relaxed problem is

(𝑅𝐸1
𝑐𝑠)

⎧⎨⎩ min Φ(𝑥) =
𝑥1 + 𝑥2 − 1

5𝑥1 + 𝑥2 − 1
,

s. t. 𝑋 ∈ 𝐷𝑐𝑠,
(13)

where 𝐷𝑐𝑠 = {𝑥1 ≤ 5, 𝑥1+𝑥2 ≤ 10,−𝑥2 ≥ −7.15, 3𝑥1+2𝑥2 ≥ 5.75, 𝑋 > 0, integer}. We take

Φ𝑜𝑝𝑡 = +∞, 𝐻1
𝑐𝑠 = 𝐷𝑐𝑠, 𝑒 = 0.01 and 𝑙 = 1. Alter solving max{ ̃︀𝐶𝑘𝑋|𝑋 ∈ 𝐷𝑐𝑠}, (𝑘 = 1, 2),

we set (𝑀1,𝑀2) = (7, 5).

The concept of optimal solution can be characterized in many ways. For a geometric
analysis of the fractional programs, 𝑟(0, 1) is the rotation point, with the arrow circular
denote the gradient of linear fractional function (see Fig. 1).

Iteration 1
Step 1. The relaxed problem (13) is solved. The optimal solution is Φ1 = 1/9 for𝑋1 = (2, 0).

In order to test the efficiency of 𝑋1, we solve problem (14) which is the vector criterion

corresponding ̃︀𝑍(𝑋1) = (−4, 2):

(𝑃 (𝑋1))

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min Θ = −Ψ1 −Ψ2,

𝑋 ∈ 𝐷𝑐𝑠,
−2𝑥1 + 𝑥2 +Ψ1 = −4,
𝑥1 − 2𝑥2 +Ψ2 = 2,
Ψ𝑖 ≥ 0, 𝑖 = 1, 2.

(14)

The optimal value of (14) is Θ = −8, which is achieved at the point �̂�1 = (5, 5). Thus
�̂�1 ∈ E𝑐𝑠 and 𝑋1 /∈ E𝑐𝑠.
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Step 2. (𝑇 1
𝑐𝑠) is defined as:

min

{︂
Φ(𝑥)=

𝑥1+𝑥2−1

5𝑥1+𝑥2−1
,Φ(𝑋)≤Φ(�̂�1)−0.01, 𝑋∈𝐷𝑐𝑠,−2𝑥1+𝑥2=−4, 𝑥1−2𝑥2=2

}︂
.

The problem (𝑇 1
𝑐𝑠) is unfeasible. Φ(�̂�1) = 9/29 < Φ𝑜𝑝𝑡 = +∞, set 𝑋𝑜𝑝𝑡 = �̂�1 and

Φ𝑜𝑝𝑡 = 9/29. Go to Step 3.
Step 3. 𝑙 := 𝑙 + 1 = 2. The optimal solution of

(𝑅𝐸2
𝑐𝑠)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min Φ(𝑋) =
𝑥1 + 𝑥2 − 1

5𝑥1 + 𝑥2 − 1
,

s. t. 𝐻2
𝑐𝑠 =

⎧⎪⎪⎨⎪⎪⎩
𝑋 ∈ 𝐻1

𝑐𝑠,
−2𝑥1 + 𝑥2 + 13𝑦1,2 ≤ 7, (1)
𝑥1 − 2𝑥2 + 11𝑦2,2 ≤ 5, (2)
𝑦1,2 + 𝑦2,2 ≥ 1, 𝑦1,2, 𝑦2,2 ∈ {0, 1},

−16𝑥1 + 20𝑥2 ≤ 20

(15)

is 𝑋2 = (3, 0), 𝑌 2 = (1, 0), with ̃︀𝑍2 = ̃︀𝐶𝑋2 = (−6, 3) and Φ(𝑋2) = 1/7 (see Fig. 2).
Solve the following problem:

(𝑃 (𝑋2))

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min Θ = −Ψ1 −Ψ2,

𝑋 ∈ 𝐷𝑐𝑠,
−2𝑥1 + 𝑥2 +Ψ1 = −6,
𝑥1 − 2𝑥2 +Ψ2 = 3,
Ψ𝑖 ≥ 0, 𝑖 = 1, 2.

(16)

Iteration 2
Step 1. The optimal value of (16) is Θ = −6, which is achieved at the point �̂�2 = (5, 4).

Thus �̂�2 ∈ E𝑐𝑠 and 𝑋2 /∈ E𝑐𝑠. Φ(𝑋
2) = 1/7 ̸= Φ(�̂�2) = 2/7, go to Step 2.

Step 2. (𝑇 2
𝑐𝑠) is defined as:

min

{︂
Φ(𝑥)=

𝑥1+𝑥2−1

5𝑥1+𝑥2−1
,Φ(𝑋)≤Φ(�̂�2)−0.01, 𝑥∈𝐷𝑐𝑠,−2𝑥1+𝑥2=−6, 𝑥1−2𝑥2=−3

}︂
.

The problem (𝑇 2
𝑐𝑠) is unfeasible. Φ(�̂�2) = 2/7 < Φ𝑜𝑝𝑡 = 9/29, set 𝑋𝑜𝑝𝑡 = �̂�2 and

Φ𝑜𝑝𝑡 = 2/7. Go to Step 3.
Step 3. 𝑙 := 𝑙 + 1 = 3. The optimal solution of

(𝑅𝐸3
𝑐𝑠)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min Φ(𝑋) =
𝑥1 + 𝑥2 − 1

5𝑥1 + 𝑥2 − 1
,

s. t. 𝐻3
𝑐𝑠 =

⎧⎪⎪⎨⎪⎪⎩
𝑋 ∈ 𝐻2

𝑐𝑠,
−2𝑥1 + 𝑥2 + 14𝑦1,3 ≤ 7, (3)
𝑥1 − 2𝑥2 + 11𝑦2,3 ≤ 5, (4)
𝑦1,3 + 𝑦2,3 ≥ 1, 𝑦1,3, 𝑦2,3 ∈ {0, 1},

−3𝑥1 + 5𝑥2 ≤ 5

is 𝑋3 = (4, 0), 𝑌 3 = (1, 0), with ̃︀𝑍3 = ̃︀𝐶𝑋3 = (−8, 4) and Φ(𝑋3) = 3/19 (see Fig. 3).
Solve the following problem:

(𝐹 (𝑋3))

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min Θ = −Ψ1 −Ψ2,

𝑋 ∈ 𝐷𝑐𝑠,
−2𝑥1 + 𝑥2 +Ψ1 = −8,
𝑥1 − 2𝑥2 +Ψ2 = 4,
Ψ𝑖 ≥ 0, 𝑖 = 1, 2.
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Fig. 1. Admissibility domain without stochastic
constraint 𝐻1

𝑐𝑠

Fig. 2. Admissibility domain without stochastic
constraint 𝐻2

𝑐𝑠

Fig. 3. Admissibility domain without stochastic
constraint 𝐻3

𝑐𝑠

Fig. 4. Admissibility domain without stochastic
constraint 𝐻4

𝑐𝑠
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Iteration 3
Step 1. The optimal value of (𝑃 (𝑋3)) is Θ = −3, which is achieved at the point �̂�3 = (5, 2).

Thus �̂�3 ∈ E𝑐𝑠 and 𝑋3 /∈ E𝑐𝑠, Φ(𝑋
3) = 3/19 ̸= Φ(�̂�3) = 3/13. Go to Step 2.

Step 2. (𝑇 3
𝑐𝑠) is defined as:

min

{︂
Φ(𝑥)=

𝑥1+𝑥2−1

5𝑥1+𝑥2−1
,Φ(𝑋)≤Φ(�̂�3)−0.01, 𝑋∈𝐷𝑐𝑠,−2𝑥1+𝑥2=−8, 𝑥1−2𝑥2=1

}︂
.

The problem (𝑇 3
𝑐𝑠) is unfeasible. Φ(�̂�3) = 3/13 < Φ𝑜𝑝𝑡 = 2/7, set 𝑋𝑜𝑝𝑡 = �̂�3 and

Φ𝑜𝑝𝑡 = 3/13. Go to Step 3.
Step 3. 𝑙 := 𝑙 + 1 = 4. The optimal solution of

(𝑅𝐸4
𝑐𝑠)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min Φ(𝑋) =
𝑥1 + 𝑥2 − 1

5𝑥1 + 𝑥2 − 1
,

s. t. 𝐻4
𝑐𝑠 =

⎧⎪⎪⎨⎪⎪⎩
𝑋 ∈ 𝐻3

𝑐𝑠,
−2𝑥1 + 𝑥2 + 16𝑦1,4 ≤ 7, (5)
𝑥1 − 2𝑥2 + 5𝑦2,4 ≤ 5, (6)
𝑦1,4 + 𝑦2,4 ≥ 1, 𝑦1,4, 𝑦2,4 ∈ {0, 1},

−3𝑥1 + 10𝑥2 ≤ 10

is 𝑋4 = (5, 0), 𝑌 4 = (1, 0), with ̃︀𝑍4 = ̃︀𝐶𝑋4 = (−10, 5) and Φ(𝑋4) = 1/6 (see Fig. 4).
Solve the following problem:

(𝑃 (𝑋4))

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min Θ = −Ψ1 −Ψ2,

𝑋 ∈ 𝐷𝑐𝑠,
−2𝑥1 + 𝑥2 +Ψ1 = −10,
𝑥1 − 2𝑥2 +Ψ2 = 5,
Ψ𝑖 ≥ 0, 𝑖 = 1, 2.

(17)

Iteration 4
Step 1. The optimal value of (17) is Θ = 0. Therefore, �̂�4 = (5, 0) ∈ E𝑐𝑠. This makes the

algorithm stop, leaving us with 𝑋𝑜𝑝𝑡 = �̂�4 as an optimal solution of (8), as expected.
The set of all efficient solutions of the problem (5) is

E𝑐𝑠 = {(0, 7), (1, 7), (2, 7), (3, 7), (3, 6), (4, 6), (4, 5), (5, 5), (5, 4), (5, 3), (5, 2), (5, 1), (5, 0)}.

Whereas, the proposed algorithm optimizes the linear fractional function 𝜑(𝑋) without hav-
ing to pass by all these solutions but only by {(5, 5), (5, 4), (5, 2), (5, 0)}.

Conclusion

The uncertainty in real-world decision making originates from several sources. In this work,
we have made our contribution in stochastic fractional optimizing over the efficient set of
CCMOSILP. This problem has not been yet studied in the literature. Initially, the min-
imization problem (2) with uncertain coefficients of the objective function was reduced to
a deterministic problem using the linear combination. We have constructed an equivalent de-
terministic model corresponding to the CCMOSILP problem. The proposed algorithm solves
the deterministic version of the problem (2) by using a sequence of progressively more con-
strained and the cut of 𝜑(𝑋) ≤ 𝜑𝑜𝑝𝑡 without having to enumerate all the efficient solutions.
A number of propositions are provided to support finiteness and convergence properties.
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For further research, we can consider the lower and upper values of interval estimated
linear fractional programming model obtained by using generalized confidence interval es-
timation method. In real decision problems, in particular, it will be interesting to use the
mutiobjective stochastic transportation problems with interval coefficients which have the
same formulation as problem (1). In our opinion, a new study based on the development of
rational experiment.
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Аннотация

В этой статье мы представляем точный алгоритм оптимизации дробно-линейной функ-
ции с интервальными коэффициентами по целочисленному эффективному множеству зада-
чи стохастического целочисленного линейного программирования с множественными целями
и вероятностными ограничениями (CCMOSILP). Сначала вместо интервалов используется вы-
пуклая комбинация левых и правых значений интервальных коэффициентов, и, следователь-
но, задача сводится к задаче линейного детерминированного программирования. Затем мы
преобразуем задачу CCMOSILP в детерминированную задачу, используя известную функцию
распределения случайных величин. Основная идея фазы вычислений алгоритма состоит в том,
чтобы решить проблему, используя последовательность все более ограниченных целочислен-
ных линейно-дробных программ, которые постепенно улучшают значение линейных критери-
ев и исключают нежелательные моменты из дальнейшего рассмотрения. Для демонстрации
предложенного алгоритма решается численный пример.

Ключевые слова: дробное программирование, многокритериальное стохастическое целое,
программирование с вероятностными ограничениями, интервальные коэффициенты, эффек-
тивное множество.
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