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Introduction

Multiple objective integer linear programming (MOILP) is very useful for many areas of
application as any model, that incorporates discrete phenomena requires the consideration of
integer variables (such as, for modelling investment choices, production levels, fixed charges,
logical conditions or disjunctive constraints).

Over the last decades, several methods have been developed to solve MOILP problems,
some methods require the presence of human decision maker (DM) (interactive) and generate
only a subset of non-dominated vectors, and other methods consist in enumerating all non-
dominated vectors without intervention of DM. In general, the approaches can be classified
as exact or heuristic and grouped according to the methodological concepts they use. Among
others, the concepts employed in exact algorithms include branch and bound [1, 2], dynamic
programming [3], implicit enumeration [4–6], reference directions [7], weighted norms [8–10];
weighted sums with additional constraints [11, 12], and 0–1 programmation [13] and lexico-
graphic method [14]. Heuristic approaches, such as simulated annealing, tabu search, and
evolutionary algorithms, have been proposed for multiobjective integer programs with an
underlying combinatorial structure [15]. Several survey articles have already been published
in this area. Teghem and Kunsch [16] presented a survey of interactive methods for multiob-
jective integer and mixed-integer linear programming, a brief overview of MOILP approaches
can be found in [17].
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The algorithm presented in this work based on a parameterized exploration of the out-
come space that defines a sequence of progressively more constrained single-objective mixed-
integer problems that successively eliminates undesirable points. The main idea is to use the
Weighted Tchebychev Program (WTP) for identifying the non-dominated objective vectors.
It is known that WTP program is a mixed-integer linear program (MILP) which can be
examined using standard integer-linear programming techniques such as branch and bound.
Thus, it may yield several optimal solutions which some can be non-dominated or weakly
non-dominated by others. In order to avoid the delicate situation lies this norm and the
weakly non-dominated vectors, we try to modify the program WTP by adding some con-
straints. This technique of additional constraints known in the literature as the “Corner
constraints” is developed by Klein Hannan [4], also used by Sylva Crema [5].

The organization of the paper is as follows: Section 1 briefly reviews basic definitions,
results and foundations of Tchebychev norms. The algorithm is presented in Section 2 and
a number of propositions are provided to support finiteness and convergence properties, an
illustrative example is also provided.

1. Basic results and Tchebychev metrics

The MOILP problem under consideration has the following form:

(𝑃 ) 𝑉 max{𝐶x, x ∈ 𝐷}.

Where 𝐷 = 𝑆 ∩Z with 𝑆 = {x ∈ R𝑛 | 𝐴x ≤ b;x ≥ 0} is nonempty bounded set; 𝐴 ∈ Z𝑚×𝑛,
b ∈ Z𝑚, 𝐶 = (𝑐𝑖)𝑖∈{1,...,𝑝} ∈ Z𝑝×𝑛 and 𝑝 ≥ 2.

We denote by 𝑍 the image of 𝐷 in outcome space defined by the objective vector function.
Unlike single-objective problems, the resolution of multiple criteria problems imposes a

set of feasible solutions, using the property that no improvement on any criterion is possible
without sacrificing on at least one other criterion. These solutions are called efficient solutions
or non-dominated solutions, which are defined as follows.

A feasible solution x̂ ∈ 𝐷 is said to be an efficient solution of MOILP if and only if, there
is no feasible solution x ∈ 𝐷 such that 𝐶x ≥ 𝐶x̂ and 𝐶x ̸= 𝐶x̂ (𝑐𝑖x ≥ 𝑐𝑖x̂ for all 𝑖 = 1, . . . , 𝑝
and 𝑐𝑖x > 𝑐𝑖x̂ for at least one 𝑖). The point ẑ = 𝐶x̂ is then called non-dominated vector.
Otherwise, x̂ is not efficient and ẑ = 𝐶x̂ is said to be dominated by z = 𝐶x.

x̂ ∈ 𝐷 is called weakly efficient if there is no x ∈ 𝐷 such that 𝐶x > 𝐶x̂, i. e. 𝑐𝑖x >
𝑐𝑖x̂ for all 𝑖 = 1, . . . , 𝑝. The point ẑ = 𝐶x̂ is then called weakly non-dominated objective
vector.

𝐸(𝑃 ) and 𝑍(𝑃 ) will be used henceforth to denote, respectively, the set of all efficient
solutions of problem 𝑃 and their image in outcome space defined by the objective vector
function. Since the feasible region of 𝑃 is nonconvex, unsupported non-dominated solutions
may exist. A non-dominated point z ∈ 𝑍(𝑃 ) is called unsupported if it is dominated by a
convex combination (which does not belong to 𝑍) of other non-dominated objective vector
(belonging to 𝑍).

The ranges of the non-dominated objective vectors in the outcome space provide valuable
information about the problem MOILP considered if the objective functions are bounded
over the feasible region. Upper bounds of the non-dominated solutions set are available in
the ideal objective vector z⋆ ∈ R𝑝. Its components 𝑧⋆𝑖 are obtained by maximizing each of
the objective functions individually subject to the feasible region 𝐷. A vector strictly better
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than z⋆ can be called a utopian objective vector z⋆⋆. In this work, we use the utopian and
not the ideal objective values in order to avoid dividing by zero in all occasions. Thus, the
components of the matrix 𝐶 are assumed integer, then we can set z⋆⋆ = z⋆ + 1.

The Tchebychev theory, whose foundation originated from Bowman [18], has been suc-
cessfully exploited within the scope of interactive algorithms for multiple objective optimiza-
tion in Steuer and Choo [9] and since, the scalarization techniques based on Tchebychev
norms was intensively used to solve multiple objective programming problem involving dis-
crete decisions. However, Bowman [18] proved that the Tchebychev scalarization norms is
appropriate for generating the non-dominated objective vectors set, in particular those which
are unsupported (see for example [19–21]).

We denote by ∆ the weighting vectors space defined as

𝛽 ∈ ∆ =

{︃
𝛽 ∈ R𝑝 | 0 < 𝛽𝑖 < 1,

𝑝∑︁
𝑖=1

𝛽𝑖 = 1

}︃
.

Given a point z ∈ 𝑍, the weighted Tchebychev norm of z in R𝑝 according to z⋆⋆ is defined as

‖z⋆⋆ − z‖𝛽 = max
𝑖=1,...,𝑝

{𝛽𝑖|𝑧⋆⋆𝑖 − 𝑧𝑖|} . (1)

Here 𝛽 ∈ ∆ represents its weighted vector which can be calculated as follows

𝛽𝑖 =
1

𝑧⋆⋆𝑖 − 𝑧𝑖

[︃
𝑝∑︁

𝑖=1

1

𝑧⋆⋆𝑖 − 𝑧𝑖

]︃−1

∀ 1 ≤ 𝑖 ≤ 𝑝. (2)

The aim for introducing this norm is to measure the distance between any z and the utopian
objective vector z⋆⋆. Therefore, this technique consists in selecting the feasible objective
vectors with minimum weigh distance from z⋆⋆. In others words, for a given 𝛽, to reach this
goal one has to solve the so-called minimization of the norm problem defined as follows

min
z∈𝑍

{︀
||z⋆⋆ − z||𝛽

}︀
. (3)

Bowman [18] has proposed to solve an equivalent problem called weighted Tchebychev pro-
gram defined as follows

𝑃 (𝛽)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min 𝜔
𝜔 ≥ 𝛽𝑖(𝑧

⋆⋆
𝑖 − 𝑧𝑖), 1 ≤ 𝑖 ≤ 𝑝,

𝑧𝑖 = 𝑐𝑖𝑥,
𝑥 ∈ 𝐷,
𝜔 ≥ 0.

(4)

Problem 𝑃 (𝛽) is a mixed-integer linear program (MILP) which can be examined using
standard integer-linear programming techniques such as branch and bound. However, 𝑃 (𝛽)
may yield several optimal solutions of which some can be non-dominated or weakly non-
dominated by others. In order to eliminate the weakly non-dominated solutions we can use
the augmented weighted Tchebychev program 𝑃𝜌(𝛽) for a small 𝜌 > 0 as folows:

𝑃𝜌(𝛽)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min 𝜔 + 𝜌

𝑝∑︁
1

(𝑧⋆⋆𝑖 − 𝑧𝑖)

𝜔 ≥ 𝛽𝑖(𝑧
⋆⋆
𝑖 − 𝑧𝑖), 1 ≤ 𝑖 ≤ 𝑝,

𝑧𝑖 = 𝑐𝑖𝑥,
𝑥 ∈ 𝐷,
𝜔 ≥ 0.

(5)

We have the following results.
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Theorem 1 (see [22]). Let 𝑍 be finite and

𝑀 = {z ∈ 𝑍 | (x, z, 𝜔) is a minimal solution of 𝑃 (𝛽) for some 𝛽 ∈ ∆} .

Then there exists z̄ ∈ 𝑀 such that z̄ ∈ 𝑍(𝑃 ).

Theorem 2 (see [18]). z = 𝐶x̂, x̂ ∈ 𝐷 is non-dominated solution for MOILP only if it is
a solution to 𝑃 (𝛽) for some 𝛽.

Eswaran et al. [8], Ted et al. [10] developed two algorithms based on solving 𝑃 (𝛽) for
enumerating all non-dominated vectors of MOILP but solely with two objectives where the
technique of comparison is used to eliminate the weakly non-dominated solutions. For a
problem having more than two objective functions this technique is not appropriate.

In this work, we propose to solve the weighted Tchebychev program augmented by adding
some constraints in order to avoid the trap related by the weighted norm and the weakly non-
dominated vectors. The main idea of our technique consists in moving from a non-dominated
solution to another nearby solution by solving the modified Tchebychev program according
to the weighted vector which is obtained from some non-dominated vectors. The technique
of additional constraints, firstly developed by Klein and Hannan [4] and also used by Sylva
and Crema [5], consists in reducing progressively the admissible space and eliminating the
non-dominated solution previously found.

Proposition 1 (see [5]). Let x̂𝑠 be efficient solution to problem (𝑃 ) and 𝐷𝑠 = {x | x ∈
Z𝑛

+, 𝐶x ≤ 𝐶x̂𝑠}. Let x̂* be an efficient solution to the multiple objective integer problem
“max”{𝐶x,x ∈ 𝐷 −𝐷𝑠}. Then, x̂* is an efficient solution to problem (𝑃 ).

Proposition 2. Let ẑ = 𝐶x̂ be non-dominated solution to problem (𝑃 ) and 𝐷𝑠 = {x | x ∈
Z𝑛

+, 𝐶x ≤ 𝐶x̂𝑠} and �̂� its weight vector defined as in formula (2). If z̄ is an optimal solution

to problem 𝑃𝜌(𝛽) with 𝛽 = �̂� such that

𝑃𝜌(𝛽)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

min 𝜔 + 𝜌

𝑝∑︁
1

(𝑧⋆⋆𝑖 − 𝑧𝑖)

𝜔 ≥ 𝛽𝑖(𝑧
⋆⋆
𝑖 − 𝑧𝑖), 1 ≤ 𝑖 ≤ 𝑝,

𝑧𝑖 = 𝑐𝑖𝑥, 1 ≤ 𝑖 ≤ 𝑝,
𝑥 ∈ 𝐷 −𝐷𝑠,
𝜔 ≥ 0.

Then z̄ is non-dominated objective solution to problem 𝑃 .

Proof. Let as suppose there exists an efficient solution x′ ∈ 𝐷 such that 𝐶x̄ ≤ 𝐶x′ with
at least one strict inequality. x′ cannot belong to 𝐷𝑠, 𝐶x′ is not dominated by ẑ. However,
for all 𝑖, (𝑧⋆⋆𝑖 − 𝐶𝑖x′) ≤ (𝑧⋆⋆𝑖 − 𝐶𝑖x̄), since ∀z ∈ 𝑍, z < z⋆⋆ then for all 𝑖 𝛽𝑖 > 0, thus

𝛽𝑖(𝑧
⋆⋆
𝑖 − 𝐶𝑖x′) ≤ 𝛽𝑖(𝑧

⋆⋆
𝑖 − 𝐶𝑖x̄) ∀𝑖, (6)

we must have
max
𝑖=1,...,𝑝

𝛽𝑖(𝑧
⋆⋆
𝑖 − 𝐶𝑖x′) ≤ max

𝑖=1,...,𝑝
𝛽𝑖(𝑧

⋆⋆
𝑖 − 𝐶𝑖x̄). (7)

By the substitutions z′ = 𝐶x′ and z̄ = 𝐶x̄ in each of the 𝑝 constraints of 𝑃 (�̂�), we get

�̄� ≥ 𝛽𝑖(𝑧
⋆⋆
𝑖 − 𝐶𝑖x̄) ∀𝑖,

𝜔′ ≥ 𝛽𝑖(𝑧
⋆⋆
𝑖 − 𝐶𝑖x′) ∀𝑖.
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According to the definition of the weighted Tchebychev norm and the inequality (7), we
should have

𝜔′ ≤ �̄�. (8)

According to inequalities (6) and (8) we have

𝜔′ + 𝜌

𝑝∑︁
1

(𝑧⋆⋆𝑖 − 𝐶𝑖x′) ≤ �̄� + 𝜌

𝑝∑︁
1

(𝑧⋆⋆𝑖 − 𝐶𝑖x̄). (9)

Two cases are to be discussed: If 𝜔′ + 𝜌

𝑝∑︁
1

(𝑧⋆⋆𝑖 − 𝐶𝑖x′) < �̄� + 𝜌

𝑝∑︁
1

(𝑧⋆⋆𝑖 − 𝐶𝑖x̄) then the

optimality of z̄ is not preserved. Otherwise, contradiction with non efficiency of x̄.

2. Algorithm

The algorithm we proposed here is proved to enumerate all non-dominated objective vectors
for the problem MOILP. After having calculated the ideal objective vector z⋆, we can set the
utopian objective value as z⋆⋆ = z⋆ + 1. The procedure starts with an initial non-dominated
solution ẑ0 = 𝐶x̂0 which can be calculated by solving the parametric problem defined as
𝑃 (𝜆) ≡ max{𝜆𝐶x,x ∈ 𝐷} for an arbitrary 𝜆 ∈ ∆. Consider 𝛽0 = 𝜆 as an initial weighted
vector for the iterative procedure. At each iteration 𝑘, the weighted Tchebychev program
𝑃 (𝛽) is solved in the reduced space 𝐷 − 𝐷𝑠 such that 𝐷𝑠 = {x,x ∈ Z𝑛, 𝐶x ≤ 𝐶x̂𝑠, 𝑠 =
1, . . . , 𝑘 − 1}, let be 𝛽 = 𝛽𝑘−1 such that 𝛽𝑘−1 is a weighted vector of ẑ𝑘−1 = 𝐶x̂𝑘−1. If
𝑃 (𝛽) is feasible then, according to proposition 2 a new efficient/non-dominated solution
(x̂𝑘, ẑ𝑘) is obtained in the neighborhood of the last non-dominated solution found. The
current associated weighted vector 𝛽𝑘 can be calculated as in (2) and considered for the
next iteration. Otherwise, the process ends with all non-dominated objective vectors.

Mathematically, the technique of additional constraints can be formulated as

𝐷 −
𝑘⋃︁

𝑠=1

𝐷𝑠 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑐𝑖x ≥ (𝑐𝑖x̂𝑠 + 1)𝑦𝑠𝑖 + 𝑀𝑖(1 − 𝑦𝑠𝑖 ), 𝑖 = 1, 2, . . . , 𝑝, 𝑠 = 1, 2, . . . , 𝑘,
𝑝∑︁

𝑖=1

𝑦𝑠𝑖 ≥ 1,

𝑦𝑠𝑖 ∈ {0, 1}, 𝑖 = 1, 2, . . . , 𝑝, 𝑠 = 1, 2, . . . , 𝑘,
x ∈ 𝐷,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
where 𝑀𝑖 is a lower bound for any feasible value of the 𝑖th objective function such that,
if 𝑐𝑖𝑗 ≥ 0, 𝑗 = 1, . . . , 𝑛, 𝑀𝑖 = min{𝑐𝑖x | x ∈ 𝐷}, otherwise 𝑀𝑖 = 0. The variables 𝑦𝑠𝑖 ,
𝑖 = 1, . . . , 𝑝, associated to x̂𝑠 and additional constraints are added in order to impose an
improvement on at least the objective function. Note that when 𝑦𝑠𝑖 = 0, the associated
constraint is redundant and when 𝑦𝑠𝑖 = 1, a strict improvement is forced in the 𝑖th objective
function evaluated in x̂𝑠.

Proposition 3 (see [5]). Let x̂1, x̂2, . . . , x̂𝑘 be efficient solutions to problem MOILP and
𝐷𝑠 =

{︀
x | x ∈ Z𝑛

+, 𝐶x ≤ 𝐶x̂𝑠
}︀
. Let x̂* be an efficient solution to the multiple objective

integer problem (𝑃𝑘) ≡ max

{︃
𝐶x,x ∈ 𝐷 −

𝑘⋃︁
𝑠=1

𝐷𝑠

}︃
. Then, x̂* is an efficient solution to

problem MOILP. Furthermore, if (𝑃𝑘) is unfeasible then {𝐶x̂𝑠}𝑘𝑠=1 is the entire set of non-
dominated objective vectors for MOILP.
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Proposition 4. Let x̂1, x̂2, . . . , x̂𝑘 be efficient solutions to a problem (𝑃 ) and 𝐷𝑠 = {x |
x ∈ Z𝑛

+, 𝐶x ≤ 𝐶x̂𝑠}. Let �̂�
𝑘
the weighted vector of ẑ = 𝐶x̂𝑘 and 𝛽 = �̂�

𝑘
and for a small

𝜌 > 0, if 𝑃𝜌(𝛽) such that

𝑃𝜌(𝛽)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min 𝜔 + 𝜌

𝑝∑︁
1

(𝑧⋆⋆𝑖 − 𝑧𝑖)

𝜔 ≥ 𝛽𝑖(𝑧
⋆⋆
𝑖 − 𝑐𝑖𝑥), 1 ≤ 𝑖 ≤ 𝑝,

𝑧𝑖 = 𝑐𝑖x, 1 ≤ 𝑖 ≤ 𝑝,

x ∈ 𝐷 −
𝑘⋃︁

𝑠=1

𝐷𝑠,

𝜔 ≥ 0,

is unfeasible then {𝐶x̂}𝑘𝑠=1 is the entire set of non-dominated objective vectors for MOILP.

Proof. According to Proposition 2, for any weighted vector 𝛽 = �̂� of non-dominated
objective vector, the weighted Tchebychev program 𝑃 (𝛽) admits one optimal solution which

is non-dominated. If for some �̂�
𝑘
, 𝑃 (𝛽) is unfeasible, then 𝐷 ⊆

𝑘⋃︁
𝑠=1

𝐷𝑠, for any x ∈ 𝐷 there

exists x𝑠 ∈
𝑘⋃︁

𝑠=1

𝐷𝑠 such that 𝐶x ≤ 𝐶x𝑠, we must have that 𝐶x = 𝐶x𝑠 and 𝐶x ∈ {𝐶x𝑠}𝑘𝑠=1

or 𝐶x ≤ 𝐶x𝑠 with at least one strict inequality (and 𝐶x is a dominated vector).

A Constrained Weighted Tchebychev Program for MOILP

Input
↓ 𝐴(𝑚×𝑛): matrix of constraints;
↓ b(𝑚×1): RHS(Right Hand Side) vector;
↓ 𝐶(𝑝×𝑛): matrix of criteria;
Output
↑ 𝑍(𝑃 ): The entire of non-dominated vector solution.
↑ 𝐸(𝑃 ): Subset of efficient solutions.
Initialization

� Let 𝑧⋆⋆𝑖 = 𝑧⋆𝑖 + 1 the utopian vector such that 𝑧⋆𝑖 = max{𝑐𝑖x,x ∈ 𝐷, 𝑖 = 1, . . . , 𝑝}
and for the lower bounds where ∀𝑖 = 1, . . . , 𝑝 𝑀𝑖 = min{𝑐𝑖x | x ∈ 𝐷}, if 𝑐𝑖𝑗 ≥ 0,
𝑗 = 1, . . . , 𝑛, else set 𝑀𝑖 = 0.

� Let (x̂0, ẑ0) the efficient/non-dominated objective vector solution of

max

{︃
𝑝∑︁

𝑖=1

1

2
𝑐𝑖x, 𝑥 ∈ 𝐷

}︃
.

� 𝑘 = 0, compute �̂�
0

of ẑ0 defined as in (2).

� Let 𝛽 = �̂�
0
, 𝐸(𝑃 ) = {x̂0} and 𝑍(𝑃 ) = {ẑ0}.

Repeat

� Solve 𝑃𝜌(𝛽) in 𝐷−
𝑘⋃︁

𝑠=1

𝐷𝑠 where 𝐷𝑠 = {x | x ∈ Z𝑛
+, 𝐶x ≤ 𝐶x̂𝑠} and x̂𝑠∈𝐸(𝑃 ).

� If 𝑃𝜌(𝛽) is unfeasible, Stop.

� Otherwise, let be (x̂𝑘, ẑ𝑘) its optimal solution and compute �̂�
𝑘

of ẑ𝑘.

� Set 𝐸(𝑃 ) = 𝐸(𝑃 )
⋃︀
{x̂𝑘}, 𝑍(𝑃 ) = 𝑍(𝑃 )

⋃︀
{ẑ𝑘}, 𝛽 = �̂�

𝑘
and 𝑘 = 𝑘 + 1.

Until 𝑃𝜌(𝛽) is unfeasible.
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3. Numerical example

Let us consider the MOILP problem

⎧⎨⎩
′′ max′′ (𝑥1 + 𝑥2, 𝑥1 − 𝑥2),

𝐷 =

{︂
3𝑥1 + 𝑥2 ≤ 5,
𝑥1, 𝑥2 ≥ 0 and integer.

(10)

This example contains five efficient solutions/non-dominated objective vectors where (4;−4)
is unsupported (see Fig. 1). The parameter 𝜌 has been fixed at 0.002.

Initialization step. Firstly we compute the ideal vector z⋆ and the utopian vector z⋆⋆

such that 𝑧⋆1 = max{(1, 1)x,x ∈ 𝐷}, 𝑧⋆2 = max{(1,−1)x,x ∈ 𝐷}, then we obtained z⋆ =
(5; 1) and z⋆⋆ = (6; 2). Secondly we calculate the lower bounds of the corresponding objective
functions 𝑀1 = 0, 𝑀2 = 5. To obtain an initial non-dominated solution, we can take

the optimal solution of parametric problem 𝑃

(︂
1

2
;
1

2

)︂
≡ max

{︂
1

2
𝑐1x +

1

2
𝑐2x, 3𝑥1 + 𝑥2 ≤ 5,

𝑥1, 𝑥2 ≥ 0 and integer

}︂
which is (x̂0, ẑ0) = ((1; 2), (3;−1)) and �̂�

0
=

(︂
1

2
;
1

2

)︂
. Let 𝐸(𝑃 ) =

{x̂0}, 𝑍(𝑃 ) = {ẑ0} and 𝛽 = �̂� =

(︂
1

2
;
1

2

)︂
.

Iteration 1. Solve 𝑃𝜌(𝛽) in the reduced space by adding the additional constraints in
order to eliminate the point (x̂1, ẑ1)

𝑃𝜌(𝛽
⋆)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min 𝜔 − 0.004𝑥1

𝜔 ≥ 1

2
(6 − 𝑥1 − 𝑥2),

𝜔 ≥ 1

2
(2 − 𝑥1 + 𝑥2),

𝜔 ≥ 0,

𝐷 −𝐷1

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

3𝑥1 + 𝑥2 ≤ 5,
𝑥1, 𝑥2 ≥ 0,
𝑥1 + 𝑥2 ≥ (3 + 1)𝑦11,
𝑥1 − 𝑥2 ≥ (−1 + 1)𝑦12 − 5(1 − 𝑦12),
𝑦11 + 𝑦12 ≥ 1,
𝑦11, 𝑦

1
2 ∈ {0, 1},

(x̂1, ẑ1) = {(1; 1), (2; 0)} and 𝑦11 = 0, 𝑦12 = 1 is obtained as an optimal solution, the relative
constraint to 𝑦11 is redundant, the current space of new solution is only constrained by

𝑥1 − 𝑥2 ≥ 0 (see Fig. 1). We compute �̂�
1

of ẑ1 as defined as in formula (2), we must have

�̂�
1

=

(︂
1

3
,
2

3

)︂
. We let 𝐸 = 𝐸

⋃︀
x̂1 𝑍(𝑃 ) = 𝑍(𝑃 )

⋃︀
ẑ1 and 𝛽⋆ =

(︂
1

3
,
2

3

)︂
.

Iteration 2. In this iteration the problem 𝑃𝜌(𝛽
⋆) is solved in the space that reduced by

two solutions (non-dominated vectors) previously found
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𝑃𝜌(𝛽
⋆)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min 𝜔 − 0.004𝑥1

𝜔 ≥ 1

3
(2 − 𝑥1 − 𝑥2),

𝜔 ≥ 2

3
(0 − 𝑥1 + 𝑥2),

𝜔 ≥ 0,

𝐷 −𝐷2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x, 𝑦1𝑗 ∈ 𝐷 −𝐷1, 𝑗 = 1, 2,
𝑥1 + 𝑥2 ≥ (2 + 1)𝑦21,
𝑥1 − 𝑥2 ≥ (0 + 1)𝑦22 − 5(1 − 𝑦22),
𝑦21 + 𝑦22 ≥ 1,
𝑦𝑖𝑗 ∈ {0, 1}, 𝑖, 𝑗 = 1, 2.

As showed in Fig. 2, (x̂2, ẑ2) = {(1; 0), (1; 1)} is a new efficient/non-dominated solution
with secondary variables 𝑦11 = 0, 𝑦12 = 1, 𝑦21 = 0, 𝑦22 = 1, the constraints associated to 𝑦11,
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𝑥2

21
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3

4

5

p p

∙

∙

∙

∙

∙
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∙

∙

∙
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Fig. 1. Iteration 1
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∙

∙

∙

∙
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Fig. 2. Iteration 2
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𝑦12, 𝑦21 are redundant; according to the formula (2), the weighted vector �̂�
2

is

(︂
1

6
,
5

6

)︂
. Set

𝐸 = 𝐸
⋃︀

x̂2 𝑍(𝑃 ) = 𝑍(𝑃 )
⋃︀

ẑ2 and 𝛽⋆ =

(︂
1

6
,
5

6

)︂
.

Iteration 3. The following step adds constraints that delete the efficient points previ-
ously found

𝑃𝜌(𝛽
⋆)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min 𝜔 − 0.004𝑥1

𝜔 ≥ 1

6
(1 − 𝑥1 − 𝑥2),

𝜔 ≥ 5

6
(1 − 𝑥1 + 𝑥2),

𝜔 ≥ 0,

𝐷 −𝐷3

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x, 𝑦𝑖𝑗 ∈ 𝐷 −𝐷2, 𝑖 = 1, 2, 𝑗 = 1, 2,
𝑥1 + 𝑥2 ≥ (1 + 1)𝑦31,
𝑥1 − 𝑥2 ≥ (1 + 1)𝑦32 − 5(1 − 𝑦32),
𝑦31 + 𝑦32 ≥ 1,
𝑦31, 𝑦

3
2 ∈ {0, 1}.

The optimal solution to the last problem is (x̂3, ẑ3) = {(0; 4), (4;−4)} and 𝑦11 = 1, 𝑦12 = 0,
𝑦21 = 1, 𝑦22 = 0 𝑦31 = 1, 𝑦32 = 0. The additional constraints to 𝑦12, 𝑦21, 𝑦31, 𝑦32, 𝑦22 are redundant.
This solution is unsupported and gotten relatively to the constraint 𝑥1 + 𝑥2 ≥ 4 according

to the variable 𝑦11, see Fig. 3, the current weighted vector is �̂�
3

=

(︂
3

4
,
1

4

)︂
. Let 𝐸 = 𝐸

⋃︀
x̂3

𝑍(𝑃 ) = 𝑍(𝑃 )
⋃︀

ẑ3 and 𝛽⋆ =

(︂
3

4
,
1

4

)︂
.

Iteration 4. Now, problem 𝑃𝜌(𝛽
⋆) is defined as:

𝑃 (𝛽⋆)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min 𝜔 − 0.004𝑥1

𝜔 ≥ 3

4
(4 − 𝑥1 − 𝑥2),

𝜔 ≥ 2

7
(−4 − 𝑥1 + 𝑥2),

𝜔 ≥ 0,

𝐷 −𝐷4

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x, 𝑦𝑖𝑗 ∈ 𝐷 −𝐷3, 𝑖 = 1, 2, 3, 𝑗 = 1, 2,
𝑥1 + 𝑥2 ≥ (4 + 1)𝑦4,
𝑥1 − 𝑥2 ≥ (−4 + 1)𝑦42 − 5(1 − 𝑦42),
𝑦41 + 𝑦42 ≥ 1,
𝑦41, 𝑦

4
2 ∈ {0, 1},

(x̂4, ẑ4) = {(0; 5), (5;−5)}, 𝑦11 = 1, 𝑦12 = 0, 𝑦21 = 1, 𝑦22 = 0, 𝑦31 = 1, 𝑦32 = 0 and 𝑦41 = 1,
𝑦42 = 0 is the optimal solution to the current Tchebychev program. This optimal solution
is obtained from the only constraint 𝑥1 + 𝑥2 ≥ 5 imposed by the first objective function

relatively to the additional variable 𝑦41, see Fig. 4; for this iteration, we obtain �̂�
4

=

(︂
7

8
,
1

8

)︂
.

Set 𝐸 = 𝐸
⋃︀

x̂4 𝑍(𝑃 ) = 𝑍(𝑃 )
⋃︀

ẑ4 and 𝛽⋆ =

(︂
7

8
,
1

8

)︂
.

Iteration 5. The next Tchebychev problem 𝑃𝜌(𝛽
⋆) to be solved is
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𝑃 (𝛽⋆)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min 𝜔 − 0.004𝑥1

𝜔 ≥ 7

8
(5 − 𝑥1 − 𝑥2),

𝜔 ≥ 1

8
(−5 − 𝑥1 + 𝑥2),

𝜔 ≥ 0,

𝐷 −𝐷5

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x, 𝑦𝑖𝑗 ∈ 𝐷 −𝐷4, 𝑖 = 1, 2, 3, 4, 𝑗 = 1, 2,
𝑥1 − 2𝑥2 ≥ (0 + 1)𝑦51,
−𝑥1 + 3𝑥2 ≥ (1 + 1)𝑦52 − 5(1 − 𝑦52),
𝑦51 + 𝑦52 ≥ 1,
𝑦51, 𝑦

5
2 ∈ {0, 1}.

The current Tchebychev problem 𝑃𝜌(𝛽
⋆) is unfeasible, then the process is complete and we

have the complete set of non-dominated objective vectors, and the subset of the correspond-
ing efficient solutions

𝐸(𝑃 ) = {(1; 2), (1; 1), (1; 0), (0; 4), (0; 5)}, 𝑍(𝑃 ) = {(3;−1), (2; 0), (1; 1), (4;−4), (5;−5)}.
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Fig. 3. Iteration 3
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4. Computational results

The algorithm described above was implemented in the MATLAB environment and run on a
PC (Intel Pentium dual-core 2.66 GHz processor), with 2 Gb of RAM, under Windows Vista.
The CPLEX 12.9 library was the choice for solving scalar programs. The main feature of the
algorithm lies in the resolution of the weighted Tchebychev program. In order to test the
performance of the algorithm, only an overall look is necessary to see how both computing
time and number of efficient solutions gone over which is equal to a number of iterations
performed.

The algorithm was tested with MOILP problems randomly generated from discrete uni-
form distribution. The components of the matrices 𝐴, 𝐶 and the vector 𝑏 were drawn in the
ranges [1, 30], [−20, 20] and [100, 300], respectively.To avoid infeasibilities, all the constraints
of each problem are of the ≤ kind. Furthermore, since all the coefficients of 𝐴 and 𝑏 are pos-
itives, the boundedness of the feasible region is assured. The number of objective functions
𝑝 was taken as 2, 3 and 5. A total of 540 problems was grouped according to the number
of variables, constraints and objective functions into 54 categories. For each category of
problems, 10 instances were solved. The average CPU time (in seconds for 𝑝 = 1, 𝑝 = 2 and
in minutes for 𝑝 = 5) and the average number of iterations required, also, the minimum and
maximum values of each measure are reported in brackets as shown in Table.

The results obtained show that the proposed algorithm is efficient in terms of the CPU
time (in the average). Nevertheless, the mean time required by the algorithm is sometimes
meaningful in some problems, perhaps its due to degeneracy especially in the presence of
binary variables. Obviously, the difficulties encountered in the solution of the considered
problem are closely related to their dimensions, moreover to their aspect multiple objective
and discrete nature.

Computational results

𝑚 𝑛
𝑝 = 2 𝑝 = 3 𝑝 = 5

CPU, s Iter CPU, s Iter CPU, min. Iter

5
10 1.35[0.62;3.44] 8.4[7;10] 8.08[4.19;20.61] 13.4[10;22] 1.82[0.58;3.53] 31.5[18;69]
15 1.95[0.9;3.71] 16.8[6;27] 12.05[4.28;29.74] 13.7[8;29] 2.01[1.40;5.45] 49.6[33;78]
20 2.52[1.06;4.04] 15.4[10;27] 9.81[5.01;19.54] 15.7[10;29] 2.54[1.33;5.58] 45.2[29;61]

10
10 1.36[0.44;2.4] 8.2[4;22] 10.02[6.71;31.91] 19.5[12;34] 3.72[2.18;5.05] 38.1[28;57]
15 2.23[0.65;3.52] 9.5[6;17] 21.71[15.74;39.12] 20.1[11;27] 5.65[4.88;8.02] 40.1[31;71]
20 1.67[0.99;1.84] 13.2[7;22] 8.52[5.09;24.01] 19.8[12;31] 7.34[3.41;12.56] 45[26;76]

20
20 1.75[1.00;3.90] 9.4[7;18] 4.98[2.02;12.5] 29.4[16;36] 6.83[3.78;11.51] 48.2[25;60]
30 2.02[0.95;3.50] 10.5[8;17] 23.49[10.1;31.53] 31.5[16;49] 8.05[4.52;15.20] 47.3[30;79]
50 2.22[1.23;3.02] 13.0[10;18] 65.62[6.9;217.7] 34.2[24;69] 9.35[3.97;20.4] 36.4[27;97]

30
30 2.02[0.8;2.22] 15.4[11;20] 37.22[24.8;58.52] 39.5[19;56] 8.95[5.04;18.27] 28.8[20;83]
50 2.82[2.05;4.01] 14.5[11;19] 26.5[10.69;35.13] 37.7[23;46] 10.62[5.38;21.45] 31.5[16;79]
100 5.20[2.58;6.83] 19.5[14;25] 239.8[24.4;1160.4] 50.2[22;61] 8.55[2.42;19.65] 26.6[12;76]

50
50 2.7[2.08;4.58] 14.2[11;16] 13.9[3.25;38.92] 29.5[20;53] 11.84[4.06;25.36] 40.7[31;82]
100 6.79[4.50;8.13] 15.8[8;20] 371.53[8.1;2251.1] 38.1[24;63] 13.52[5.08;22.71] 52.5[23;77]
200 14.37[5.46;19.3] 13.6[7;23] 788.4[67.2;1033.1] 41.1[10;69] 21.38[8.22;31.52] 61.2[26;91]

100
100 55.52[24.4;191.6] 14.6[11;25] 165.3[19.1;195.75] 31.8[15;52] 30.66[20.45;38.64] 69.5[19;88]
150 64.3[19.3;197.17] 12.1[10;19] 314.8[101.9;1054.6] 37.5[27;56] 37.82[26.78;41.35] 63.9[25;79]
200 51.2[12.7;443.6] 14.1[11;20] 326.3[90.3;1112.7] 35.6[31;58] 52.44[28.33;66.82] 57.7[30;71]
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Conclusion

We have described an algorithm for multiple objective integer linear programs based on the
weighted Tchebychev norm. The general idea of the technique used in the algorithm is the
same as that of [5], the difference is based in the using of the weighted Tchebychev norm
which defined the derivative problems.

The main idea is to combine the weighted Tchebychev program with the cuts idea of [5].
This technique not just the dominated solutions which are eliminated but even so weakly
non-dominated solutions, knowing that this last can be generated by weighted Tchebychev
program(see for example [19, 22]).

The procedure possesses the advantage of the displacement of a solution to another
neighbor solution, it can be very useful in the interactive procedures, specially at early
stages even though we don’t match information on the DMs preferences.

The algorithm was coded using the MATLAB environment and The CPLEX 12.9 library
to solve the mixed integer programs involving in the method. The algorithm is tested with
several problems randomly generated from discrete uniform distribution and the results
obtained are very encouraging. For future research, we suggest an updated survey for a
comparison between several methods.
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Аннотация

Представлен алгоритм перебора всех недоминируемых векторов в задаче многоцелевого це-
лочисленного линейного программирования (MOLP). Начиная с начального недоминируемого
вектора, на каждой итерации процедура определяет новое решение с использованием взве-
шенной чебышевской нормы. Постепенно добавляются дополнительные ограничения, чтобы
уменьшить допустимое исследуемое множество.

Ключевые слова: многоцелевое целочисленное программирование, норма Чебышева, метод
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