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Road condition monitoring is an essential goal for transport infrastructure. It is
important for the fast and safe evolution of autonomous vehicles, useful for advanced
driver assistance systems and efficient road repair. In this paper we propose a solution
to the problem of identifying the type of pavement using machine learning methods.
Asphalt road, gravel road and cobbled road were the types of pavement quality, which
were identified. The research community uses various types of sensors and data to
solve this classification problem. This paper evaluates pavement type identification
using data received from the inertial measurement unit installed in a vehicle and, in
particular, data generated by the accelerometers. One car was used. The traffic route
was chosen so that all three types of road surface were located on a small section
of the road. The obtained data was used in training the long short-term memory
recurrent neural network. The achieved accuracy of identification the type of road
surface was 88.2%.
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Introduction

Much attention has recently been paid to the development of methods and algorithms of
the detection of road anomalies (such as speed bumps and potholes) and types of pavement.
These developments can be used to improve the driving plan of autonomous vehicles, such
as, slowing down before a known bumps or entering a paved or gravel road. It is essential to
extend the life of an autonomous vehicle and improve passenger comfort. Road anomalies
can be used as a guide for more accurate vehicle localization. Also, such techniques can help
reduce the time to detect road anomalies and make city services more effective. A variety of
sensors and systems are used to collect data: simple cameras, thermal infrared cameras [1],
3D laser scanning of the road surface [2], data from accelerometers and gyroscopes [3–6].
Automated algorithms for identifying road anomalies and road types are divided into three
types: visual, vibrational, and based on 3D reconstruction [7]. Each of the above methods
for obtaining data on the state of the road surface has its pros and cons: for example, the
camera can only be used during daylight hours on a pavement without rain and snow, the
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stream of high-quality video and photo images is demanding on the bandwidth of the in-
terfaces and memory, laser scanning does not allow real-time data processing, and so on.
The work [7] is devoted to a detailed analysis of the most common methods, their advan-
tages and disadvantages. The most widely used machine learning algorithms that applied
by researchers to solve the problem of detecting road anomalies and identifying road types
are convolutional neural networks and long short-term memory (LSTM) recurrent neural
networks. There are well-known algorithms for representing a one-dimensional signal in a
spectral matrix or encoded image, such as short-time Fourier transform, wavelet transform
or transformation using gramian angular field. Thus, researchers applying the vibrational
road surface recognition algorithm often use convolutional neural networks and deep con-
volutional neural networks. Using the LSTM recurrent neural network allows to work with
accelerometer and gyroscope signals without converting them into an image.

Harishankar et al. [8] proposed a technique to clarify the location of a car by lanes, which
allows levelling the low resolution of GPS measurements available in modern smartphones
and making navigation systems more correct. Using the developed LaNet network based on
LSTM, the authors teach it to remember a unique sequence of inertial data on sections of
the roadway of the order of 100 m (90% classification accuracy) and 200 m (100% classifi-
cation accuracy) and determine the lane corresponding to a particular set of inertial data.
In contrast to [8], in this work we used frames corresponding to a smaller section of the path
(about 10 m of road surface) and the neural network learned to determine not unique se-
quences of events, but patterns of inertial data corresponding to one or another type of road
surface. Although in this work the route of the car is specified, the network can be used to
analyze data from other road sections, provided that the data format is the same. Martinelli
et al. [9] proposed a method for classifying pavement damage based on the analysis of vehicle
accelerometer data. Short-time Fourier transform is used, and significant features, such as
the coefficient of variation and the entropy computed from the energy of signal segments, are
exploited to distinguish between well-localized pavement distresses caused by potholes and
manhole covers and spread distress due to fatigue cracking and rutting. Three classes were
distinguished: areas with large single defects such as potholes, areas with spread distress
and defect-free areas. The frames corresponded to approximately 100 m of the road, the
data were taken at a sampling rate of 100 Hz. The calculated matrices were analyzed using
three artificial intelligence algorithms: support vector machine (SVM), decision tree (DT)
and 𝑘-nearest neighbours (kNN). The maximum achieved recognition efficiency was 90.9%
for the decision tree, 91.9% for the support vector machine and 90.9% for the 𝑘-nearest
neighbours method, which is comparable to the maximum accuracy of 88.2% achieved in
this work, with significantly smaller frame sizes and the absence of computational and time
costs to perform a windowed Fourier transform. Basavaraju et al. [10] classified road surface
damage based on the analysis of data from a 3-axis accelerometer and GPS sensor in the
Apple iPhone 6 smartphone. The authors used three different cars as data collection vehicles
to take into consideration the differences in the suspension quality of various types of cars.
The camera was used to further manually label the data into three classes: containing large
single defects such as potholes, containing cracks and defect-free areas. The dataset was
divided into frames corresponding to 10 seconds of driving, the accelerometer sampling rate
was 100 Hz, and the GPS sensor sampling rate was 1 Hz. The maximum achieved recog-
nition efficiency was 90.15% for the support vector machine, 88.35% for the decision tree,
and 92.12% for a neural network containing 7 hidden neural layers. Note that in this work,
a single-layer neural network is used and we used only one car.
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Yao et al. [11] proposed a complex DeepSense neural network that combines a CNN and
a recurrent network for the classification of three types of pavements: defect-free asphalt
road (smooth type), asphalt road with defects (bumpy type) and gravel road (rough type).
Authors of [11] compared the performance of DeepSense with algorithms such as random
forest, SVM, neural networks and convolutional neural networks. The efficiency was: 63.89%
for random forest, 69.44% for SVM, 72.92% for convolutional neural network, 76.39% for
neural network and 84.81% for DeepSense. The DeepSense is open source with open dataset,
so we trained LSTM recurrent neural network on this dataset. It should be noted that dataset
is really small (42 599 timestep variable values). LSTM recurrent neural network described
in the paper showed an efficiency of 74.76% on these data, which is slightly inferior to the
results achieved by the authors for a convolutional neural network.

Materials and methods

In this work identification of the road type belongs to the type of multiclass classification
problems. The target variable corresponds to road type and takes three values: 1 (cobbled
road), 2 (gravel road) and 3 (asphalt road).

All the used data were obtained while driving one Volkswagen Polo. In this work the
inertial measuring unit (IMU), which is part of the control and diagnostic unit of the au-
tomated system for monitoring and diagnosing the state of engineering objects, developed
at the Design Center of the microelectronic component base of Artificial Intelligence Sys-
tems of the Southern Federal University, was placed in the car. IMU is a standard so-
lution based on LIS331DLH (three-axis accelerometer), I3G4250D (three-axis gyroscope),
LIS3MDL (three-axis magnetometer/compass), LPS25HB (barometer) chips. Only the ac-
celerometer functionality was used in the experiment. The technical specifications of the
LIS331DLH three-axis accelerometer are shown in Table 1.

The monitoring unit is oriented in the car as follows: the 𝑥-axis coincides with the
direction of the car’s movement, the 𝑦-axis is perpendicular to the 𝑥-axis in the horizontal
plane, the 𝑧-axis is co-directed with the acceleration of gravity 𝑔. In addition to three axis
accelerations at a 400 Hz sampling rate, the monitoring unit generates a large amount of
data, from which, in this experiment, information on latitude and longitude was also used
for developing the sorting algorithm. For tracking movements, a GPS/GLONASS module
based on the GNSS (global navigation satellite system) module chip Neoway G7 was used.
Technical specifications of the module are shown in Table 2.

A route, which includes three types of road surface: asphalt, gravel and paving stones,
was chosen in the city of Taganrog, Rostov region. A map of the route with marked sections
of various road surfaces and photos of road sections with different type of road surface is
shown in Fig. 1. The car drove once over the entire route and then five more times along

T a b l e 1. Technical specifications of the sensor used in the data collection: LIS331DLH three-axis
accelerometer.

Parameter Measurement unit Value

Standard full range g ±2

Sensitivity mg/digit 0.9–1.1

Sensitivity change vs temperature %/∘C ±0.01

Typical zero-g level offset accuracy mg ±20

Bandwidth Hz 400
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T a b l e 2. Technical specifications of the sensor used in the data collection: Neoway G7

Parameter Measurement unit Value

GPS operating frequency MHz 1575.42

Accuracy (open air) m Horizontal < 3; Vertical < 4.5

Sensitivity dBm −147

Baud rate bps 9600

Fig. 1. Map with route (green areas indicate an asphalt road, red areas indicate a gravel road and
yellow areas indicate a cobbled road)

a small section of the route in order to collect more data on driving on cobbled road and
gravel road, which are small on length.

The dataset was divided into data obtained on three different types of pavements by
filtering the data by geographic coordinates. The data was labelled automatically, which
allows to quickly increase the size of the dataset if necessary. This resulted in a slight loss of
data (data from the two asphalt pavement sections between the paved and unpaved sections
has been lost), but allowed to sort data quickly and efficiently. To validate the sorting
method, the data were mapped according to their belonging to a particular type of road
pavement. The gpx-converter package for Python was used for creating the maps. In total,
802 163 samples (at a sampling rate of 400 Hz), sorted by coordinates, were obtained, which
is equal to approximately 33 minutes of car driving.

Graphs of acceleration versus time for three types of road surface are shown in Fig. 2.
Graphs were built on 4500 values of the timestamp variable. Timestamp variable counts
every 0.0025 second of the experiment, so it is slightly modified time scale. Sorting the data
by the timestamp variable allows to arrange them in the correct order.

An analysis of the graphs in Fig. 2, a and b allows to conclude that, firstly, the nature of
the dependences of accelerations on time clearly changes when the car moves on roads with
different road surfaces and, secondly, these differences are visible even in a small section of
the graph, that is, frames consisting of a small number of samples can be used, since in this
work not an event, but a process is analyzed.

During the experiment, the speed of the car was not regulated. So, the data collection
was representative of the real-world conditions when vehicle speed may vary on the same
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Fig. 2. Graphs of acceleration versus time for asphalt (a), gravel (b), and cobbled (c) roads

road segment. Frames were formed from 500 samples long, for a sampling rate of 400 Hz,
which corresponds to 1.25 seconds of driving a car, with overlap (step 20). Thus, from
a small dataset, it was possible to form 32 000 frames for training the neural network.

To implement the algorithm for identifying types of road surface, a network of long short-
term memory was used. Architecture of the used single layer LSTM neural network is shown
on Fig. 3.

The LSTM network is a network with feedback connections, it is well adapted to learning
on the problems of classification, processing and forecasting of time series in cases where the
samples that contain defining patterns are separated by ballast samples, and the ballast
segment has indefinite duration and boundaries. To improve the performance of the model,
a bidirectional LSTM network was used. Unlike a conventional LSTM network, a bidirec-
tional LSTM network is trained on both forward and backward sequences of input data.

A single layer LSTM neural network containing 256 neurons was implemented using the
Keras library. The model was trained on 32 062 frames for 20 epochs with the following
parameters: batch size = 64, validation split = 0.005. Fig. 4, a shows the results of neural
network training. The graph of the learning process presented in Fig. 4, b shows that the
neural network has achieved good performance by the 20th training epoch.
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Fig. 3. Architecture of the used single
layer LSTM neural network

a

b

Fig. 4. Results of training a bidirectional single-layer
LSTM neural network: a — error matrix, where the tar-
get variable corresponds to the type of road surface and
takes three values: cobbled (1), gravel (2), and asphalt (3)
roads; b — learning process graph

A single-layer LSTM neural network used to implement the task of determining the type
of pavement has a number of significant advantages. The network learns quickly, achieving
good performance with a sufficient sample and the trained model file size is a few megabytes.

Conclusion

The efficiency of identification of pavement types achieved in this work is 88.2%. Analyzing
the error matrix, it should be noted, that the largest number of errors occurs in sections
marked as asphalt road sections, which the neural network erroneously identified as cobbled
(519 error cases) or gravel (208 error cases) road sections. It can be seen that the errors are
unevenly distributed. This view of the error matrix can be explained taking into account
that in areas with asphalt pavement within the city there are inevitably bumps, including
artificial ones, potholes, there was also a crossing over tram tracks on this route. In this
work, a strategy was chosen to simulate the natural movement of a car within the city,
so areas with ideal asphalt surface were not specially selected. Nevertheless, a fairly high
accuracy of identification of road surface types has been achieved. In the course of further
research, it is planned to use data from several passenger cars of different brands, since
each vehicle has its unique response to the stimulus, created by driving on different types
of road surface, and to expand the number of routes. It is also planned to compare the
performance of identifying road surface types of convolutional networks trained on images
obtained using a time series transformation gramian angular fields algorithm, the so-called
GAF transformation, in which time series are converted from Cartesian to polar coordinates,
and then are transformed into a GAF image [12], with the training results of a bidirectional
single-layer LSTM neural network given in this paper.
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Аннотация

Цель. Решена задача определения типа дорожного покрытия (асфальтированная, гравий-
ная дорога, мостовая) с использованием искусственного интеллекта.

Методы. Предложено использовать данные об ускорении по трем осям с инерциального
измерительного модуля, помещенного в транспортное средство. Массив разделен на данные,
полученные на трех разных типах дорожного покрытия путем фильтрации данных по геогра-
фическим координатам. Всего при частоте дискретизации 400 Гц получено 802 163 отсорти-
рованных по координатам семпла, что равно примерно 33 минутам езды на автомобиле. Для
реализации алгоритма идентификации типов дорожного покрытия использована сеть долгой
краткосрочной памяти (англ. long short-term memory — LSTM) — разновидность архитектуры
рекуррентных нейронных сетей. Однослойная LSTM-нейронная сеть, содержащая 256 нейро-
нов, реализована с помощью библиотеки Keras.

Результаты. Эффективность идентификации типов дорожного покрытия, достигнутая
в работе, равна 88.2%. Проанализирована матрица ошибок. Большинство ошибок можно объ-
яснить, принимая во внимание выбранную стратегию сбора данных: симуляция естественной
езды на легковом автомобиле в черте города. Приведено краткое описание будущей работы по
данной теме.

Ключевые слова: рекуррентные нейронные сети LSTM, инерциальный измерительный мо-
дуль, определение типа дорожного покрытия.
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