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Testing is a generally accepted method to control software quality, although it is
not completely reliable. Nevertheless, this method integrates extremely well into de-
velopment environments and continuous integration practices. In this paper, we briefly
review the behavioral patterns that we have previously developed for the logical descrip-
tion of the programmable logic controllers (PLC) operations using tabular properties.
We also present a diagram for the checking algorithm of a bounded model to investi-
gate the feasibility of such properties. We describe how to implement the terms and
formulas that provide the behavior patterns of PLC programs in an object-oriented
programming language (C++ in this case). After the black box assessment for the
values of the control variables for inputs and outputs of the system has been set, we
show how convenient it is to describe the requirements in the form of our instantiated
classes. This description allows integrating the unit testing process for the checking
requirements of the PLC programs.
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Introduction

While the first standard for unit testing was proposed by ANSI/IEEE in 1987 [1], the start
of wide industrial applicability of this method and its formalization into a methodology was
done in 1998 by Kent Beck and Erich Gamma with their famous JUnit implementation [2].
Since then, testing at the code level is performed by the developers themselves, by imple-
menting tests that aim to cover all the methods and lines of code in them. If we take a
formal look at the unit testing process [3], then the result of such testing is checking the
correctness of the expression: ⋀︁

𝑀𝑖∈𝑇𝑒𝑠𝑡𝑐𝑎𝑠𝑒

𝑀𝑖(𝑥1..𝑥𝑛) == 𝑅𝑒𝑡𝑒𝑥𝑝𝑒𝑐𝑡(𝑀𝑖)

where 𝑀𝑖(𝑥1..𝑥𝑛) is the result of the tested method (function) with the specified parameters,
𝑅𝑒𝑡𝑒𝑥𝑝𝑒𝑐𝑡 is the expected return value of the method (or its effect on the state of the class/
module). Methods (functions) are grouped into test cases. Conjunction means that if one of
the tested values does not correspond to the expected, the operation of the entire test suite
is considered incorrect.
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The advantages of the methodology are:
� standardization of the testing process at the code level;
� support by the developer community;
� implementation for all modern programming languages;
� support from integrated development environments (IDEs) [4];
� ability to use in continuous integration (CI) processes;
� conducting regression testing to check that the new code still passes pre-written tests;
� ability to change the sequence of test development and writing, test-driven develop-

ment (TDD) [5].

At the same time, the methodology has one significant drawback associated with the fact
that the developer, when writing tests, continues to think at the level of the code, and not
at the technical specifications for the development of the system.

In the construction of control systems for technological processes, such a question is
especially relevant, since here the development is usually carried out not according to the
personal ideas of the programmer, but according to the rigorously detailed technical specifica-
tions for the system operation.

The long-term goal of our research group is to develop logical formalisms for describing
the behaviour of programs for programmable logic controllers (PLCs) [6]. In other words,
we would like to work out some requirements engineering [7] practices for such devices.
By PLC we mean a microcontroller of higher software and hardware abstraction. This
scientific direction arose among the group by analyzing various implemented software control
systems for technological processes. After implementation and verification of several such
systems [8, 9], we began to think about the task to identify the main logical approaches
and methods of formalizing (1) the low-level requirements based on the analysis of control
cycles [10], and (2) high-level requirements based on the analysis of the requirements for
the functionality of the control program. We are concentrating on requirements which come
from technical documentation and industrial specifications.

Inspired by the approach of software design patterns [11], we set out the goal to develop
some basic patterns for PLC programs in terms of their logic of functioning. According to
our hypothesis, modelling of such programs is possible using tabular properties (i. e., using
so called rule-based systems [12]). Each row in the table represents a requirement, while the
columns in the table describe parts of the overall behavioural pattern. In each cell of the
table, there can be a formula of logic, specially oriented to the evaluation of signals. If it is
possible to set the semantics of the satisfiability of such patterns and develop an algorithm
for checking them, then it is possible to accomplish the process of checking tabular properties
within the process of running tests.

The main contribution of this work is to apply the object-oriented programming ap-
proach for PLC requirements based on our logical formalism, in order to start checking the
compliance of the system with these requirements within the unit testing process. Further,
in Section 1, we give some necessary information about logic patterns for control systems;
in Section 2 we discuss class diagrams for logical terms and the system under test; while in
Section 3, we consider the implementation of all this.

1. On event-driven temporal logic patterns

In this section, we recall the slightly modified syntax and semantics of the proposed Event-
driven Temporal Logic (EDTL) notation for requirements from our FSEN’21 paper [13]. The
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Fig. 1. A concept of specification for event-driven control requirements [13]

modifications mainly consist in improved notation, and everything necessary is presented in
the current paper without the need to once again refer to the previously cited work.

1.1. EDTL-requirements

An EDTL requirement R for a PLC program is a sextuple:

R = (trigger, invariant,final,delay, reaction, release).

The six-component requirement can be explained using the following informal description
in natural language:

Following each trigger event, the invariant must hold until an occurrence of
either release event or final event. The invariant must also be hold after final
event till either the release event or a reaction, and besides the reaction must
take place within the specified allowable delay from the final event.

Our graphical intuition for the temporal organization of EDTL-attributes is shown in
Fig. 1.

1.2. EDTL-formulas

The value of each component of the tuple of EDTL-requirements is an EDTL-formula. This
formula is built from EDTL-terms. The EDTL-formulas are also enriched with dedicated
Boolean-valued terms for monitoring instantaneous changes of values for system variables:
𝑐ℎ𝑎𝑛𝑔𝑒𝑠, 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠, and 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑠. The Boolean term 𝑝𝑎𝑠𝑠𝑒𝑑 describes that a control
system is in a state after a moment specified by a term of type 𝑡𝑖𝑚𝑒.

So, EDTL-formulas are constructed from Boolean terms by standard Boolean operations
as well as our special operations for expressing instant control system changes as we show
further. If 𝜑 and 𝜓 are EDTL-formulas then:

� ETDL-term of type 𝑏𝑜𝑜𝑙 is an atomic EDTL-formula;
� 𝜑 ∧ 𝜓 is the conjunction of 𝜑 and 𝜓;
� 𝜑 ∨ 𝜓 is the disjunction of 𝜑 and 𝜓;
� ¬𝜑 is the negation of 𝜑;
� ∖𝜑 is the falling edge: the value of 𝜑 changes from 𝑡𝑟𝑢𝑒 to 𝑓𝑎𝑙𝑠𝑒;
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� /𝜑 is the rising edge: the value of 𝜑 changes from 𝑓𝑎𝑙𝑠𝑒 to 𝑡𝑟𝑢𝑒;
� 𝜑 is low steady-state: the value of 𝜑 remains equal to 𝑓𝑎𝑙𝑠𝑒;
� ∼ 𝜑 is high steady-state: the value of 𝜑 remains equal to 𝑡𝑟𝑢𝑒.

As we can see, such formulas are closely related to the requirements in natural language
arising from the technical specifications for the development of the system.

1.3. Semantics of EDTL-terms

The function V defines semantics (value) of EDTL-terms at the time point 𝑖 on the path 𝜋
(a sequence of states, where 𝜋(𝑘) is a state at the time point 𝑘) with the timer point 𝑗 (a
time point on a path to define the moment of starting a timer):

� if 𝑐 is a constant, then V(𝑐, 𝜋, 𝑖, 𝑗) = 𝑐;
� if 𝑥 is a variable, then V(𝑥, 𝜋, 𝑖, 𝑗) = 𝑎𝑐𝑐(𝑥, 𝜋(𝑖));
� if 𝑢 is a time term, then V(𝑢, 𝜋, 𝑖, 𝑗) = 𝑡𝑖𝑚𝑒(𝑢, 𝜋(𝑖));
� V(𝑓(𝑢1, . . . , 𝑢𝑛), 𝜋, 𝑖, 𝑗)= 𝑖𝑛𝑡𝑟(𝑓)(V(𝑢1, 𝜋, 𝑖, 𝑗), . . . ,V(𝑢𝑛, 𝜋, 𝑖, 𝑗));
� V((𝑢), 𝜋, 𝑖, 𝑗) = V(𝑢, 𝜋, 𝑖, 𝑗).

Let 𝑢 be not a term of type 𝑡𝑖𝑚𝑒 and 𝑖 > 0:
� V(𝑐ℎ𝑎𝑛𝑔𝑒𝑠(𝑢), 𝜋, 𝑖, 𝑗) = 𝑡𝑟𝑢𝑒 ⇔ V(𝑢, 𝜋, 𝑖− 1, 𝑗) ̸= V(𝑢, 𝜋, 𝑖, 𝑗);
� V(𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒𝑠(𝑢), 𝜋, 𝑖, 𝑗) = 𝑡𝑟𝑢𝑒 ⇔ V(𝑢, 𝜋, 𝑖− 1, 𝑗) < V(𝑢, 𝜋, 𝑖, 𝑗);
� V(𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑒𝑠(𝑢), 𝜋, 𝑖, 𝑗) = 𝑡𝑟𝑢𝑒 ⇔ V(𝑢, 𝜋, 𝑖− 1, 𝑗) > V(𝑢, 𝜋, 𝑖, 𝑗).

Let 𝑢 be a term of type 𝑡𝑖𝑚𝑒 and 𝑖 > 0:
� V(𝑝𝑎𝑠𝑠𝑒𝑑(𝑢), 𝜋, 𝑖, 𝑗) = 𝑡𝑟𝑢𝑒 ⇔ 𝑖 ≥ 𝑗 + V(𝑢, 𝜋, 𝑖, 𝑗), i.e. V(𝑢, 𝜋, 𝑖, 𝑗) time steps have

passed after the timer point 𝑗.

Here 𝑎𝑐𝑐(𝑥, 𝜋(𝑖)) is a value of variable 𝑥 in state 𝜋(𝑖), 𝑡𝑖𝑚𝑒(𝑢, 𝜋(𝑖)) returns the number of
scan cycles which will be passed during time 𝑢 with the time point 𝑖 for the path 𝜋, 𝑖𝑛𝑡𝑟(𝑓)
is an interpretation of function 𝑓 [14].

1.4. On bounded checking the EDTL-requirements

In Fig. 2, we show a block diagram of an algorithm that checks if an EDTL-requirement
is satisfied for every finite initial path of a control system in some finite set of such paths.
To check the EDTL-requirement R, the algorithm follows the constructive way based on
FOL-formula 𝐹𝑡𝑝 given in our paper [13] (and our natural-language intuition described in
Section 1.2). We use the V-function for EDTL-terms presented above. Here we consider
finite initial paths of length 𝑙𝑒𝑛 > 0.

2. Object-oriented modelling

In Fig. 3, we demonstrate a UML-modelling [15] result for EDTL-terms (and EDTL-formulas
as a special case of EDTL-terms of type 𝑏𝑜𝑜𝑙), described in Section 1. We have divided the
original figure from an appendix of [13] to describe it more clearly and introduce the new
Havoc class which we will explain later. We model the abstract class Term, and then create
its descendants according to the definition of EDTL formula in Section 1.2. To provide the
realization of semantics for the behaviour of each term, we have to define a virtual method
value, which is overridden in the descendants and should actually implement the V-function
of the term behaviour according to Section 1.3.



92 S.M. Staroletov, I. S. Anureev

Fig. 2. A scheme for our algorithm to check the feasibility of an EDTL-requirement

To model a unit-testable system (Fig. 4), we define the CheckableSystem class with a
method to check it using the algorithm depicted in Fig. 2. Requirements are specified as a
list of CheckableReq subclasses, which must have methods overridden for all six components
of the pattern. In the fugure, we drew five cases (CASE1-CASE5), which means that there
are five different requirements for a particular system as six-component tuples, and the
user should provide implementations for trigger(), release(), invariant(), final(), delay() and
reaction() methods. Each such method defines an EDTL-formula that is built from these
terms.

For the process of checking such requirements, it is necessary to specify a sequence of
input and output signals in the form of Boolean vectors. Here we must abstract from
the implementation of the system because we only need the values of its control variables
according to the black-boxing principle [16]. Such values are operated by the Havoc singleton
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Fig. 3. An EDTL term

Fig. 4. A model of system with sets of requirements in the form of EDTL-terms

class (its name corresponds to a Microsoft Research tool [17]), which provides the current
vector of their values to the ValTerm term, where such values are required at the current
moment when its value method is called.

Let us consider the process of checking requirements in the form of a sequence diagram
(Fig. 5). First, the user sets vectors of sequences of variable values on which the requirements
will be checked. The vector data is put into the Havoc class (we make this class responsible
for providing the current values of the variables). Next, the check() method of the system
is called, which returns a Boolean sign of its correctness or incorrectness (or, as for control
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Fig. 5. Requirements checking process in action

systems, safe/unsafe). Inside it, all possible test vectors are requested from Havoc, and on
each test vector for each requirement the bounded checking algorithm (shown in Fig. 2)
is launched. Each requirement, as we have already discussed, contains six components,
expressed as EDTL-terms. All of them are required for our checking algorithm to operate, so
recurred calls are made to the predefined value() method to get the values of the V-function.
When asking for a ValTerm value, Havoc provides the current value of the requested variable
from the current test vector.

3. Object-oriented implementation

In this section, we show code snippets to describe main ideas of the discussed concepts
implementation as well as the usage of them to provide a system description in the form of
event-oriented structured requirements expressed in EDTL-terms.

So, we are going to discuss:
� Persistent part, in the form of abstract and reusable classes for terms as well as re-

quirements and the composite system with the bounded checking algorithm.
� User’s part, that shows how to create the above classes, define and verify specific

requirements.

3.1. The implementation of EDTL-terms

As an example of term implementation, we consider BackSlashTerm, which corresponds to
the falling edge of the situation as defined in Section 1. It is derived from Term, and overrides
the virtual method value:

class BackSlashTerm : public Term {
private :
//a roo t term
Term * term ;
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public :
// cons t ruc t o r to ob ta in a roo t term
BackSlashTerm (Term * term ) : term ( term ) {}
//v=f unc t i on r e d e f i n i t i o n
int value ( int i , int j ) {

return ( i != 0) && ! term=>value ( i = 1 , j ) &&
term=>value ( i , j ) ;

}
} ;

Other terms are implemented in the same manner in accordance with the definitions from
Section 1.3, Section 1.4, and the overall plan in Fig. 3.

3.2. Instantiating test cases for the system

Next, we have to instantiate the system for testing and set the list of requirements for it as
subclasses of CheckableReq :

CheckableSystem * system = new CheckableSystem ( ) ;
system=>addReqs ({
new CASE1( ) , new CASE2( ) , new CASE3( ) , new CASE4( ) , new CASE5( )
} ) ;

Note, we use std::initializer list [18] to pass the list of parameters in more functional and
easy-readable way.

After the actual elaboration and specification of the system requirements (in this example,
instantiating the CASE1-CASE5 classes for five requirements), as well as setting test vectors
of control variable values (we will consider this in detail below), the system is checked with
one high-level call:

i f ( system=>check ( ) )
cout << ”System i s s a f e ” << endl ;

else
cout << ”System i s unsa fe ” << endl ;

3.3. How to implement user’s code for the system using our framework

Referring to the slightly modified example from the article [13], we consider a simple sanitizer
device (Fig. 6) to set its requirements from the code. This system reacts to the appearance of
hands (control variable H ) by turning on the disinfector (variable 𝐷) for some time interval.

For one of the cases, the requirement “If the disinfector is on, it turns off after 2 seconds
without hands” was elaborated. Using 𝐻 and 𝐷 variables, this requirement can be expressed
as a tuple:

R𝑐𝑎𝑠𝑒1 = (trigger=∖𝐻&&𝐷, invariant=𝐷,

final=𝑝𝑎𝑠𝑠𝑒𝑑(2),delay=𝑡𝑟𝑢𝑒, reaction=!𝐷, release=𝐻).

All six components of the pattern for this case should be defined in the code by using
polymorphic methods:
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Fig. 6. Simple anti-Covid-19 sanitizer as a demo system to specify requirements

class CASE1 : public CheckableReq {
// in t h i s subc l a s s , we have to d e f i n e
// r e a l i z a t i o n s f o r 6 methods
virtual int t r i g g e r ( int i , int j ) {

// re turns an OOP rep r e s en t a t i on
// f o r ∖H && D formula
return (new AndTerm(

new BackSlashTerm (new ValTerm(Vars : :H) ) ,
new ValTerm( vars : :D) )

)=>value ( i , j ) ;
}
virtual int r e l e a s e ( int i , int j ) {

// re turns an OOP rep r e s en t a t i on
// f o r H term
return (new ValTerm(Vars : :H))=>value ( i , j ) ;

}
virtual int f i n a l ( int i , int j ) {

// re turns an OOP rep r e s en t a t i on f o r
// ‘ ‘ passed 2 s ’ ’ term
return (new PassedTerm (new ConstTerm(2)))=> value ( i , j ) ;

}
virtual int delay ( int i unused , int j unused ) {

// s ince t h i s par t i s not used , we re turn t rue
return true ;

}
virtual int i n va r i an t ( int i , int j ) {

// re turns an OOP rep r e s en t a t i on f o r
// D term
return (new ValTerm(Vars : :D))=>value ( i , j ) ;

}
virtual int r e a c t i on ( int i , int j ) {

// re turns an OOP rep r e s en t a t i on f o r
// !D formula
return (new NegTerm(new ValTerm(Vars : :D)))=>value ( i , j ) ;

}
} ;
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Fig. 7. Waveform representation of variables values over time

To ensure further testing, it is necessary to add test vectors of values of the system control
variables against which we are going to check the requirements. Recall that a typical unit
test has the system under test (or its “stub” or “fake”, see [19]), expected values, and real
values. According to our goals, the system is represented by a black box and replaced by
the values of the control variables over time. The algorithm for checking the requirement
(Fig. 2) on the basis of a set of six-component requirements and passed values of variables
returns whether such a model of the system meets the specified requirements or not.

So, we need to pass a set of input and output vectors to the Havoc class:

havoc=>addTestVector ({
TestVec {{0 , 1 , 1 , 0 , 0 , 0} , Vars : :H} ,
TestVec {{0 , 0 , 1 , 1 , 1 , 0} , Vars : :D}

} ) ; //good
havoc=>addTestVector ({

TestVec {{1 , 1 , 0 , 0 , 0 , 0} , Vars : :H} ,
TestVec {{1 , 1 , 0 , 0 , 1 , 1} , Vars : :D}

} ) ; // v i o l a t e s some requirements

We have also to validate whether the size of passed vectors in a call is the same and
all variables of the system are specified. In Fig. 7, we show the graphical representation of
input test vector in the first addTestVector() call. According to this, hands appear first, after
which the disinfector turns on. After removing the hands it continues to work for some time
interval (two time steps in this case). Such test vectors can be obtained from real operating
devices using digital logic analyzers [20]. Note, if we set requirements in units of time, such
as seconds or milliseconds, we need to convert this time into timesteps by multiplying by
some constant, for simplicity in this example it is equal to 1.

In this way, we have showed how to turn the requirements validation into tests.

Although we are still on the initial path in creating test cases for this formalism, some
patterns for more complex control systems have already been discussed in a CSMML work-
shop publication [21].

4. Related work

With regard to modelling the behaviour of PLCs, in this area there are known works with the
use of automata [22]. Recently, temporal logics have become actively used [23, 24]. Some
examples of dynamic specifications of security properties are given in the work [25], but
they, as a rule, do not describe all six components, as we have done. Some issues related to
formulate properties related to clocks in a temporal logic are discussed in [26]. The paper [27]
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describes IEEE standard for a logical language, in which it is proposed to combine temporal
operators and regular expressions to specify the behaviour of signals.

As to the industrial application of the requirements testing methodology in the develop-
ment process, we can note here the behaviour-driven development (BDD) [28] methodology.
Currently, this is essentially the only specification approach that is used in software engineer-
ing and supported by many development tools [29]. At the same time, in a development
environment, specifications are launched in the tests window, we can see which specification
has passed and which has not, which forces developers to think within the framework of the
specifications [3]. We also strive for such a toolkit.

Conclusion and future work

While many research groups are developing formal verification methods to prove the correct
operation of various software systems with respect to their formal models, the industrial
applicability of such developments remains extremely low. In this work, we have developed
a logic-to-program transition: a framework for checking the behaviour of PLC programs by
unit testing using a logical formalism in the form of implemented EDTL-terms, and a custom
model-checking algorithm inside. We have implemented a demo system in C++ which is
available on GitHub [30].

In terms of further work, we are thinking about implementing support for such solutions
from a development environment and setting requirements as annotations in PLC-oriented
domain-specific languages [31].
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Аннотация

Тестирование — общепринятый метод контроля качества программного обеспечения, хо-
тя о полной надежности программ при таком подходе говорить не приходится. Тем не менее
этот метод очень хорошо интегрируется в среды разработки и применим при непрерывной
интеграции. В статье кратко рассмотрены шаблоны поведения, которые ранее разработаны
для логического описания операций программируемых логических контроллеров (ПЛК) с ис-
пользованием табличных свойств. Представлена схема ограниченного алгоритма проверки мо-
дели для контроля выполнимости этих свойств. Описано, как реализовать термы и формулы,
составляющие модели поведения программ ПЛК, на объектно-ориентированном языке про-
граммирования. После того как была проведена абстракция значений входов и выходов управ-
ляющих переменных системы на основе подхода “черного ящика”, показано, насколько удобно
описывать требования в форме наших экземпляров классов. Это описание позволяет интегри-
ровать процесс проверки требований ПЛК-программ в процесс модульного тестирования.

Ключевые слова: инженерия требований, модульное тестирование, управляющее
программное обеспечение, программируемый логический контроллер.
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