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In this paper, we present an exact algorithm for optimizing a linear fractional
function with interval coefficients over the integer efficient set of a chance constrained
multiple objective stochastic integer linear programming (CCMOSILP) problem. At
first, a convex combination of the left and right values of the interval coefficients are
used in place of the intervals and consequently the problem is reduced to a linear
deterministic programming problem. Then we convert the CCMOSILP problem into
a deterministic problem by using known distribution function of random variables.
The basic idea of the computation phase of the algorithm is to solve the problem
using a sequence of progressively more constrained integer linear fractional programs
that progressively improves the value of the linear criteria and eliminates undesirable
points from further consideration. To demonstrate the proposed algorithm a numerical
example is solved.
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Introduction

Multiobjective stochastic optimization is one of the important fields of study in operations
research. Many real-world problems involve multiple objectives with random parameters.
Due to the conflict between objectives, finding a feasible solution that simultaneously opti-
mizes all objectives is usually impossible. Consequently, in practice, decision makers want to
explore and understand the trade off between objectives before choosing a suitable solution.

The multiobjective stochastic program (MOSP) problem was studied by Teghem et al. [1]
who presented interactive methods in stochastic programming, PROTRADE of Goicoechea
et al. [2], and PROMISE of Urli and Nadeau [3]. These methods have been successfully
tested in real world contexts. Ben Abdelaziz et al. |4] proposed a compromise chance con-
strained approach to solve a MOSP portfolio selection problem. The chance constrained
programming (CCP) technique is one which can be used to solve problems involving chance
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constraints, i.e., constraints having finite probability of being violated. The CCP was orig-
inally developed by Charnes and Cooper [5] and has, in recent years, been generalized in
several directions and has various applications.

We consider the chance constraints multiple objective stochastic integer linear program-

ming (CCMOSILP) problem [6]:

min ZF = Zn: CF(&)z;, where k=1,... K,
i=1

s.t. X =(x1,...,2,) €D, (1)
P(T(§)X > h(g)) = a.

(CCMOSILP)

We assume throughout the paper that D., = D N [P(T(§)X > h(§)) > a] # 0, where
D = SNZ which S ={X e R": AX =b,X > 0} is a nonempty bounded polyhedron. S is
the set of deterministic constraints with A is (m x n) matrix and b is m vector; C*, T and
h are random matrices of dimension (1 x n), (m x n) and (m x 1) respective defined on
some probability space (=, A, P), with = is a set of outcomes £ (e.g. the results of random
experiments), a collection A of subsects A C = called events and P is the partially known
probability distribution that assigns to each A € A the probability of occurrence, « are
specified probabilities. Let E.; denote the set of efficient solutions, whose definition will be
given in the next section.

In many situations, the decision maker faces a large number of different efficient solu-
tions and the selection of his/her preferred solutions becomes a very hard task. A way of
assessing some preferred solution is by optimizing a function (utility function written as
a function of decision variables), particularly linear, optimization over the efficient set, an
appropriate approach that has received increasing attention in recent years. In [7] Philip
first studied the problem and suggested an algorithm based on moving to adjacent efficient
vertices when the function is a linear function. Later, Isermann and Steuer [8] outlined
a similar procedure for solving the problem of optimizing over the efficient set, where the
objective function is one of the multiobjective linear programming. Abbas and Chaabane
(2006) [9], proposed a method for the optimization over the efficient set of a multiple ob-
jective integer linear programming (MOILP), where different types of cuts are imposed in
such a way that the improvement of the objective value at each iteration is guaranteed.
Jorge [10], Chaabane and Pirlo [11], developed another approach that defines a sequence
of progressively more constrained single-objective integer problems that successively elim-
inates undesirable points. Zerdani and Moulal [12] developed an approach that optimizes
an arbitrary linear function over an integer efficient set of multi objective linear fractional
programming (MOLFP) problem without explicitly having to enumerate all the efficient
solutions. Recently, Younsi and Moulai [13] have optimized a stochastic linear over the ef-
ficient set of the multi objective stochastic integer linear programming problem, it is based
on Jorge’s approach [10] with the concepts L-shaped integer method, using an augmented
weighted Tchebychev program to generate the set of nondominated objective vectors.

In management science, there are numerous decision marking problems where the objec-
tive functions are linear fractional functions with interval coefficients. This type of functions
can be found in game theory, portfolio selection, agriculture based management systems, in
which the coefficients are not certain when they are modelled mathematically. The basic
problem Pg that we investigate is to minimize a main linear fractional function with interval
coefficients ® over the set E,:
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min P(X) = —=L—
P, " ’ 2
s.t. X € Eg.

Here 9, P;, f and (Q; are an intervals which represents the uncertain coefficients of the
objective function, Vi = 1,...,n, with § = [0%,6%], 8 = [, B%], P, = [p}, p?] and Q; = [¢}, ¢7].
The main difficulty of the problem arises from the nonconvexity of the efficient set
E s, which is the union of several faces of D.s (the problem is to be solve without solv-
ing CCMOSILP).
Associated with Pg, the relaxed problem is

min d(X) = —=L—
R, U ’ 3
s.t. X € Dg,.

It has also been assumed that 3 + Z Qix; >0 for all X = (z1,...,2,) € Des.

In this paper, we focus on the problem of optimizing a linear fractional function with
interval coefficients ®, over the efficient set of a MOSILP with a joint chance constraint. We
address the general case where ® is reduced into a deterministic linear fractional function.
Then, the stochastic objective function is converted into deterministic function. We also
transform the chance constraint into a deterministic constraints by using known inverse
distribution function. A direct approach could consist of finding all efficient solutions of the
CCMOSILP problem and then finding the best value of ® on that set. This approach is
not appropriate for practical purposes, because of the difficulty of determining the set of
all efficient solutions. We thus propose an implicit technique that avoids searching for all
efficient solutions but guarantees finding one that minimize ®.

The structure of the paper is organized as follows: Section [l] presents the formulation
of chance constrained and describes the process of transforming CCMOSILP problem into
an equivalent deterministic and compiles the basic result used throughout the manuscript.
Section |2 presents new approach for reducing the fractional function with interval coefficients
into an deterministic function. A proposition is provided to support this approach. Section [3]
is devoted to proposed the different steps of present method and the algorithm. Two propo-
sitions are provided to justify finiteness and convergence of the algorithm. An extensive
numerical example is solved in Section 4] to show the optimum of proposed problem .

1. Chance constrained and efficiency testing

1.1. Chance constrained programming

Use of chance constrained programming (CCP) introduces a new requirement upon decision
makers. This approach was first introduced by Charnes et al. [14], where the objective is often
an expectational functional as we used earlier (the E-model), or the V-model minimizes the
generalized mean square of the objective functions, or the P-model maximizes the probability
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of aspiration levels of the objective functions. Another variation includes an objective that is
a quantile of a random function [15]. Ben Abdelaziz et al. [4] proposed a compromise chance
constrained approach to solve multiobjective stochastic programming problem of a portfolio
selection.

Since CF(¢) are uniformly distributed random variables, the k™ objective function,
Z¥(X), will also be uniformly distributed random variable. The mean of Z* is given by

Z8 = Esp(Z%) =Y EsplCH©)a, k=1,... K,
=1

where Esp(CF(£)) is the mean value of CF(£), k = 1,..., K, denoted Esp(CF(§)) = 5f,
assuming that all coefficients of @k are integers.

Thus, a deterministic linear program with a single chance constraint problem can be
formulated as follows:

min Ekzzéfxl, k=1,...,K,
=1

s.t. Xe ll), (4)
P(T(E)X > hy(€)) > ay, j=1....J

(MOSILP)

where «; is some confidence level, typically 90 or 95 %, at least, the satisfaction degree on
the realization of the uncertain constraints.

For stochastic linear programs with single chance constraint, convexity statements have
been derived without the joint convexity assumption on h;(§) — T;(§)X; for special distri-
butions and special intervals for the values of ;. In particular, when each j corresponds
to a distinct linear constraint and 7j is a fixed row vector, then obtaining a deterministic
equivalent of (4] is fairly straightforward. In this case, P(7;X > h;(§)) = F;(13X), where
Fj(-) and F;'(-) represent the distribution function and the inverse distribution function
of a uniform variable h; respectively, we have P(7;X > h;(§)) = F;(1;X) > a; or equiva-
lently 7;X > Fj_l(aj), where Fj_l(aj) is assumed to be the smallest real value 1 such that
Fj(n) > «j. Hence in this special case any single chance constraint turns out to be just
a linear constraint, and the only additional work to do is to compute F{l(aj).

Thus, the chance constrained programming problem can be stated as a deterministic
linear programming problem:

min Z’“:Z@kxz, k=1,....K,
i=1

s.t. XeD, (5)
T,X > F Y ey), j=1,....J.

(MCP)

We assume throughout the paper that
Des ={X eR": AX =b,T;X > F; '(a;),j =1,...,J, X >0, integer}

is not empty.

In the sense of MCP programming, K objective are usually simultaneously each other in
nature and concept of optimal solution gives place to concept of Pareto optimal (efficient,
non dominated), for which the improvement of one objective function is attained only by
sacrificing another objective function. The solution to the problem is to find all solutions
that are efficient in the sense of the following definition:
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Definition 1.1. A point X* € D, is said to be an efficient solution for if and only if
there does not exist another point XY € D,, such that Z*(X®1)) < Z¥(X*), k€ {1,..., K}
and ZF(XW) < ZF(X*) for at least one k € {1,..., K}.

In this subsection we pay attention to some basic results which can help the reader to
understand the algorithm in Section [3}

1.2. Efficiency testing

The following result |16 is used in various steps of the algorithm to test the efficiency of
a given feasible solution of problem .

Let X° be an arbitrary element of the region D.;; X° € E, if and only if the optimal
value of the objective function © is null in the following integer linear programming problem:

K
min O =— > U,
k=1
(P(X")) X €De, (6)
s. t. CFX + Uy, = CkXO,
Uk >0, integer.

As is well-known, if the optimal value © = 0, then X VY ¢ E.,. Otherwise, any opti-
mal solution X° of @ is proved to be an efficient solution of and its criterion vector
dominates CX".

2. Construction of deterministic fractional function

2.1. The basic interval arithmetic

All lower case letters denote real numbers and the upper case letters denote the interval
numbers or the closed intervals on R:

A=la',a®] ={a:ad' <a<a},

where a' and a? are the left and right values of the interval A on the real line R, respectively.
If a' = a?, then A = [a,a] is a real number.
Let * € {+,—,+,+} be a binary operation on the set of real numbers. If A and B are
closed intervals, then
AxB={axb:ac Abe B}

defines a binary operation on the set of closed intervals. In the case of division, it is assumed
that 0 ¢ B. See |17, |18] for more information about interval arithmetic.
If p is a scalar, then

o [l oo,
pod=p [a’a]_{p-[al,aQ] for u < 0.

The extended addition (4) and extended subtraction (—) are defined as follows:

A+B=la"+b,a*>+1*], A—-B=[a"—0b*a*—0b.
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2.2. The best objective

The importance and motivation for converting the function into a deterministic function
of problem has been discussed extensively in the literature. For example, Effati and
Pakdaman [19] discussed solving procedure of interval valued linear fractional programming
model (LFPM). In [20] a generalized confidence interval estimation method is used, to ob-
tain the left and right values of interval estimated linear fractional programming model
(INLFPM). Borza et al. [21] proposed a method on variable transformation by Charnes and
Cooper and convex combination of the left and right values of the intervals. In this section we
offer an approach that consists in reduceing the function of problem into a deterministic
fractional function using convex combination.

Proposition 2.1. In the objective function of problem only the left values of the nu-
merator intervals and only the right values of the denominator intervals are used to (obtain)
achieve the best objective.

Proof. Minimize objective function

n

(0%, 0% + X [pi P
o(X) = =
8%, 82+ Y-lat g2l
i=1
is equivalent to minimize its numerator and maximize its denominator. Using the convex
combination of the intervals yields the following objective function:

i=1

(81, 6] + é[%l» glr; (1= Xo)BY 4 Nof% + Z((l - \i)g; + )\’iqzz)xi‘

=1

Let X = (Z1,...,7,) be a point of the feasible region of problem , with Ao, \; € [0, 1],
(61 —62) <0, (p} —p?) <0, (82— B') > 0and (g2 —¢q}) > 0 then the objective function can
be written as:

Mo(8! = 62) + 3 N(p! — p2)7; + (52+§1p3@)

Nol(52 )+ZZA( [T+ (51+§q3@)'

On the other hand, for all index 7 = 1 R 0¥
—1—2)\ — )T + ((52—1-2]9?5@-) >
i=1
)+ 30! =i (52)52
i=1 i=1

and

I
—l—Z)\ —q))% + (Bl%—Zqili:}) <
=1
I n
< (B =B+ Y (@ —a))Ti+ (ﬂwz%:@) =3 +> ¢
=1

=1
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The following inequality is obtained

Mo(0 = 62) + 55 Apl — p2)F: + (52 i zpffi) I e
i=1 =1 =1
>

(= )+ SN - aDE o+ (54 S aln) P S
=1 i=1 i=

The right hand side of the above inequality can be considered as a lower bound for the
objective function of the problem . Therefore the problem can be reduced to the
following problem:

o' + szlxz
min ®(X) = —
B2+ ¢ (7)
=1
s.t. X € D,

(RE.s)

and we write the problem using this proposition, we have the following problem:

ot + Zpllxz
min CI)(X) = 1;711’
i=1
s.t. X € Eg.

(Pe..)

]

Different approaches have been proposed in the literature to solve problem integer
linear fractional programming problems [22-25]. The approach adopted to solve the prob-
lem at the ['" iteration, is the Granot’s method (see [24]), which is mainly based on the
evaluation of the reduced gradient vector 7; and Gomory cuts, if necessary, we obtain an
integer feasible solution. The following theorem allows us to find the optimal solution of .

Theorem 2.1 (see [25]). The point X! of Des is an optimal solution of problem if and
only if the reduced gradient vector ¥ = B*p! — §1q? is such that 7; > 0 for all j € Ny (N,

is the set of indices of nonbasic variables of X'), where 32, pt, ' and ¢* are the updated
values of 3%, p', &' and ¢* respectively.

3. Description of the method

The considered problem presents three principal basic ideas. First one, we reduce the linear
objective function with intervals coefficients by the best objective. The second idea is to
compute the inverse of the distribution function of variable h;(§) for transformed the chance
constraints of the problem . Finally, we characterize an efficient solution by solving the
efficiency test (problem (), see [L6]) and we reduce progressively the admissible domain
by adding more constraints in order to present the detailed steps of algorithm that solves
problem ({g).

Step 1. Starting with an optimal solution of an problem and successive Gomory cuts, if
necessary, we obtain an integer feasible solutions. The obtained solution is then tested
for efficiency by solving (P(X1)), terminating if it finds that it is efficient, or obtaining
an efficient solution X ! whose criterion vector dominates cXx.
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Step 2. It may happen that the obtained efficient solution is not better than an equiva-
lent efficient solution on the main objective function ®(X). Therefore, the following
problem has to be solved before reducing the current admissible region.

min{®(X)|CX = CX!, &(X) < (®(X!) —e), X € D},

where e > 0 is a positive small enough value to avoid falling on the same solution X1
If the problem is unfeasible and if ®(X!) < Doty Xopt = X1 and Dot = ®(X1) have
been updated as a consequence of having found a new better efficient solution of ( .
Otherwise, a new efficient solution X" is then generated and if ¢(X"') is inferior from
the optimal value, update X, = X' and ®,,; = ®(X*).

Step 3. After [ steps of the process, the feasible set D, is reduced gradually by eliminating
all dominated solutions by C X'~ (see Sylva and Crema [26]) with the cut ®(X) < @,
that insure that the new optimal solution X' of the problem @D improves the opti-
mum value. The resolution of the following problem @ enables us to perform this
elimination assuming that all coefficients of C are integers.

.

5+ Y pla
min (X)) = —=L
(RE,) 8% + ;qui (9)
s.t. X € Hg,
\ CD(X) < q)Opt?

l ~ ~ ~ l
where Hy, = Doy — |J D, and D, = {X e Z"|0X > st}. {st} is a subset of

s=1 s=1
nondominated criteria vectors for problem , with {X* s =1,...,l—1} are solutions
of obtained at iterations 1, 2, ..., [ — 1 respectively.
( 6kX S (ész _ 1>ysk 4 Mk(l o yskz)7
K
Syt >1,
Hcs - k=1
y** € {0, 1},
X € D,
forall k=1,2,....K, s=1,2,...,1,

\

where M* is an upper bound for the k" objective function of problem . In practice,
M, can be taken, e.g., as the optimal value of the linear problem max{C*X|X €
D.,, X > 0,integer}. Note that when y** = 0, the constraint is not restrictive and

when y** = 1, a strict improvement is forced in the k' objective function evaluated at
X'or X!, and

51+2p1x1 n
(I)<X) Sq)opt@Z— <(I)opt<:>> <5 +szxl>_q)opt <52+Zq12$1> SO@
B2+ Z P i=1 i=1

= Z - (I)othz (_61 + (I)optﬁz)'
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Proposition 3.1. Let X! be an optimal solution to the problem P(X') (where X' is an
optimal solution to the problem (9)). If ®(X) = ®(X') then X' is an optimal solution to the

problem .

Proof. Let us suppose on the contrary that X' is not an optimal solution of . There
exists another point denoted X € E,, such that ®(X) < ®(X'). But on the other hand
(X" = B(XY), therefore ®(X) < &(X"'). Thus, it is contradicting the assumption that X’
is an optimal solution to the problem . O

3.1. Algorithm

Step 0. Initialization:

Step 1.

In chance constrained programming, we transform the chance constraints into
deterministic constraints by using known inverse distribution function. And using
the mathematical means we determine the compromise function for each criterion.
Using the lower bound of the objective function (the best objective) instead of
the fractional linear function with interval coefficients.

Solving the linear problem max{C*X|X € D,,} for determined M, the optimal
value of objective function k.

e =1, %, =400 and H, = D, e = 0.01.
e Find an optimal solution X' of (7).

If © = 0, then X! is an optimal solution of , the algorithms is terminated.
Else, find an optimal solution X' of (P(X")).

If ®(X') = &(X'), then X' solves (8], the algorithms is terminated. Otherwise,
go to Step 2.

Step 2. Find an equivalent efficient solution improving the main objective, with the same
criteria vector by solving the problem

min {@(X)|(7X = OX!, ®(X) < (B(X!) —0.01), X € Dcs} . (10)

If the problem is unfeasible, if @(Xl) < D, set Xopr = X!and D = @(Xl).
Go to Step 3.

Otherwise (problem is feasible), let X' be an optimal solution of the prob-
lem , if (X! < D, set X = X! and @, = $(X?). Go to Step 3.

Step 3. Set [ =1+ 1, and solve the problem

;

o+ > pla
min ¢ = —121 ,
B2+ 3 gl
i=1
X e H
(RE,) D] OX (O 1= MRy < M, (11)
— K
s.t. X e H, ZylkZl,
k=1
y* e 0,1}, k=1,2,...,K,
;(pzl - q)optqz'Q)xi < -0t + CI)optBQ'
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o If H', = (. The algorithms is terminated. X,, is an optimal solution for the
linear fractional program .

e Otherwise, let X' be an optimal solution of the problem . Solve the problem
P(X") and go to Step 1.

Proposition 3.2. This algorithm solves problem in a finite number of steps.

Proof. After transforming the chance constrained programming into an equivalent determin-
istic constraint, the set D, of feasible solution of problem, being compact contains a finite
number of integer solutions. During iteration k, either a cut ®(X) < &,, is applied, the
domain is strictly reduced and one new efficient solution is generated, with three points of
stop, leading to convergence of the algorithm in a finite number of steps. m

4. Example illustrative

Let the main problem be:

1,10 1,4 —1,1
min (I)(X): [7 ]x1+[7]x2+[ 7] ’

[1,5]z1 + [0.9, Lag + [~ 1.5, —1]
s.t. X = (x1,79) € Egs.

(Pr)

The problem is reduced to the following problem:

-1
min  ®(z) = Sl ik
5ZE1 + T9 — 1
s.t. X € E..

(Pe..)

Initialization: we look at the following stochastic multiobjective linear integer program
with chance constraints: )
min  Z' = c}(&)xy + c3(E)xo,
min 72 = 2(&)xy + A(€)xo,
s. t. T S 5,
1 + 29 < 10,
—x2 2 hi(§),
31’1 + 233'2 Z hg(f),
X >0, integer.

\

Moreover, the density functions for the random coefficients c¥(€) are uniformly distributed
as follows:

Compute the mean value of random coefficients for both objectives functions:

1 1

Z' = Esp(ZY(x,€)) = Esp(CL(€)) a1+ Esp(C3(€))xy = 5(2—6)x1+§(10—8)x2 = —2x1+ 29,
7* = Bep(2%(2,€)) = EsplCHE)m + EsplC)(E)ws = (-2 +4)a1 + (=3~ 1)za =, ~2as

The density functions of both random variables h;(§) and hy(€) are uniform as follows.

hi(€) ~» U[=10, 7] and hy(€) ~ U[1,6].
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We assume that the desirable safety probability 95 % is realized.

P(—zy > hi(€)) > 0.95 = Fi(—x2) > 0.95 = —x5 > F;(0.95),
P(3z) + 239 > ho(€)) > 0.95 = Fy(3x1 + 229) > 0.95 = 371 + 229 > F, 1(0.95),
Fii (o) =a+a(b—a) = F1(0.95) = —10 4 0.95(—7 + 10) = —7.15,
Fyl(@)=a+a(b—a) = F,1(0.95) = 14 0.95(6 — 1) = 5.75.

Therefore, the chance constraints of the CCP problem are equivalent to the following
constraints:

—x9 > —17.15,

We get the following deterministic equivalent problem:

((min 7! = —2x1 + 29,
min 72 = T — 229,
s. t. T S 5,
(MCP) T + 29 < 10, (12)
—x9 > —T7.15,
3%1 + 2%2 2 575,
L X >0, integer.
The relaxed problem is
. T+ To — 1
(REL){ ™ PO =g T (13)
s.t. X € D,

where D.s = {z1 < 5,21+ 23 < 10, —x9 > —7.15,321 + 229 > 5.75, X > 0, integer}. We take
By = +00, H, = D.,, e = 0.01 and | = 1. Alter solving max{C*X|X € D}, (k = 1,2),
we set (M?', M?) = (7,5).

The concept of optimal solution can be characterized in many ways. For a geometric
analysis of the fractional programs, r(0,1) is the rotation point, with the arrow circular
denote the gradient of linear fractional function (see Fig. [1)).

Iteration 1
Step 1. The relaxed problem is solved. The optimal solution is ®! = 1/9 for X' = (2,0).

In order to test the efficiency of X!, we solve problem which is the vector criterion
corresponding Z(X') = (—4,2):

min © = —‘1/1 - \IJQ,
X € Des,
(P(X1)) =221 4 22 + Uy = —4, (14)
$1—2$2+‘112:2,
U, >0,i=1,2.

The optimal value of is © = —8, which is achieved at the point X' = (5,5). Thus
X' € E, and X! ¢ E,.
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Step 2. (TL) is defined as:

—1
min {CD(:E) _ it

=112 " H(X)<P(XN)—0.01, X €Dy, —2 =4, 11— 209 =2 ).
S p(x) <e(X) by =020 =2

The problem (T1) is unfeasible. ®(X') = 9/29 < @, = +00, set X, = X! and
D, = 9/29. Go to Step 3.
Step 3. 1 :=14 1= 2. The optimal solution of
-1
((min (X) = w’
5£L'1 + Ty — 1
X e H.,
(REZ)S (¢ g2 =) 2m+a+ 13y <7, (1) (15)
o s x1 — 29 + 11y*? < 5, (2)
y? ey > 1 yhty?? e {0, 1,
L —16%’1 + 20%2 < 20

is X2 = (3,0), Y2 = (1,0), with Z2 = CX2 = (—6,3) and ®(X2) = 1/7 (see Fig. [2).
Solve the following problem:

min @ = —\Ijl — \IJQ,
X € D,
(P(X?)) —2x1 + 22 + ¥ = —6, (16)
ZL’1—2{L‘2+\I/2:3,
U, >0,i=1,2

Iteration 2
Step 1. The optimal value of is ® = —6, which is achieved at the point X2 = (5,4).
Thus X2 € E., and X2 ¢ E,,. ®(X?) = 1/7 # ®(X?) = 2/7, go to Step 2.
Step 2. (T2) is defined as:

—1
min{fb(aj)— Tt

=172 " H(X)<P(X?)—0.01,2€ Dy, —2 = 6,11 —229=—3}.
L (X)<o(X7) ,TE T+ , T — 219 }

The problem (T2) is unfeasible. ®(X?) = 2/7 < ®,p = 9/29, set X, = X2 and
., = 2/7. Go to Step 3.
Step 3. 1 :=14 1= 3. The optimal solution of

-1
( min ¢(X) = %’
9x1 + a9 — 1
X € HZ,
(REZ)S o o — ) —2m+ma+ 14y <7, (3)
. U. cs T — 21,2 + 11y2,3 S 57 (4)
ytB 4y > 1, gty e {0, 1),
\ =31 + 522 <5

is X3 = (4,0), Y3 = (1,0), with Z3 = CX? = (—8,4) and ®(X?) = 3/19 (sce Fig. 3).
Solve the following problem:

min © = —\Ifl - \IJQ,
X € D,
(F(Xg)) —2I1 —+ x9 + \111 = —8,
r1 — 229 + Vo = 4,
U, >0, i=1,2.
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Fig. 1. Admissibility domain without stochastic Fig. 2. Admissibility domain without stochastic
constraint H L, constraint H?2,

Fig. 3. Admissibility domain without stochastic Fig. 4. Admissibility domain without stochastic
constraint H>, constraint H2,
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Iteration 3
Step 1. The optimal value of (P(X?)) is © = —3, which is achieved at the point X3 = (5,2).
Thus X? € E., and X? ¢ E,,, ®(X3) = 3/19 # ®(X?) = 3/13. Go to Step 2.
Step 2. (T2) is defined as:

. $1+132—1
min {@(.ﬁlﬁ)zm,

(I)(X) < @(XS)—O.OL XGDCS, —2x1419=-8, x1—2x2:1} .

The problem (T3) is unfeasible. ®(X3) = 3/13 < Bpp = 2/7, set Xop = X3 and
®,,+ = 3/13. Go to Step 3.
Step 3. 1 : =14+ 1= 4. The optimal solution of

-1
( min $(X) = m’
9x1 + a9 — 1
X € H3,
(REfs) s.t. HY — —2x1 + 29 + 16y1’4 <7, (5)
T e ) @y — 23y + By?t <5, (6)
g b2t > 1yl 24 e {0, 1,
\ —3x1 + 10x9 < 10

is X4 = (5,0), Y*=(1,0), with Z* = CX* = (—=10,5) and ®(X*) = 1/6 (see Fig. 4.
Solve the following problem:

min © = —\Ifl - \1’2,
X € Dgs,
(P(X%) —2x1 4 22 + ¥y = —10, (17)
$1—2$2+\I’2:5,
U, >0, i=1,2.

Iteration 4
Step 1. The optimal value of is © = 0. Therefore, X* = (5,0) € E,. This makes the
algorithm stop, leaving us with X, = X* as an optimal solution of , as expected.
The set of all efficient solutions of the problem (5)) is

E. ={(0,7),(1,7),(2,7),(3,7),(3,6),(4,6),(4,5),(5,5), (5,4), (5,3),(5,2),(5,1),(5,0) }.

Whereas, the proposed algorithm optimizes the linear fractional function ¢(X) without hav-
ing to pass by all these solutions but only by {(5,5), (5,4), (5,2),(5,0)}.

Conclusion

The uncertainty in real-world decision making originates from several sources. In this work,
we have made our contribution in stochastic fractional optimizing over the efficient set of
CCMOSILP. This problem has not been yet studied in the literature. Initially, the min-
imization problem with uncertain coefficients of the objective function was reduced to
a deterministic problem using the linear combination. We have constructed an equivalent de-
terministic model corresponding to the CCMOSILP problem. The proposed algorithm solves
the deterministic version of the problem by using a sequence of progressively more con-
strained and the cut of ¢(X) < ¢ without having to enumerate all the efficient solutions.
A number of propositions are provided to support finiteness and convergence properties.
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For further research, we can consider the lower and upper values of interval estimated
linear fractional programming model obtained by using generalized confidence interval es-
timation method. In real decision problems, in particular, it will be interesting to use the
mutiobjective stochastic transportation problems with interval coefficients which have the
same formulation as problem . In our opinion, a new study based on the development of
rational experiment.
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AnHoTaus

B oot crathbe MBI TpEACTAB/IEM TOYHBINA AJATOPUTM ONTUMU3ANNAYN APOOHO-AWHEHHON (yHK-
AN C UHTEPBAJIBHBIMU KO(DDUITHESHTAMY [0 [EJTOIUCTeHHOMY 3(h(OEKTUBHOMY MHOXKECTBY 3a7a-
Y1 CTOXaCTU4YCCKOTO IEeJIOYHUCJICHHOTO JIMHEHHOTO IPOrpaMMUPOBaHUA C MHOXKECTBECHHBIMU IICJIAMN
u BepositHocTHbIME orpanndenusaMu (CCMOSILP). Crauana BMeCTO HHTEPBAJIOB UCIIOIB3YETCST BbI-
MyKJIasd KOMOWHAINS JIEBBIX U MPABLIX 3HAYEHWH MHTEPBAIBHBIX KOY(MDPUIIMEHTOB, U, CI€I0BATE /b
HO, 3aJ1a4a CBOJUTCS K 3ajade JIMHEHHOTO JIETEPMUHUPOBAHHOIO NPOrPAMMUPOBAaHUS. 3aTEM MBI
npeobpasyem 3amaay CCMOSILP B nerepMuHUpOBAaHHYIO 3324y, UCIOIB3YS U3BECTHYIO (DYHKITHIO
pacipeiesienusi ciaydaiiabix Besinart. OcHOBHAs ujiest (Da3bl BEIYUCEHUH aaropuT™Ma COCTOUT B TOM,
9TOOBI PENUTL MPOOIEMY, UCIONB3YS MOCTEI0BATETLHOCTD BCe 601e€ OTPAHNIEHHDBIX [TeTOTHCICH-
HBIX JIMHEWHO-IPOOHBIX [IPOI'PaMM, KOTOPBIE [TOCTEIIEHHO YJIyUYINaoT 3HaAYeHe JTUHEHHBIX KPUTEPU-
€B U MCKJIYA0T HEeXKeaaTeJabHbIe MOMEHTHI M3 JajbHelnero paccMmorpennd. g gemoHcTpanmn
TTPEIJIOKEHHOTO aJTOPUTMA, PENTaeTcsl YUCTEHHBIN TpUMep.

Karuesnie caosa: 1pobHOE TPOrpaAMMHUPOBAHUE, MHOTOKPUTEPUATBHOE CTOXACTUUECKOE TIEJI0E,
MPOTPAMMUWPOBAHNE C BEPOSTHOCTHBIMU OTPAHUYEHUAMU, WHTEpBAIbHbIE KOdddunments:, addek-
TUBHOE MHOXKECTBO.

Humuposarue: FOucu-Abdacu JI., Mymait M. Onrtumusarusa n1pobHO-JmHEHHON (DYHKIUN ¢ WH-
TepBaJIBHBIMU KO3 PUIMEHTAMU TI0 TeJOUUCTEHHOMY 3D MEeKTHBHOMY HAOOPY IIPU BEPOATHOCTHBIX
orpanundenusix. Boraucauresnbusie rexuosornu. 2023; 28(2):72-88. DOI1:10.25743 /1CT.2023.28.2.007.
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