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This study suggests various ways to improve the performance of mobile terminals
at fast speeds, cheap cost, and low power consumption. Indeed, higher rates imply
more problematic transmission channels, making receivers’ jobs more onerous. We’re
interested in solving the classic problem of detecting a linear mixture of Gaussian noise
for LTE telecommunication systems from a noisy observation of an input signal mixed
with a known matrix representing the channel’s behavior; we’re looking for the vector
that minimizes the Euclidean distance between the noisy output and the noiseless one.
The frequency diversity of LTE systems is very high. In this context, we look at the
performance of traditional equalizers (ML, ZF, MMSE) in the first part. In the second
section, we offer PSO (Particular Swarm Optimization), a detection method with near-
optimal performance in terms of bit error rate BER 10−3 for SNR of 16 dB, which is
extremely close to ML.
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Introduction

The communications industry is currently at a critical juncture in its development. Tech-
nologies performance has improved as a result of their shrinking. Wireless and mobile com-
munication are major obstacles. Several generations have passed, each with the goal of
increasing speed and capacity while maintaining a high level of service quality. Prior to
the eventual acceptance of digital modulation, the wireless world went through an analogue
phase. Throughput can be enhanced by simultaneously delivering distinct streams of data
on different transmit antennas but at the same carrier frequency (LTE system) by using
multiple antennas at both the transmitter and receiver. Furthermore, OFDM (orthogo-
nal frequency division multiplexing) has the potential to improve spectral efficiency. The
combination of both LTE’s throughput increase and OFDM’s resistance against frequency-
selective fading produced by severe multipath scattering and narrowband interference is seen
as a promising foundation for future high-speed data transfer. As a result, the task at hand is
to develop an LTE system that is both efficient and simple [1]. Symbol detection is necessary
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for coherent demodulation in these systems, but LTE detection is a computationally inten-
sive and time-consuming task. As a result, a number of techniques for detecting symbols
have been developed, including maximum likelihood (ML), zero forcing (ZF), and minimal
mean square error (MMSE). Although ZF and MMSE are simple and quick to implement,
they perform poorly in rapid fading and time-varying settings. In these circumstances, the
ML method outperforms all others [2]. However, the fundamental disadvantage of machine
learning is its tremendous computational complexity. It scans each subcarrier’s candidate
symbol vector and computes the Euclidean distance between received and actual symbols in
all conceivable transmission combinations. Furthermore, as the number of transmitter and
receiver antennas increases, the search space rises exponentially, increasing the computing
complexity [3]. In this research, we examine and compare several detection methods, and
we propose a heuristic approach called PSO to minimize the search space of ML detectors
while also lowering computing complexity.

1. Problem formulation

We’ll go through an LTE system briefly before getting into signal detection. The LTE system
is illustrated in Fig. 1 as a simplified block diagram. 𝑁𝑡𝑥 transmit and 𝑁𝑟𝑥 receive antennas,
𝑛 OFDM symbols, and 𝐾 subcarriers are used in this system.

The modulation type is used to convert the data stream onto complex symbols. The
symbol vector that is conveyed is written as follows:

𝑆(𝑛, 𝑘) = [𝑆1(𝑛, 𝑘), . . . , 𝑆𝑁𝑡𝑥(𝑛, 𝑘)]
𝑇 , 𝑘 = 0 . . . 1.

The symbol 𝑆𝑖(𝑛, 𝑘) is sent on the 𝑛th symbol, the 𝑘th subcarrier, and the 𝑖th antenna.
Transpose operation is represented by the letter 𝑇 . Symbol vectors are converted into OFDM
symbols using the inverse fast Fourier transform (IFFT).

𝑆𝑛[𝑚] =
1√︀
𝑘𝑁𝑡𝑥

1∑︁
𝑘=0

𝑆[𝑛, 𝑘]𝑒𝑗2𝜋𝑚/𝑘, 𝑚 = 0 . . . 𝑘.

We use cyclic prefix (CP) to remove inter symbol interference (ISI) before feeding signal
vectors via the 𝑖th transmitter antenna. At the 𝑞th receiver antenna, the CP is eliminated
from the signal vector, and the fast Fourier transform (FFT) is used.

Fig. 1. Block diagram of MIMO-OFDM system
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The signal vector received can then be written as

𝑌𝑞[𝑛, 𝑘] =
𝑁𝑡𝑥∑︁
𝑖=1

𝐻𝑖[𝑛, 𝑘]𝑆𝑖[𝑛, 𝑘] +𝑊𝑞[𝑛, 𝑘],

𝑊𝑞[𝑛, 𝑘] is additive white Gaussian noise, while 𝐻𝑖[𝑛, 𝑘] is a channel impulse response vector.
The goal is to distinguish 𝑁𝑡𝑥 transmitted symbols 𝑆 from a set of 𝑁𝑟𝑥 observed symbols

𝑌 that have gone over a non-ideal communication channel 𝐻, which is commonly described
as a linear system followed by an AWGN 𝑊 [4].

2. Performance of ZF, MMSE, and ML Equalizers in LTE

We investigate BER evaluation based on SNR while changing the type of Equalizer, mapping
technique, and antenna count.

2.1. The effect of Equalizer type on BER fluctuation as measured by SNR

We utilise simulated QAM-4 modulation for the LTE system with 64 subcarriers and 16
the length of the Cyclic prefix to compare the characteristic BER according to the SNR for
MMSE, ZF, and ML Equalizer. Figure 2 depicts the outcome of this comparison.

The performance of symbol detectors in LTE systems is demonstrated in Fig. 2 as a func-
tion of bit error rate (BER) and signal-to-noise ratio (SNR). The ML method outperforms
the ZF and MMSE algorithms, as can be demonstrated. All 𝑀 𝑁𝑡𝑥 feasible combinations of
transmitted symbols must be searched in order to get the best ML detection solution. When
a result, as the transmitter antenna gets bigger, the computational complexity grows.

2.2. For a ZF, MMSE, and ML Equalizer, the effect of method modulation on
BER variation according to SNR

For LTE systems, we assume the channel is multi-journey, with 64 subcarriers and 16 cyclic
prefix length. Figures 3 and 4 show the performance of the ZF and MMSE Equalizers in
terms of BER while employing QAM-4 modulation, QAM-16, QAM-64, and ML detectors

Fig. 2. For LTE systems with QAM-4 modulation, BER according to SNR for ZF, MMSE, and
ML detectors utilizing Rayleigh canal
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Fig. 3. For LTE systems, BER according to SNR
for ZF modulations QAM-4, QAM-16, QAM-64,
and MMSE Equalizer

Fig. 4. For LTE system, BER corresponds to
SNR for QAM-4, QAM-16, and QAM-64 modu-
lations of the ML detector

under the same simulation conditions. As the number of possible states in the constellation
diagram grows from QAM-4 to QAM-64, the principle of worth precinct observed becomes
more and more complicated when sweeping the entire diagram. The larger the number of
states, the greater the probability of a binary mistake.

2.3. The effect of antennas count on BER fluctuation as a function of SNR

To examine the typical BER according to SNR for different numbers of antenna, we utilize
QAM-4 modulation with 64 subcarriers and 16 the length of the Cyclic prefix for LTE system
simulation (Fig. 5). In comparison to Fig. 2, we can see that the system’s performance is
proportional to the number of antennas because the channel capacity grows as the number
of antennas grows.

Fig. 5. For ZF, MMSE, and ML detectors employing QAM-4 modulation and LTE systems, BER
according to SNR
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3. Using particle swarm optimization meta-heuristics to recognize
symbols in LTE system

The channel receives symbols from a known finite alphabet of size 𝑀 , 𝑣 = {𝑥1, . . . , 𝑥𝑀}.
From the provided data, the detector selects one of 𝑀𝑁𝑡𝑥 potential transmitted symbol
vectors. The maximum likelihood detector always produces an optimal solution, assuming
that the symbol vectors 𝑥 ∈ 𝑉𝑁𝑡𝑥 are equiprobable:

𝑋 = argmax
𝑥∈𝑉𝑛𝑥

𝑃
(︁
𝑦 is observed

⃒⃒⃒
𝑥 was sent

)︁
.

The ML detection issue can be described as the reduction of the squared Euclidean distance
to a target vector 𝑦 across a 𝑁𝑡𝑥 dimensional finite discrete search set, assuming the additive
noise 𝑤 is white and Gaussian.

𝑋 = argmin
𝑥∈𝑉𝑁𝑡𝑥

||𝑦 −𝐻𝑥||2. (1)

All 𝑀𝑁𝑡𝑥 or 2𝑏𝑁𝑡𝑥 symbol combinations must be examined using the best ML detection
scheme (𝑏 is the number of bits per symbol).

The problem can be solved by counting all of the potential 𝑥 and finding the one that
results in the lowest value, as shown in (1). When a result, as the constellation size 𝑀
and number of transmitters 𝑁𝑡𝑥 grow, the computational complexity grows exponentially.
We introduce PSO-assisted LTE symbol detectors, which treat the LTE symbol detection
problem as a combinatorial optimization problem and iteratively estimate the near optimal
solution with computing cost lower than that of ML.

3.1. Particle swarm optimization

A swarm is made up of many particles (possible solutions) that move (fly) over the viable
solution space in order to find the best solution, which can be encoded as binary strings or
real-valued vectors. The particles can interact with each other in a particular neighbourhood
and navigate a search space in which a quality metric, fitness, can be assessed. Over the
course of iterations, the particles cooperate and compete with one another. Each particle’s
coordinates reflect a feasible solution for which two vectors, position 𝑋𝑖 and velocity 𝑉𝑖, have
been assigned (Fig. 6).

Fig. 6. Vector representation of PSO model
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Each particle goes through an iterative adaptation process to two types of major in-
formation: individual learning and cultural transmission, which means that the procedure
accelerates particles at each time step towards their personal best (best value recorded by
each particle) and the position of the most recent global best point (best position returned
form the swarm).

The PSO technique has a basic mathematical model with only two model equations and
fewer parameters to change [5]. This is one of its most appealing features.

3.2. PSO-LTE detection algorithm

The definition of a fitness function, which connects the optimization algorithm to the real-
world problem, is a key step in putting PSO into practice. Each optimization issue has a
different fitness function. The fitness function produces a fitness value that can be set to the
current position when using the particle’s coordinates. If the value is higher than the value
at each particle’s personal best (pbest) or the swarm’s global best (gbest), previous locations
are overwritten. According to the relative positions of pbest and gbest, the particle’s velocity
changes. The particle simply advances to the next spot once the velocity has been computed.
This method is then repeated for each particle until the maximum number of iterations has
been reached.

The following is a description of the suggested MIMO detection technique, which is based
on the Conventional continuous PSO [6] (Fig. 7).

1. Using the initial solution guess, set the particle size (swarm) to zero. Set the parameters
of the algorithm.

2. Using (1) is used to determine the fitness of each particle:

𝑓 = ||𝑦 −𝐻𝑥||2.

The solution’s fitness is measured by the minimum Euclidean distance between sym-
bols. Find the population’s global best performance, gbest𝑖𝑑, that indicates the shortest
Euclidean distance. For each bit, keep track of your personal best pbest𝑖𝑑 and its prior
values.

Fig. 7. Flow chart depicting the PSO algorithm
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3. The following PSO velocity update equation is used to compute each particle’s velocity:

𝑉𝑖𝑑(𝑘) = 𝑉𝑖𝑑(𝑘− 1) +𝜙1rand[pbest𝑖𝑑 − 𝑥𝑖𝑑(𝑘− 1)] +𝜙2rand2[gbest𝑖𝑑 − 𝑥𝑖𝑑(𝑘− 1)]. (2)

4. The following PSO velocity update equation is used to update particle position:

𝑥𝑖𝑑(𝑘) = 𝑥𝑖𝑑(𝑘 − 1) + 𝑉𝑖𝑑(𝑘).

5. Repeat step 2 until you’ve completed the maximum amount of repeats. The number
of iterations is denoted by the letter 𝑘. For efficient performance, an optimal number
of iterations is tuned. Iteratively fine-tuning the answer [7].

3.3. Simulation results

The algorithms’ performance was evaluated using systems with a 10 MHz bandwidth and
16 QAM modulation for varied antenna sizes across the channel. Tables 1 and 2 contain the
PSO system and channel parameters, respectively. With 64 subcarriers, CP length of 16,
BPSK modulation, and LTE systems, we compare the performance of ZF, MMSE, ML,
and PSO detectors. Figure 8 compares the performance of the ZF, MMSE, ML, and PSO
detectors against the ML for a 2×2 2-QAM LTE system in terms of BER vs Eb/No. PSO
outperforms ZF and MMSE algorithms, and its BER performance is comparable to that
of ML detectors. At a 17 dB SNR value, for example, the BER difference between PSO
and ZF is greater than (10 to power 1). However, a significant reduction in ML complexity
is obtained, as detailed in the following part. Table 3 also contains the parameters of the
proposed PSO algorithms with GA and BSA for symbol detection. Figure 8 depicts a
comparison of the proposed method’s results with those of other detectors for a PSO system
with a two-antenna array.

Although the ML approach has the best performance (as shown in Fig. 8), increasing
the size of the transmitter and receiver antennas renders this algorithm unworkable in terms
of complexity. Furthermore, the suggested PSO method outperforms both standard and
heuristic techniques in terms of BER values. The PSO algorithm outperforms the worst-
performing ZF by 14 dB and the BSA by 2 dB at 10−1 BER. Additionally, for a 20 dB

T a b l e 1. LTE-PSO system parameters

Parameter Value

Bandwidth 10 MHz

Number of subcarriers 64

Number of user 2

Power allocation factor 0.75 . . . 0.25

Modulation 16 QAM

T a b l e 2. Channel parameters

Path 1 2 3 4 5 6

Delay
spread, 𝜇s

0 0.3 1.0 1.6 5.0 6.6

Average
power, dB

−2.5 0 −3 −5 −2 −4

T a b l e 3. Heuristic algorithm parameters

BSO PSO GA

Number of population 30
Step size amplification 3

RND generation interval (0− 1)
Mix rate 1

Swarm size 30
Max velocity 20

Inertia factor 0.9 . . . 0.4
Learning factor 2

Number of population 30
Crossover rate 0.8
Mutation rate 0.5



Particle swarm optimization in the LTE system for symbol detection 115

a b c

Fig. 8. BER according to SNR for ZF, VBLAST, ML, GA, BSA and PSO detector for 2×2 (a),
4×4 (b), and 8×8 (c) LTE

signal to noise ratio (SNR), the difference between PSO and VBLAST is roughly 10−1.
Figure 8, b shows the suggested detector’s BER performance for systems with four antennas.
BER = 102 GA requires 18 and 16.5 dB for BSA, and 14 dB for PSO, as shown in Fig. 3.
Moreover, the proposal’s needed SNR value is lower than the other techniques for lower BER
values.

Finally, when comparing the performance of the algorithms for the system with 8×8
antennas in Fig. 8, c, we can see that our proposal improves detection capability not only
for small antenna arrays but also for larger antenna arrays. According to Fig. 8, c, the PSO
method requires more than 21 dB of SNR to achieve BER = 103, whereas the BSA and GA
algorithms require around 23.5 and 26 dB of SNR to achieve BER = 103, respectively. All
of the figures show that our concept provides significant SNR gains over other detectors.

3.4. Computational complexity theoretical evaluation

The computational complexity of the disclosed PSO-MIMO detector is investigated in this
paper, and a theoretical formulation for computational complexity is established. The
method is also compared to the traditional ML optimum detection method. We aim to
give a reasonable estimate of complexity in terms of the number of complex multiplications
because the hardware cost of each algorithm is implementation specific. Table 4 contains
the detector complexity comparative analysis in terms of the number of multiplications.

In terms of𝑁𝑡𝑥, 𝑁𝑟𝑥 and constellation size𝑀 , the computational complexity is calculated.
As can be seen from (1), the ML detector requires 𝑀𝑁𝑡𝑥 multiplications for matrix multi-
plication and 𝑀𝑁𝑡𝑥𝑁𝑟𝑥 multiplications for square operations [8]. As a result, the difficulty
of machine learning increases.

𝜀ML = 𝑁𝑟𝑥(𝑁𝑡𝑥 + 1)𝑀𝑁𝑡𝑥.

T a b l e 4. Computational complexity analysis of detectors

Detector 2×2 LTE 4×4 LTE 8×8 LTE

ML 1536 1 320 720 309·109
ZF 48 384 3072

VBLAST 70 712 8864

BSA 1440 5400 23 760

PSO 1800 6480 29 700

GA 1980 7560 31 680
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First fitness of each particle in population 𝑁𝑃 is computed for the proposed detector us-
ing (1). The complexity of multiplication for PSO is a measure of how difficult it is to
multiply a number becomes

𝜀PSO = 𝑁𝑃 (𝑁𝑡𝑥𝑁𝑟𝑥).

Pheromone updates and velocity updates in PSO both necessitate extra multiplications
every iteration (2). 𝑊 = 1 are assumed to reduce some complexity. As a result, the level of
difficulty rises

𝜀PSO = 𝑁𝑃 (𝑁𝑡𝑥𝑁𝑟𝑥 + 𝜇𝑣𝑒𝑙).

To get to the near-optimal BER performance, this technique is done 𝑁𝑖𝑡𝑟 times. Therefore,

𝜀PSO = 𝑁𝑃 (𝑁𝑡𝑥𝑁𝑟𝑥 + 𝜇𝑣𝑒𝑙)𝑁𝑖𝑡𝑟.

With 𝑁𝑡𝑥 and 𝑀 , ML’s complexity grows exponentially. In MIMO systems with multiple
transmitters, this gain is much greater with higher-order modulation methods. Because it
is based solely on the amount of complex multiplications, this complexity estimate is only
meaningful in the order of magnitude sense. For the LTE system [7], the aforementioned
complexity is calculated by sub carrier.

Conclusion

Global research in the field of digital communications without son has advanced significantly
in recent years. The development of new systems attempts to transmit digital data at higher
bandwidths and provide service to a larger number of people. Following a discussion of the
fundamental principles of digital transmission and the exposure characteristics of the linear
model of the wireless channel, examples of systems studied in the literature and depicted as
linear radio channels are given, followed by a discussion of detection techniques under optimal
sub optimal most popular. These sensors do not make a trade-off between performance
and complexity; for example, simple linear detectors perform poorly compared to maximum
likelihood detectors, which have a significantly higher computational complexity. The results
demonstrate that ML is the best detector, albeit with a large search space and significant
processing complexity. As a result, we proposed the PSO method for lowering it. Particle
detection swarm PSO approach yields encouraging results.
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Аннотация

Предложены различные способы повышения производительности мобильных терминалов
за счет высоких скоростей, низких стоимости и энергопотребления. Действительно, более вы-
сокие скорости подразумевают более проблемные каналы передачи, что делает работу при-
емников более обременительной. Нас интересует решение классической задачи обнаружения
линейной смеси гауссовых шумов для телекоммуникационных систем LTE по зашумленному
наблюдению входного сигнала, смешанного с известной матрицей, представляющей поведение
канала. Требуется найти вектор, который минимизирует евклидово расстояние между зашум-
ленным выходом и бесшумным. Частотное разнообразие систем LTE очень велико. В этом
контексте рассмотрена производительность традиционных эквалайзеров (ML, ZF, MMSE),
предложен PSO (Particular Swarm Optimization) — метод обнаружения с почти оптимальной
производительностью с точки зрения частоты ошибок по битам BER 10−3 для SNR 16 дБ.

Ключевые слова: долговременная эволюция, максимальное правдоподобие, нулевой фор-
синг, минимальная среднеквадратическая ошибка, рой частиц, частота битовых ошибок, от-
ношение сигнал — шум.
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