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Introduction

Currently, there is a wide variety of processors and computing devices with them in infor-
mation technologies. The main purpose of this work is to analyze the process of their devel-
opment and to identify the factors that can be used to predict and control the “evolution”
of processors. To achieve this, we propose to use the Computer Capacity characteristic. The
main concept of the Computer Capacity characteristic was originally proposed in 2012 [1].
There was shown that using this characteristic we can estimate the performance of any com-
puter theoretically, based solely on the description of its architecture. In other words, the
evaluation of the Computer Capacity does not require a working model of the investigated
computer. In the following papers [2, 3] it was shown that the presented characteristic is
consistent with the results of generally accepted benchmarks [4–7] for processors of different
types. In our works we investigated the majority of processors types, such as Intel, AMD,
ARM, MIPS and graphical processors as well as supercomputers built on them. The re-
sults of presented research have shown that the Computer Capacity characteristic is fairly
accurate estimation for the computers performance and, due to the possibility of theoreti-
cal evaluation, it can be used at the computer development design stage. In addition, the
characteristic was successfully applied to analyze the evolution of Intel processors [8]. In the

104



Information theory as a means of determining the main factors . . . 105

course of this study, an evolutionary series of Intel processors over the past 20 years was
considered and parameters which have a non-linear effect on processor performance were
identified. It was shown that in practice, these parameters were increased by manufacturers
when moving from the old processor to the new one. It should be noted that the Computer
Capacity allows not only to reveal such parameters, but also to quantify their influence.

In this paper, we show how the Computer Capacity allows us to identify the main fac-
tors that determine the trends in the development of processors architectures. The main
parameters that determine the development of architectures in the past and in the future
are highlighted. Moreover, the Computer Capacity allows not only to highlight these factors,
but also to quantify their impact on various architectures. All such factors can be divided
into:

� The factors whose influence is obvious, such as number of cores, clock frequency, etc.
� The factors whose influence is not so obvious are the number of threads (by threads

we mean the processor’s ability to execute independent instructions in parallel), the
sizes and the access times of different type of memory, and the set of instructions.

In this article, we focus on the factors of the second group and show how the future devel-
opment will depend on them.

The preliminary version of this paper was presented at 2019 XVI International Sympo-
sium “Problems of Redundancy in Information and Control Systems” (REDUNDANCY) [9].

1. The Computer Capacity

In this section we briefly describe the main definitions and a summary of the theory to
understand the concept of the Computer Capacity. The entire theoretical basis with the
description and proof of the theorems can be found in [1].

In general, a computer can be represented as the set of instructions 𝐼 and the memory 𝑀
to which these instructions address. An instruction 𝑧 ∈ 𝐼 is a combination of the instruction
name and the values of its operands. It means that, for example, instructions 𝑚𝑜𝑣 𝑎𝑥 𝑏𝑥
and 𝑚𝑜𝑣 𝑑𝑥 𝑎𝑥 are different and both are included in the set 𝐼. We consider computer task
𝑍 as the sequence of instructions 𝑍 = {𝑧1, 𝑧2, . . . , 𝑧𝑛} ∈ 𝐼. Let us note that if there is a
loop in a task which is repeated 𝑘 times the instructions from the body of this loop are
included 𝑘 times in 𝑍. We denote the execution time of instruction 𝑧 ∈ 𝐼 as 𝜏(𝑧) and the
execution time of computer task 𝑍 = {𝑧1, 𝑧2, . . . , 𝑧𝑛} as the sum of instructions execution

times 𝜏(𝑍) =
𝑛∑︀

𝑖=1

𝜏(𝑧𝑖).

Let us consider the number of all possible computer tasks which execution time equals to
𝑇 as 𝑁(𝑇 ) = |𝑍 : 𝜏(𝑍) = 𝑇 |. In [1] there was shown that this number grows exponentially
as the function of time. If there are 𝑁1 tasks with execution time 1 minute, there are 𝑁2

1

tasks with execution time 2 minutes, and correspondingly there are 𝑁𝑘 ≈ 𝑁𝑘
1 tasks which

are executed in 𝑘 minutes. In this way 𝑁(𝑇 ) ≈ 2𝐶𝑇 , where 𝐶 is the measure which we call
the Computer Capacity. So the Computer Capacity can be considered as follows:

𝐶(𝐼) = lim
𝑇→∞

log𝑁(𝑇 )

𝑇
. (1)

The main task here is how to estimate the value of 𝐶(𝐼) from (1). The direct calculation
of this limit is impossible, but there exist the method of calculation 𝐶(𝐼) in combinatorial
analysis. Here we consider the set of instructions 𝐼 as an alphabet and assume that all
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computer tasks 𝑍 are words over this alphabet. We will consider that all computer tasks
can be executed, i. e. all words over the alphabet 𝐼 are possible. This approach allows
us to estimate the upper bound of the Computer Capacity, because for any computer the
set of its permissible tasks is the subset of all possible tasks. In addition we assume that
all execution times are integers and their greatest common divisor is 1. We should clarify
that this assumption is valid for the majority of processors: instructions execution times are
mainly measured in processor cycles so they are integers; there is at least one instruction 𝑧
with 𝜏(𝑧) = 1, so the greatest common divisor is also equal 1. The way of estimation of the
capacity was suggested by C. Shannon [10], who showed that the capacity 𝐶(𝐼) is equal to
the logarithm of the largest real solution 𝑋0 of the following characteristic equation:

𝑋−𝜏(𝑧1) + 𝑋−𝜏(𝑧2) + · · · + 𝑋−𝜏(𝑧𝑛) = 1, (2)

where 𝑛 is the size of 𝐼. In [1] it was also proved that the Computer Capacity of multi-core
processing unit is defined as the sum of Computer Capacities of the cores. As shown in [1], if
a computer contains 𝑛 computational cores and their Computer Capacities are 𝐶1, 𝐶2, . . . ,
𝐶𝑛, respectively, so the Computer Capacity of such computer will be:

𝐶comp =
𝑛∑︁

𝑖=1

𝐶𝑖. (3)

If all cores are the same, i. e. 𝐶core = 𝐶1 = 𝐶2 = · · · = 𝐶𝑛, the formula can be written as
𝐶comp = 𝑛× 𝐶core.

Let us show how to calculate the Computer Capacity. Let us describe a simple computer
with 8 registers, 16 memory cells of level-1 cache and 256 memory cells of RAM. The list
of instructions for this computer consists of: 𝑚𝑜𝑣 𝑟 𝑟, 𝑚𝑜𝑣 𝑟 𝑚, 𝑎𝑑𝑑 𝑟 𝑟, 𝑚𝑢𝑙 𝑟 𝑟. Here,
operand 𝑟 means addressing the register and operand 𝑚 means addressing the memory cell.
The memory in the presented computer is arranged as follows: first, the instruction accesses
the cache memory and if the required memory cell is not found there, then it accesses the
RAM. Let us consider cache-memory access time as 1 clock cycle and the RAM access time
as 5 clock cycles. The execution times of instructions are 1, 1, 2 and 5 cycles in accordance
with the list presented above. As mentioned above, the instruction set includes not only
the name of the instruction, but also the value of its operands. Also we suppose that all
combinations of operands values are possible, so there are 8× 8 = 64 variants of instruction
𝑚𝑜𝑣 𝑟 𝑟. All of these variants are included in the equation (2) as term 64/𝑋1. Similarly
the instruction 𝑎𝑑𝑑 𝑟 𝑟 is included in the equation as 64/𝑋2 and the instruction 𝑚𝑢𝑙 𝑟 𝑟 as
64/𝑋5. Consider separately the instruction 𝑚𝑜𝑣 𝑟 𝑚. When adding this instruction there
are two cases: if instruction addresses cache memory and if the memory cell is not found
in cache and instruction addresses RAM memory. In the first case there are 8 × 16 = 128
different variants with the execution time equals to the sum of execution time of instruction
and the cache-memory access time 1 + 1 = 2, so we include this in equation (2) as term
128/𝑋2. In the second case the number of different variants of instruction is 8× 256 = 2048
and the execution time is the sum of instruction execution time, cache-memory access time
and RAM access time 1 + 1 + 5 = 7. So it included in the equation as 2048/𝑋7. Now we
can construct the equation (2) as:

64

𝑋1
+

64

𝑋2
+

64

𝑋5
+

128

𝑋2
+

2048

𝑋7
= 1.

After using the bisection method we get the value of largest real solution 𝑋0 = 66.871 and
𝐶(𝐼) = log2𝑋0 = 6.06 bits/clock.
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2. The analysis of the characteristic equation

In previous works, we showed that the results of applying the method described above
correlate well with the results of generally accepted benchmarks. In the appendix A, one can
see graphs with the results of the comparison and links to detailed descriptions of equations
for real processors of different architectures. In this section, we show how changes in certain
parameters of the processor architecture affect its performance, and how this relates to the
method of evaluating the Computer Capacity and, in particular, with the peculiarities of
constructing the characteristic equation.

In [8], evolutionary series of Intel processors were investigated, and as a result, it was
shown that during the development of Intel processors, manufacturers changed precisely
those of the processors architecture complex parameters that affected the Computer Capacity
the most. Such parameters are the number of internal registers of the processor, the number
of fast instructions and their types. In addition, it was possible to estimate the impact
of changes in these parameters quantitatively, and this assessment coincided with practical
data. For example, we showed that if the Wolfdale processor increases the number of internal
registers 10 times and adds 16 instructions with three register operands whose execution
time is 1 clock cycle, the growth of the Computer Capacity will be ∼47.5 %. And the next
processor in Intel’s evolutionary series, Ivy Bridge, was changed exactly the same way, the
number of registers increased to 160 from 16 and 10 new instructions of the specific type
were added (besides, major changes were made to the list of instructions as a whole). The
growth of the Computer Capacity was ∼53 %. It is interesting to note that changing other
parameters, such as cache and RAM and access time to this memory (of course, changing the
access time was considered in real terms, without bringing it to instant access, like registers),
had almost no influence on the value of the Computer Capacity. What is important is the
fact that, in practice, these values also remained unchanged.

3. Dead-end branch

Let us show in the example how the Computer Capacity could be useful for developers.
In this example, it can be argued that the processors development aims to increase the
Computer Capacity and if such an increase does not occur it may lead to a dead-end. The
processor Pentium III was presented in the beginning of 1999 and its successor Pentium IV
was presented in November of 2000. It is important to note that both processors based on
architectures with different principles. The main task for a new processor was to increase
the maximal clock rate.

We have estimated the values of the Computer Capacity for Pentium III and Pentium IV
processors and they were equal to 42.021 and 39.657 bits per clock cycle respectively. This
suggests that with equal clock rates the Pentium III processor can perform more tasks
than the Pentium IV processor. Moreover, we compared these two processors using the
values of Computer Capacity and some popular benchmarks (detailed results are described
in the appendix). The most interesting result in this comparison is that all the benchmarks
except one show the same results. Clock rate of the investigated Pentium IV processor two
times more than Pentium III, but the performance shown on benchmarks turned out to be
lower than this value. Another interesting fact is that the average rating of all presented
benchmarks close to our characteristic and it is another practical confirmation of its high
applicability. Based on this we can assume that the development went the wrong way.
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Nevertheless, Pentium IV processors developed and were released for several more years,
until they reached the peak of their performance. After that Intel Core architecture appeared,
which was based on the Pentium III, and currently, modern Intel processors to a certain
extent are the heirs of this architecture. Based on the above, we assume that the mentioned
Pentium IV processors can be considered as a dead-end branch of evolution. And we shown
how the appearance of such a branch could have been avoided by using in the development
the Computer Capacity characteristic which clearly showed the predominance of the first
processor over the second.

4. Factors affecting processors architectures

In this section, we highlight and consider the key factors affecting the development of pro-
cessors. Here we do not consider the factors whose impact on performance is obvious, and
focus on the description of factors with not so obvious effect. First we need to list these
factors:

� The factors that linearly affect the performance of processor. There is only one such
factor, the number of so-called threads. By thread we mean the property of a pipeline
to simultaneously execute several unrelated instructions. The number of threads is
the maximum number of instructions that the processor pipeline is capable to execute
at a time. And it is important to note that such threads use the same memory, i. e.
increasing the number of threads does not require an increase in memory.

� The factors with non-linear impact on the performance. These factors include the
amounts of different types of memory, the access times of these memory types and the
set of instructions. These factors have a tendency to rapid saturation, so it is necessary
to investigate, among other things, their growth potential.

� The factor of the little effect of slow instructions on the performance. The concept of
the Computer Capacity shows us that the more the instruction execution time, the less
its influence on the Computer Capacity, and this influence decreases exponentially. It is
important to note that this factor is directly related to the previous one and moreover,
follows from it.

4.1. Effect of using shared memory

Formula (3) allow us to understand how the number of cores affects the Computer Capacity.
But, in addition, the same formula is applicable to so-called threads. Let us consider this
characteristic in more detail. The processor pipeline consists of stages, each of which performs
its specific task (instructions decoder, renaming registers, execution blocks, etc.). All stages
are characterized by the number of instructions which they can execute in parallel (let us
call this the throughput of the stage). By the number of processor threads we will mean the
minimum value of throughput among all stages of the pipeline (obviously, it is impossible to
execute more instructions in parallel than on the stage with minimum throughput).

Threads are independent sequences of instructions (for example, if there is an instruction
which loads data from a memory cell into a register, and the second instruction which adds
this register to another one, they cannot be executed in parallel, and therefore they fall
into dependency chain) which can be executed in parallel, distribution of instructions on
chains of dependencies is made by the processor automatically. In fact, in the context of
the Computer Capacity, we can assume that these threads are independent processor cores
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with shared memory (such as registers, cache-memory and RAM). As mentioned earlier, we
estimate the upper bound of the Computer Capacity, and the set of all pairs of instructions
sequences which can be executed in parallel, obviously, is a subset of the set of all possible
pairs of instructions sequences. Increasing the number of threads is an extremely profitable
solution from the manufacturer’s point of view, since all threads inside the kernel use the
same registers and memory, but adding a thread affects the performance of the processor,
ideally, just like adding a new computational core.

To be more concrete let us look at Haswell processors pipeline. Work [11] provides a
detailed description of the pipeline of processors with Haswell microarchitecture. And it
is shown in this work that all blocks of the Haswell pipeline can execute simultaneously at
least 4 micro-operations. Some blocks can perform more than 4 micro-operations at the same
time, but others, limited to just four, will form the so-called “bottlenecks”. Therefore, it is
necessary to consider exactly 4 possible threads. Thus, ideally, any sequence of instructions
can be divided into 4 independent chains of instructions that will be executed simultaneously
and will work with same register file, which means that this processor have four independent
threads. Since we estimate the upper limit of Computer Capacity, it is possible to assume
that the processor always has 4 independent threads.

In part, the influence of this factor can be observed in graphics processors [12]. Despite
the fact that the number of computing cores is increased in graphics processors, these cores
are inherently close to the threads we described above. For example, the typical NVIDIA
GPU comprises of a set of Streaming Multiprocessors (SM) which share the level-2 cache
and DRAM. Each SM, in turn, comprises of several Stream Processor (SP) cores which
share the level-1 cache memory and the register file. Thus, we can match stream processors
and threads because of the fact that both of them, according to our theory, are reduced to
computational cores with shared fast memory. And it is interesting especially due to the
fact that modern GPUs consist of thousands of SPs.

4.2. Logarithmic saturation effect

The concept of the Computer Capacity allows us to understand why changing different
parameters affects the processors performance differently, and, moreover, quantify this effect.
First, note that the value of the Computer Capacity is the logarithm of the largest positive
root log𝑋0 of the equation (2). From mathematical analysis it is well known that when the
𝑥 parameter is changed, the function will change as follows ln(𝑥 + ∆𝑥) − ln𝑥 ∼ ∆𝑥/𝑥. For
example, the value of (2) solution for Intel Wolfdale processor equals 𝑋 = 13 007 226 and
its Computer Capacity value is 𝐶 = log2𝑋 = log2 13 007 226 ≈ 23.632. So when we increase
ten times the number of vector registers in this processor the value of solution becomes
𝑋 = 1 472 312 547 and the Computer Capacity is 𝐶 = log2 1 472 312 547 ≈ 30.455 which
fully corresponds to the theory described above. It is important to note that the effect of an
increase in the number of instructions or memory cells (including the number of registers)
also has a non-linear effect on the result of solving the equatio (2). All the above suggests
that the considered here non-obvious parameters have a clear tendency to saturation.

Since accessing registers does not imply a delay, an increase in their number will affect
almost all the terms, in the denominator of whose exponent is equal to 1 and 2, those that
most strongly influence the value of the Computer Capacity. And if in the instruction two
operands are registers, then with an increase in the number of registers 2 times, the numerator
will increase 4 times, and if there are three operands, then, respectively, 8 times. In [8], it
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was shown that with a tenfold increase in the number of integer and vector registers, the
value of the Computer Capacity of Intel processors increases by more than 30 %. The same
increase in the number of internal registers can be observed in the transition from Wolfdale
processors to Ivy Bridge processors. Unfortunately, to get a similar growth, developers need
to increase the current number of registers 10 times, but in the Skylake architecture there
are already 180 integer and 168 vector internal registers. It will be problematic to achieve
this with the existing element base, so we can talk about the approaching saturation.

One of the most difficult factors to evaluate is the number of instructions. There are
several ways, the development of new instructions with a large number of operands (as, for
example, it was done in Intel processors, when fast instructions with three register operands
were added), or the addition of new instructions of the existing type. For example, ARM
followed the path of a significant increase in the number of instructions, which can be seen
by comparing the architecture of the Cortex-M3 and Cortex-A57 processors. In [13] you can
find a detailed description of all architectures of ARM processors, and the link [14] contains
transformed instruction sets, on the basis of which we built the characteristic equation (2)
for these processors. In these converted lists (they are presented in a special format, where
each instruction is divided into terms depending on its execution type), the description of the
processor M3 contains 218 instructions, while the list for A57 consists of 1877 instructions.
If you look at the equations, you can see that the numerator in the first term (where the
degree is 1) in A57 equation (4) is three times greater than the numerator of the first term
in M3 equation (5). At the same time, the Computer Capacity of Cortex-M3 𝐶(𝐼𝑀3) =
25.2 bits/clock increased to 𝐶(𝐼𝐴57) = 29.79 bits/clock for Cortex-A57, i. e. only 18 %.
Nevertheless, the A57 processor significantly exceeds the performance of the M3, primarily
due to the fact that the number of threads was increased from 1 to 3, which allowed it to
get closer to modern Intel processors (comparing with Intel processors using benchmarks
and computing capacity can be found in the appendix). In addition, the development of
new instructions is a very time-consuming process, so in this direction we can also note the
approaching saturation.
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4.3. Low effect of slow instructions

As was shown, the amount of memory affects the value of the numerators in the addends,
which are formed by instructions working with memory. Let there be an instruction 𝑖𝑛𝑠𝑡𝑟𝑚
whose execution time is 1 clock cycle, while the computer has a 1-level cache memory with
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size 𝐿1, a cache memory of the 2nd level with size 𝐿2 and RAM with size 𝑀 memory cells.
The memory access time is denoted by 𝜏(𝐿1), 𝜏(𝐿2), 𝜏(𝑀), respectively. Then such an

instruction forms three components:
𝐿1

𝑋1+𝜏(𝐿1)
,

𝐿2

𝑋1+𝜏(𝐿1)+𝜏(𝐿2)
,

𝑀

𝑋1+𝜏(𝐿1)+𝜏(𝐿2)+𝜏(𝑀)
. If we

increase the cache size of the first level 2 times, the numerator in the first term becomes
2𝐿1/𝑋

1+𝜏(𝐿1). However, it is important to note here that, for example, in Intel processors,
the access time to the 1-level cache is 3–4 clocks, and therefore the denominator will have
a 4–5 exponent value. It was shown in [8] that the processor has a sufficient number of
instructions forming terms with exponent 1 or 2, and they have a much greater influence
on the solution of the equation (2), and, therefore, even a tenfold increase in 1-level cache
memory practically does not affect the final value of the Computer Capacity. In [8], we
showed that, for Intel processors, a change in the cache sizes of all levels, as well as a change
in the size of RAM, does not affect the Computer Capacity, and therefore does not make
much sense to the performance. Let us look for example at Ivy Bridge equation (6).nThe
solution of this equation 𝑋 ≈ 94 472 124.2 and 𝐶(𝐼) ≈ 26.493. And in this equation all
the instructions with memory operands have exponent value 5 and greater. But if we drop
all the instructions with memory operands from equation and try to evaluate the Computer
Capacity, the achieved result changes minimally. We do not claim that these instructions are
not needed, but this example shows that they have almost no effect on performance value.
And, as practice has shown, manufacturers really did not change the volume of these types
of memory, that is, saturation was achieved. Such a trend could have been significantly
reduced by the access time to this memory, however, unfortunately, the technologies used
in the investigated processors do not allow this to be done yet. We need to note that such
effect of slow instructions corresponds to logarithmic factor, and, in fact, well illustrates the
essence of the saturation effect.
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𝑋53
+

1195376640

𝑋54
+

629145600

𝑋55
+

629145601

𝑋56
+

2469396480

𝑋57
+

+
26374

𝑋59
+

629145600

𝑋60
+

629145600

𝑋61
+

1195376640

𝑋64
+

629145600

𝑋68
+

629145600

𝑋70
+

+
291164422930432

𝑋77
+

327439716712448

𝑋78
+

13029386735321088

𝑋79
+

137277462701670

𝑋80
+

+
1041529569280

𝑋81
+

231928233984

𝑋82
+

688912754278

𝑋83
+

652835028992

𝑋84
+

343597383680

𝑋85
+

+
343597383680

𝑋86
+

1348619730944

𝑋87
+

3145728

𝑋89
+

343597383680

𝑋90
+

343597383680

𝑋91
+
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+
652835037184

𝑋94
+

343597383680

𝑋98
+

343597383680

𝑋100
+

1

𝑋102
+

32768

𝑋106
+

1717986918

𝑋119
+

128

𝑋120
+

+
512

𝑋132
+

128

𝑋134
+

3932160

𝑋136
+

512

𝑋146
+

8192

𝑋147
+

32768

𝑋159
+

61440

𝑋162
+

2147483648

𝑋166
+

+
61440

𝑋176
+

3932160

𝑋189
+

33554432

𝑋192
+

33554432

𝑋206
+

2147483648

𝑋219
+

+
6553

𝑋247
+

26214

𝑋259
+

3145728

𝑋289
+

1717986918

𝑋319
= 1. (6)

Conclusion

We have shown how the concept of the Computer Capacity helps us to identify and, moreover,
to quantify the factors which influence the development of processors. In this paper, we have
identified the factors in computer development whose influence on the performance is not so
obvious. We divided these factors into two groups, with linear impact on the performance
and with the impact close to logarithmic. Most of the parameters of the second group have
already reached saturation, but among them are those who have not reached the growth
limit. These parameters differ for different processors, for example, ARM processors have
potential to grow the number of registers, while Intel processors are already close to the limit
of this value (it will be quite problematic to increase their number tenfold). In its turn, the
factors from the first group most evident in GPUs, but in fact they are used in all modern
processors. It is important to note that the change in the element base of the processors
also agrees well with the presented theory. For example, increasing the speed of access to
memory will affect the denominators in the characteristic equation and will undoubtedly
increase the Computer Capacity, and we have shown how to estimate this increase.

In previous years, manufacturers implicitly took these factors into account, but uncon-
sciously, based on experiments, benchmarks and their own intuition. It seems to us that
explicit consideration of the Computer Capacity and corresponding equation (2) as well as
described factors can significantly effect the development of processors. Here we can give
some conditional analogy with the “evolution” of optical devices. Obviously, the “evolution”
did not know what the focal length, refractive index and other characteristics of the optical
systems. In the animal world, vision organs developed unconsciously obeying the main optic
characteristics (such as the focal length of the lens, which is essentially the basis of the eye)
and the laws of optics, but after the advent of optical devices, their development took place
with an explicit account of these laws, which, it seems to us, has greatly accelerated this
process. We hope that the laws described above, as well as the concept of the Computer
Capacity in general, can accelerate the development of processors, as well as devices in which
they are used.

Acknowledgements. This research was funded by the Russian Foundation for Basic Re-
search (grant No. 18-29-03005).

Appendix A

In Fig. 1 we present the results of comparison Pentium III and Pentium IV processors using
Computer Capacity and the values of popular benchmarks [4, 15–17]. We compared Intel
Pentium IV Processor 2.60 GHz and Intel Pentium III 1.26 GHz-S and results presented in
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P4/P3
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Fig. 1. The results of Pentium III and Pentium IV comparison

T a b l e 1. The results of Pentium III and Pentium IV benchmarks and Computer Capacity
values

Frequ- Computer
SiSoft
Sandra

CINT
2000

CFP
2000Processor ency, Capacity, PassMark 3DMark PCMark

MHz Mbits/s
Pentium III 1266 53 200.28 270 1375 1922 4150 564 422
Pentium IV 2600 103 115.51 405 2652 3070 6955 1030 1052

relative form by dividing the value of Pentium IV (P4) result by Pentium III (P3) result.
The values of benchmarks and Computer Capacity presented in Table 1.

Appendix B

Here we present some results of comparing the Computer Capacity with benchmarks for
processors with different architectures. In Table 2 we present the raw values of benchmarks
and Computer Capacity. Considering the difference in units of measurement, it is not possible
to directly compare our characteristic with benchmarks, so a relative comparison has been
made. Fig. 2 shows how the performance of different Intel processors varies relatively to the
ARM Cortex-A57 processor. The comparison presented for single core of each processor,
the benchmarks results are taken from [18]. All the characteristic equations and calculation
programs can be found in [14].

T a b l e 2. The results of Intel processors and ARM Cortex-A57 benchmarks and Computer
Capacity values

Computer Frequ-
Processor kDhry Whet Execl kCopy kPipe Index Capacity, ency,

Mbits/s MHz
SkyLake 36 998 4572.5 5271.4 941.08 1819.1 1708.2 371 866.394 3200
Haswell 31 253 6588.3 3598.5 533.37 836.6 1093.7 428 682.474 3700

Ivy Bridge 30 114 3559.4 4196.9 684.29 1447.9 1324.4 286 128.538 2700
Cortex-A57 18 548 2058.5 1993.9 217.69 373.4 498.6 178 743.072 2000
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Аннотация

В работе исследуется процесс разработки компьютеров за последние десятилетия с целью
определения наиболее влияющих на него факторов. Описываются сами факторы, которые ис-
пользуются для предсказания направления будущих разработок. Для решения этой задачи
применяется концепция Вычислительной Способности, которая позволяет оценить производи-
тельность компьютеров теоретически, опираясь исключительно на описание их архитектуры.

Ключевые слова: Вычислительная Способность, архитектура процессоров, теория инфор-
мации, характеристики производительности процессоров, теория Шеннона.
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