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Nowadays, when formal fundamentals of program verification are well studied, re-
searchers concentrate their efforts on domain-specific methods for various classes of
programs. However, it seems that the field of scientific and engineering applications
still lacks attention. We would like to contribute to filling this gap through the devel-
opment of the Cloud Parallel Programming System (CPPS). The goal of this project is
to create a parallel programming system for Sisal programs. Deductive verification of
Sisal programs is one the of important subgoals. Since the Cloud Sisal language is built
on the basis of loop expressions, their axiomatic semantics is the basis of Hoare’s logic
for the Sisal language. The Cloud Sisal loop expressions, array construction expressions
and array element replacement expressions enable efficiently executable computational
or engineering mathematics programs. Thus, we believe that our axiomatic semantics
for these types of expressions may present an interesting result.
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Introduction

The parallel programming environment is the main goal of the CPPS project [1]. The Cloud
Sisal [2] serves as its input language.

From the very beginning of the CPPS project we consider deductive verification as the
main checking approach [3]. The first version of verification module actually analyses an
intermediate C representation, thus using the C-lightVer system [4] as a plugin. Apart from
unnecessary complication such scheme depends on maintenance of C code generation [5] and
maintenance of C-lightVer itself [6]. Now we develop a direct Cloud Sisal program verification
module.

Such development consists of several steps. First, we define a representative subset of
the Sisal together with its axiomatic semantics. This type of semantics is a set of axioms
and proof rules for the language constructions [7]. During the consequent development steps
we can add new constructions as well as corresponding axioms and rules. This process will
culminate in axiomatic semantics for the whole Cloud Sisal. We call Cloud-Sisal-kernel the
current subset of Cloud Sisal possessing axiomatic semantics.
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To define axiomatic semantics of Cloud-Sisal-kernel we apply the weakest precondition
approach [8] accompanied by specifications written in ACL2 (A Computational Logic for
Applicative Common Lisp) [9]. Some wp-subformulas come out from translation of Cloud
Sisal expressions into ACL2. An appropriate translator was introduced into CPPS. It is
defined recursively while translation of constants and variables serves as a recursion base.

The implicit parallelism in Cloud Sisal is supported by means of array element replace-
ment expressions, array construction expressions as well as the loop expressions [10]. The
headers of the loop expressions introduce triplets for the loop variables. In effect, they are
ranges of values assigned to variables when a loop executes. Moreover, the loop execution
produces sequence of values of reducible expression on each iteration. The value of the whole
loop expression results from application of special reductions to this sequence. Such loop
expressions allow us to implement effectively the linear algebra operations for example.

As a formal basis for the weakest preconditions of loop expressions and array element
replacement expressions we adopt another interesting approach — the symbolic method of
verification of definite iterations [11]. It introduces a special replacement operation (function
rep) symbolically representing application of a loop. The main advantage of rep is that it
makes loop invariants unnecessary [12|. Traditionally these invariants are problematic feature
of axiomatic semantics.

In this paper we represent axiomatic semantics of the expressions forms discussed above.

Let us note that natural operational semantics for Sisal was already developed quite
ago [13]. Such semantics is appropriate as a formal language definitions, but serves poorly for
verification. A good example of Hoare’s logic for a functional language can be found in [14].
However, the F™* program verification considered there is based on using loop invariants.
Let us consider the loop translation into recursive functions. The paper [15] describes a
quite promising approach to loop modelling inside theorem prover. On other hand, their
loops do not contain reducible expressions whereas Cloud Sisal does. Another interesting
solution of the invariant problem is based on lemma-functions [16]. It has been implemented
in verification system AstraVer [17]. This method uses a special form of specifications which
may be considered as a disadvantage in comparison with our approach.

1. The loop and array expressions as a base of the Cloud Sisal

Unlike the majority of functional languages, the Cloud Sisal is based rather on loops than
recursion [10]. Of course, recursion is still supported, but CPPS is based on effective imple-
mentation of array manipulations and the loop expressions. Their form is the main reason
of using loop expressions, since it provides convenient ways of vectorization. Here we briefly
overview them.

Triplet is a structure of the form [lower boundary .. upper boundary .. step|. It defines
arithmetical progression of elements between given boundaries with fixed step.

Range is a structure based on Cartesian product of triplets:

vary in triplet, cross vars in triplety cross ...var,_, in triplet,,_, cross triplet,,

where vary, vary, ..., var,_1, var, are variables and triplety, triplets, . .., triplet,,_, triplet,
are triplets.
The array element replacement expression looks like:

source,array[varl in triplet; cross vary in triplety cross ...
var,_y in triplet,_ cross var, in triplet, = expr]
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where source_array is the original array name, vary, ..., var, are variables, triplet, ...,
triplet, are triplets, expr is the replacing expression (possibly depending on vy ,). The
Cartesian product of triplets forms the range. Internally, this range is a set of array index
tuples with lexical order. This array element replacement expression changes the original
array so that each element indexed by range is replaced by the value of expr.

The array construction expression is defined as follows:

array|0 .. highty, O .. hights, ..., O .. hight,_1, O .. hight,] of
[vary in triplet; cross vary in triplety cross ...
var,_1 in triplet,,_, cross var, in triplet, = expr;; else = eacprg},
where vary, ..., var, are variables, triplety, ..., triplet, are triplets, expr; is a replacing

expression which may depend on these variables, whereas default expression exprs does not
depend on them.

Conceptually such expression creates n-dimensional array with dimensions corresponding
to highty, ..., hight,. If the index of an array element belongs to the Cartesian product
of triplets, then the element value is initialized by expr;. Otherwise, its value is defined by
exprs.

Consider the loop expression controlled by a range:

for vary in triplet; cross vary in triplety cross. ..
var,_1 in triplet,_, cross wvar, in triplet, do
returns reduction expr end for

where var; and triplet; are variables and triplets correspondingly, expr is a reducible expres-
sion which can depend on these variables, reduction is a reduction. This loop iterates over
Cartesian product of triplets. The value of the loop after certain iteration is the value of
reduction applied to the value of expr on this iteration and to the loop value after previous
iteration. Such loop form effectively implements associative and commutative operations
over tuples and matrices.

The set of useful reductions includes:

e array of expr takes a reducible sequence of values of expr during loop iterations and
forms the array;
value of expr returns the last value of a reducible sequence of values of expr;
sum of expr calculates the sum of a reducible sequence of values of expr;
product of expr calculates the product;
as the name suggests, greatest of expr returns the biggest value in a sequence;
while least of expr returns the lowest one.

2. Symbolic method of verification of definite iterations

We adapt the method which was described in [11]. It allows us to eliminate the loop invariants
when iterations over altered data structures are considered.

First, we define a general notion of structures of finite length. Let memb(S) denote the
multiset of elements of a structure S and |memb(S)| is its power. For structure S we define
the following operators:

o empty(S) = true iff [memb(S)| = 0.

e choo(S) returns an arbitrary element of memb(S), if —empty(S5).
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e rest(S) = S', where S’ is a structure of the type of S and memb(S’) = memb(S) \
{choo(S)}, if mempty(S).
Obviously sets, tuples, lists, strings, arrays, files and trees are typical examples of such
data structures [6].
Finally, we define a loop statement of the form

for x in S do v := body(v,x) end

where S is a data structure, x is a variable of type “element of S”, v is a tuple of the loop
variables excluding x, body represents some calculation which does not change x itself and also
such calculation is finite for every x € memb(.S). This requirement of termination results in
some restrictions on that vague “some calculation”. Namely, the loop body can only contain
assignments, conditional statements (possibly nested) and loop break statements. We call
such loop for a definite iteration.

The operational semantics of definite iterations is based on recursive definition. Let v
denote the initial values of variables from v. In order to express the work of a definite
iteration we introduce the replacement operation rep(v, S, body) such that

o if empty(S), then rep(vy, S, body) = v,

o if mempty(S), then rep(vy, S, body) = body(rep(vy, rest(S), body), choo(S)).

It still may be unclear what is the meaning of such non-deterministic (note operation
choo) expression of loops over data structures. The detailed discussion can be found in [11].
It is enough to say that definite iterations relieve us from the loop invariants which are
traditionally considered as a great obstacle.

3. Modelling the Cloud Sisal constructs in ACL2

The input language of ACL2 [9] is an applicative and strictly functional dialect of Common
Lisp. Since Cloud Sisal is also functional, we could translate every expression from Cloud
Sisal to semantically equivalent composition of ACL2 instructions. Let us take a tour over
some of them.

It is quite natural to model Cloud Sisal by lists, this moment does not need detailed
explanations. However, let us note two operations over indexed sequences we will use often
in the following sections. If i is an index and [ is a list, then (nth i [) returns the value of
the i-th element in [. If expr is an expression in ACL2, then (update-nth i expr 1) is a new
list coinciding with [ everywhere except i-th element which is equal to expr. And, of course,
multidimensional arrays are modelled by nested lists.

To define new types we use special constructs provided by ACL2 library fty. If e is a
new type, we generate corresponding constructor (macro make-e¢). Let p be a field of the
structure r of type e. Construction make simply enumerates field names and expressions.
The field name is preceded by colon and succeeded by expression. Obviously, the fields of a
structure created by make are initialized by values of corresponding expressions. If p is the
singular field in a structure of type e, then (make-e :p expr) is a new structure r of type e
and r.p = expr.

The macro bx is appropriate to model instruction composition. In fact, it extends the
ACL2 macro letx which is convenient to define a nested let. Consider the common form of
letx:

(let* ((vary termy) ... (var, termy,)) body),
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where var; are variables (not necessarily distinct), body and term; are ACL2 expressions.
This form is equivalent to the following:

(let ((vary termy)) ... (let ((var, term,)) body) ...).

Thus, association of variables val; with the values of corresponding expressions term, is
carried out consequently. The value of expressions becomes the value of the whole construc-
tion. Every pair (var; term;) is called binding and every var; is called a local variable of
letx.

Generally, construction bx takes the form:

(b* (list-of-bindings).(list-o f-result- forms))

where (list-of-result-forms) is a list of ACL2 expressions. The value of b* is defined by
the value of the last expression in (list-of-result- forms). By analogy with let* the binding
operations are executed consequently. In general case construction binding is of the form

({(binder-form) [{expression)])

where (binder-form) is a construction b*-binder and (expression) is an ACL2 expression.
Since b* extends let™, then association of a variable with an expression value is a special case
of binding. In this case the variable is local in b*.

So, a variable is one of possible forms of construction (binder-form). Another possible
form looks like (when condition), where condition is a Boolean expression in ACL2. Let the
block b* contain a binding ((when condition) expression). Whenever condition is true, all
successive binding operations are rejected and the value of expression becomes value of bx.

We define ACL2 function triplet to model Cloud Sisal triplets. It takes lower boundary
low, upper boundary hight and the step step as arguments and returns the list of values of
arithmetical progression defined by triplet. If low = hight then triplet returns one-element
list (low). Being applied to an empty triplet, the function triplet returns the empty list nil.

We also define ACL2 functions partition and cartesian_product to model Sisal ranges
and Cartesian products of triplets. Let us note that Sisal range generated by a singular
triplet is modelled by application of function partition to this triplet. The idea is to split a
set into single-element subsets. So partition takes a list as an argument and returns the list
of one-element lists.

When several triplets generate a range we use function cartesian_product. It takes two
lists as arguments. The returning value is the list of pairs where the first elements in pairs are
from the first list and the second elements are from the second list. The order is as follows:
we take the first element of the first list and couple it with all elements of the second list;
then the second element of the first list is united with all elements of the second list; and so
on. Thus, the function cartesian_product forms the list of tuples of triplet values in lexical
order.

To model the array element replacement we generate function update_elements_id (id is
unique identifier). As the original Cloud Sisal expression does, this function creates a new
array so that elements indexed by a range are replaced by the value of expression depending
on indices. The body of update_elements_id is produced when we translate the replacing
expression itself into ACL2. Let us note that this expression may contain variables from
the current scope or the context variables. In other words, it may depend on variables of
enclosing expressions let or on values of the function arguments. It means we have to use
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the context variables inside update_elements_id body. By the way, ACL2 does not support
lambda-functions of closures. So we need to use additional function arguments to address
the context variables.

The structure type environment_id is generated to model the context. The fields of
this structure correspond to the context variables. To simplify construction of objects of
type environment_id we generate definitions of functions create_environment_id. A more
detailed discussion of the context definition in ACL2 can be found in [6].

The array construction expression is modelled in ACL2 in two steps: first, we create
an array with default element values; then this array is being processed by array element
replacement with indices from Cartesian product of triplets.

We defined the ACL2 function create_array to construct that initial array. The first
argument of create_array is the length, the second one is initializing value (one and the same
for all elements). Function returns the list of the given length with all elements initialized
by the given value. Multiple applications of create_array can build up a multidimensional
array.

After the initial (multidimensional) array is produced by create_array we generate the
function update_elements_identifier to replace elements whose indices are given by Carte-
sian product of triplets. This function goes through elements of Cartesian product, evaluates
the dependent replacement expression and use it to update elements of initial array.

Since we define axiomatic semantics of the loop expressions by means of symbolic re-
placement, we introduce ACL2 functions rep_id, where ¢d is unique identifier. Let us note
that in our case iteration goes over the list of tuples from Cartesian product of triplets. We
use the standard Lisp functions car and cdr as functions choo and rest correspondingly. The
body of rep_id is produced when we translate the loop expression into ACL2. The context
problem for loop expressions and array constructors is resolved in the same manner as we
did for array element replacements.

4. Translating reductions into ACL2

Let us consider the function reduct2acl2 implementing translation of Cloud Sisal reductions
into ACL2. The arguments are as follows: reduction name, reducible expression on the
current iteration (expri) and the loop value just after previous iteration (expry). This
function returns ACL2 string modelling reduction application to expr; and exprs.

We also use auxiliary function reduction_init which takes reduction name and returns
the default reduction value. Together these two functions generate body of the replacement
operation rep.

Let us define reduct2acl2 and reduction_init for all reduction forms:

e [f reduction is array of, then

reduct2acl2(array of, expry, expry) = (cons expry exprs),
reduction_init(array of) = nil.

We model Cloud Sisal arrays via ACL2 lists. Since the default value of a reduction is
empty list, then initial value of exprs is also empty list. The successive application of
cons to reducible sequence adds new elements to the head of the list.

e If reduction is value of, then

reduct2acl2(value of, expry, exprs) = expry.
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This reduction returns the first argument, so such modelling always results in the last
value of reducible sequence.
The default value of such reduction depends on type of expr;. It guarantees that for
all cases (the default value case corresponds to recursion base) function rep returns
values of the same type.

o If reduction is sum of expr, then

reduct2acl2(sum of, expry, expry) = (+ expry exprs),
reduction_init(sum of) = 0.

The default value of reduction is 0, so zero is also initial value of exprs.
e If reduction is product of expr, then

reduct2acl2(productof, expry, expry) = (x expry expry),
reduction_init(product of) = 1.

The idea is analogous to reduction sum of.
o If reduction is greatest of expr, then

reduct2acl2(greatest of, expry, expry) = (max expry exprs).

The default value of this reduction depends on the lowest integer of specific bit repre-
sentation. The compiler of CPPS defines such value.
o If reduction is least of expr, then

reduct2acl2(least of, expry, expry) = (min expry exprs).

5. Translating Cloud Sisal expressions into ACL2

We implement the recursive function sisal2acl2 to translate Cloud Sisal expressions into
ACL2.

We start with auxiliary function context_variables. 1t takes a Cloud Sisal expressions and
returns the set of variable names that occur in expression. Its implementation uses some
data provided by compiler of CPPS system. Another auxiliary function context2vector
lexically orders this name set transforming it into the tuple. The function context_length
evaluates the length of the name tuple. Finally, the function context2string produces the
string representation of the name tuple in the form of variable names separated by commas,
thus serving as a part of ACL2 code generator.

It should be noted that the syntax of a singular triplet is equal to the syntax of the range
based on a singular triplet. So we also defined function range2acl2 to translate Cloud Sisal
ranges into ACL2.

Here we describe definition of translator sisal2acl2 for several classes of Cloud-Sisal-
kernel expressions.

5.1. Literals and variables

Here we consider several base forms.
If base_expr is either false or true then
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sisal2acl2(base_expr) = boolean

where boolean is nil or t correspondingly.
If base_expr is a decimal integer or a variable then

sisal2acl2(base_expr) = base_expr.

5.2. Conditional expression
If of expr = if cond then p_branch else n_branch end if then

sisal2acl2(if _expr) = (if sisal2acl2(cond) sisal2acl2(p_branch) sisal2acl2(n_branch)).

5.3. Binary operations

If binary_expr = argl f arg2 and f € {4+, —, %, /,<,>,<=,>=,=,&,|,” }, then
sisal2acl2(binary_expr) = (' sisal_to_acl2(argl) sisal_to_acl2(arg2))

where f’ is a string from {+, —,*, floor, <,>, <=, >=, equal,and,or,xor} depending on
original f.

5.4. Array element access

If index_expr = alindexy, indexs, . .., index,], where a is an n-dimensional array, indexy, . . .,
index, are Cloud Sisal expressions, then

sisal2acl2(index_expr) =
(nth sisal2acl2(index,) (nth sisal2acl2(index, 1)

(nth sisal2acl2(indexy) (nth sisal2acl2(indexy) a) ... )).

5.5. Triplets
If triplet_expr is a triplet of the form [low .. hight .. step], then

sisal2acl2(triplet expr) = (triplet sisal2acl2(low) sisal2acl2(hight) sisal2acl2(step)).

5.6. Ranges

If range_expr = triplet; cross triplety cross ... cross triplet,, then definition is by
induction.
If n =1 then

range2acl2(range_expr) = (partition sisal2acl2(triplet,))
If n > 1 then

range2acl2(range_expr) =
(cartesian_product sisal2acl2(triplet;)
(cartesian_product sisal2acl2(triplets)

(cartesian_product sisal2acl2(triplet, 1) sisal2acl2(triplety)) ... )).
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5.7. An algorithm to generate definition of the structure containing the context
variables

Let context stand for a set of the context variable names. The algorithm takes it as a
parameter and performs two actions. First, it creates a structure of type environment_id
with fields corresponding to variables. Second, it defines function create_environment_id,
which creates an object of type environment_id with corresponding field values.

The generated code of create_environment_id looks like:

(defun create_environment _id
(context2vector(context),
context2vector(context)y

context2vector (CO’I’Lt@l’t) context_length(context2vector(context))—1

context2vector (COnte-Tt) context_length(context2vector(context)) )
(make-environment __id

:context2vector(context),
context2vector(context);

:context2vector(context)y
context2vector(context)s

:context2vector (Cont€$t>contezt,length(canteactQUectO’r(conte;tt) )—1
context2vector (contemt) context_length(context2vector(context))—1

:context2vector (Context)conteazt,length(contexthector(conte:r:t))
context2vector (COTLtGZIIt) context_length(context2vector(context)) ) ) .

By definition the function body is an application of macro make-environment_id. As
you can see, the context variable names turn into field names.

5.8. Function rep generation algorithm

Parameters of this algorithm are as follows: 1) vary, ..., var, are variables over a range;
2) expr is an expression which may depend on these variables; 3) reduction is the sort of
applied reduction. We define the set context as

context = context_variables(expr) \ {vary, ..., var,}.

This subtraction provides the set of context variables without variables over range.
The generated code of function rep_id looks like

(de fun rep_id (range_tuples environment)
(bx ((when (endp range_tuples)) reduction_init(reduction))
(tuple (car range_tuples))
(vary (car tuple))
(vary (car (cdr tuple)))

‘(1'1'arn_1 (car (edr ... (cdr tuple) ...)))
(vary, (car (cdr (cdr ... (cdr tuple) ...))))
(context2vector(context);
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environment.context2vector(context);)
(context2vector(context),
environment.context2vector(context)s)

(CO’I’Lt@iEtQUGCtO’I" (Context)conteazt,length(contethvector(context))7 1
environment.context2vector(context) context length(context2vector(contest))—1)

(contea:t2vect0r (Conte'xt)contezt,length(conte:thUector(contezt))
environment.context2vector(context)conteat length(context2vector(context))))
reduct2acl2(reduction,
sisal2acl2(expr),
(rep-id (cdr range_tuples))))).

The binding of variable names vary, ..., var, within block bx allows us to use the outcome
of translation of expr into Cloud Sisal without variable renaming. Moreover, the block bx
binds the context variables to the fields of an object containing the context itself. Here, such
an object denoted as environment is created when the function create_environment_id is
applied to the context variables.

If the list of index tuples of the array indices_tuples is empty, then function rep_id
results in the default reduction value obtained by application of reduction_init to reduction
name. Otherwise, rep_id iterates over the range tuple list using recursive calls, and for every
range tuple it returns application of reduction modelling function to expr and to recursive
call which corresponds to reduction value after previous iterations. The name of reduction
modelling function results from application of reduct2acl2 to reduction name.

5.9. Array element replacement definition

Parameters of this algorithm are the same as in subsection [5.8| except for reduction. The
context is also defined by analogy. The modelling function is

(defun update_elements_id (indices_tuples environment source_array)
(b* ((when (endp indices_tuples)) source_array)
(indices (car indices_tuples))
(vary (car indices))
(vary (car (cdr indices)))

(var,_1 (car (cdr ... (cdr indices) ...)))
(vary, (car (cdr (cdr ... (cdr indices) ...))))
(context2vector(context);
environment.context2vector(context);)
(context2vector(context),
environment.context2vector(context)s)

(CO?’Lt@.%tQ”U@CtOT (Context>conte:pt,length(contethvector(conte:rt)) -1
environment.context2vector(context) context length(contest2vector(contewt))—1)

(ContextzveCtor(Context)context,length(contea:tQUector(conte:tt))
environment.context2vector(context)conteat length(contewt2vector(context))) )
(update-nth var
(update-nth vars
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(update-nth var, 4
(update-nth var, sisal2acl2(expr)
(nth var,_;

(nth vars
(nth vary
(update_elements_id (cdr indices_tuples) source_array))) ...)))).

There is a certain similarity to definition of rep_id. Since we model multidimensional arrays
by ACL2 lists, some overhead is inevitable. It takes form of composed functions of list
element access (nth) and array update update-nth.

5.10. The loop expression

Let loop_expr stands for expression of the form

for vary in triplet; cross vary in triplety cross...
var,_1 in triplet,_, cross wvar, in triplet, do
returns reduction expr end for

where vary, ..., var, are variables, triplety, ..., triplet, are triplets, expr is an expression
which may depend on those variables and reduction is a reduction. In this case

sisal2acl2(loop_expr) =

(rep-id
(reverse range2acl2(triplet; cross triplets cross ... triplet,_i cross triplet,))
(create_environment_id
context2string(
context2vector(
context_variables(expr) \ {vary, varq, ... var,_1, vary})))),

where id is unique identifier. The function rep_id is governed by order in the list of Cartesian
product of triplets. The function reverse is used to guarantee that the order of reductions
is correct. The set subtraction operation removes the variables over range. The string repre-
sentations of variables become arguments of create_environment_id. The algorithm which
generates definition of create_environment_id has been already described in Section [5.7]

5.11. The array element replacement expression

Let array_rep_expr be an array element replacement expression of the form

source_array[vary in triplet; cross vary in triplety cross ...
var,_1 in triplet,_, cross var, in triplet, := expr|,

defined in Section[1l Then

sisal2acl2(array_rep_expr) =

(update_elements_id
(reverse range2acl2(triplet; cross triplets cross ... triplet, i cross triplet,))
(create_environment_id
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context2string(
context2vector(
context_variables(expr) \ {vary, varg, ... var,_1, var,})))
source_array),

where id is unique identifier. The arguments of update_elements_id are similar to those in
Section [H.10l

5.12. Array construction expression

Let array_construct_expr be an expression of the form

array|0 .. highty, O .. hights, ..., O .. hight,_1, O .. hight,] of
[vary in triplet; cross vary in triplety cross ...
var,_1 in triplet,,_, cross var, in triplet, = expri; else = exprg],
where vary, ..., var, are variables, triplet,, ..., triplet, are triplets, expr; is a replacing

expression possibly depending on these variables, whereas exprs is a default expression which
does not depend on them. In this case

sisal_to_acl2(array_construct_expr) =
(update_elements_id

(reverse range2acl2(triplet, cross triplety cross ... triplet, 1 cross triplet,))
(create_environment_id
context2string(
context2vector(
context_variables(expry) \ {vary, vary, ... var,_1, vary})))

(create_array sisal2acl2(hight,)
(create_array sisal2acl2(hights)

(create_array sisal2acl2(hight, 1)
(create_array sisal2acl2(hight,) sisal2acl2(exprs))) ... ))),

where id is a unique identifier. The arguments of update_elements_id resemble those of the
function rep_id from Section [5.10]

6. Axiomatic semantics of Cloud-Sisal-kernel

We base our semantic research on Hoare’s logic [7] with classical notions of Hoare triple
{P} S {Q} and of partial correctness of a program S w.r.t. its precondition P and post-
condition @ [§].

The axiomatic semantics may differ depending on the derivation order. The Cloud Sisal
itself and chosen symbolic method propose that backward strategy is more appropriate.
Thus, the weakest precondition calculus is used. Let us note that for a given pair of program
S and postcondition @) the weakest precondition wp(S, @) has two properties

e the triple {wp(S,Q)} S {Q} is true;
e for any formula P the truth of the triple { P} S {Q} implies P — wp(S, Q).
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So, the verification is based on the fact that {P} S {Q} is true iff P — wp(S, Q) is true.

To make wp-calculus of the loop expressions practical we need a small trick. Namely,
we fix the term result in our specification language. It will correspond to the values of
computable expressions.

With such fixed term axiomatic semantics for the loop expressions is straightforward.
Let R(y < exp) denote substitution of exp for all free occurrences of variable y in R. Then

wp(loop_expr Q) = Q(result + sisal2acl2(loop_expr)).

The weakest precondition for other expressions of Cloud-Sisal-kernel is defined analogously.

7. Study case

As an illustration consider the matrix elements summation program:

function sum_matrix_elements (a: array of (array of integer),
n, m: integer returns integer)

for i in 0..n-1..1 cross j in 0..m-1..1 do

returns sum of al[i, jl end for end function

It takes an integer matrix a with n rows and m columns.
We use the following ACL2 formula as a precondition:

(and (integerp n) (integerp m) (< 0 n) (< 0 m) (integer-matrixp n m a))

Predicate integerp checks whether its argument is an integer. Predicate integer-matrixp
does analogous checks for matrices. In ACL2 an integer matrix is implemented by a list of
n lists, each of them is an integer list of length m. Formally, this predicate is defined by a
set of domain specific lemmas.

Postcondition is quite short:

(= result (sum-matrix nm a))

Here, sum-matrix is another function defined in ACL2 by lemmas.
When we translate loop expression under discussion into ACL2, it is modelled by appli-
cation of function rep_1:

(rep_1 (reverse (cartesian_product (triplet O (- n 1) 1) (triplet O (- m 1) 1)))
(create_environment_1 a))

and the definitions of rep_1 and create_environment_1 are also generated automatically:

(defun create_environment_1(a)
(make-environment_1 :a a))

(defun rep_1(range_tuples environment)
(b* ((when (endp range_tuples) 0)
(tuple (car range_tuples))
(i (car tuple))
(j (car (cdr tuple)))
(a environment.a))
(+ (nth i (nth j a)) (rep_1 (cdr range_tuples) environment))))
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Let us note that if we omit the array range variables then context variable set of expression
ali, 7] consists of a itself. Also function rep_1 corresponds to actual evaluation of the loop.
Thus it defines an operational semantics.

To derive the weakest precondition for sum-matriz-elements and its postcondition every
occurrence of the term result in the postcondition is replaced by translation outcome. This
process leads to the following:

(= (rep_1 (reverse (cartesian_product (triplet O (- n 1) 1) (triplet 0 (- m 1) 1)))
(create_environment_1 a))
(sum-matrix n m a))

Hence, the function sum-matriz-elements is partially correct w.r.t. its annotations when
the following formula is true:
(implies
(and (integerp n) (integerp m) (< 0 n) (< 0 m) (integer-matrixp n m a))
(= (rep_1 (reverse (cartesian_product (triplet O (- n 1) 1) (triplet 0 (- m 1) 1)))
(create_environment_1 a))
(sum-matrix nm a)))

The antecedent of this implication is precondition of sum-matriz-elements. The weakest
precondition for sum-matriz-elements and its postcondition form the consequent of this
implication. ACL2 successfully proved it by induction on n and m. During the proof we
also use lemmas about functions integer-matrizp and sum-matriz. Thus, function sum-
matriz-elements corresponds to its specifications.

Conclusion

Here we discussed the current situation in CPPS project. We have considered axiomatic
semantics of Cloud-Sisal-kernel. Our semantics is based on translation from Cloud Sisal
into ACL2. As a result we construct axioms and rules for several forms of expressions of
Cloud Sisal. Such expressions enable efficiently executable computational or engineering
mathematics programs [10]. Since they are the core of Cloud Sisal, the subset Cloud-Sisal-
kernel is quite representative.

An interesting side effect also occurs. Since functions rep and update_elements_id in
fact define evaluation of corresponding expressions, we simultaneously devised operational
semantics.

As for the future work, we may mention one limitation of Cloud-Sisal-kernel. At the
moment we do not support the while section of loop expressions. This construction allows
us to terminate a loop when certain condition is satisfied. Obviously, axioms and rules for
general loop expressions will be an important step towards full coverage of Cloud Sisal.
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AnHOTaIMA

B nacrosiiiiee BpeMsi, KOT/1a, TEOPETUIECKUE OCHOBBI BEPUQMUKAIIUN TPOTPAMM XOPOIITO U3YYeHbI,
MCCHETOBATENN KOHIIEHTPUPYIOT CBOYM YCUJIHS HA TPEJIMETHO-OPUEHTHPOBAHHBIX METOIAX s pas-
JIMIHBIX KJIACCOB TPOrpaMM. WHCTPYMEHTBI, KOTOPhIe OHU BHIOHPAIOT, BAPHUPYIOTCS OT TTPOBEPKH
MOJIesIel JI7I CeTEBBIX TPOTOKOMOB J0 UCUNUCTEHNH yKazaTeaeit 1t pparMeHTOB siIpa OMepaIinoH-
HoO#t cucTembl. OQHAKO, TTOX0XKE, 9TO 00IACTH HAYYIHBIX W WHKEHEPHBIX TPOIPAMM BCE eIle YieJs-
eTCsT HeJOCTATOTHO BHUMaHUs. Mbl XoTean 6B BHECTH CBOW BKJIaJ B 3alOJHEHNE 9TOTO mpobena ¢
momorbio paspaborku cucrembl CPPS. Ilesbio 31010 poekTa SIBASIETCS CO3MaHIEe CUCTEMBI [TapaJi-
JIEJILHOTO TIporpaMMupoBanus g Sisal-tporpamm. lenykrusHas Bepuduxaiys Sisal-mporpamm
SABJISIETCS. OLHONM M3 BaxkHbIX nojneseii. Tak kak s3bik Cloud-Sisal nocrpoed Ha ocHOBE LMKJIM-
YeCKUX BBIPAXKEHUIl, WX aKCHOMATHIECKad CEeMaHTUKa sBJIseTca 0azoi jorukm Xoapa s d3bIKa
Sisal. Hukyimndgeckue poipaxkenus sizbika Cloud-Sisal, BeipakeHusi KOHCTPyUPOBAHUSI MACCUBOB U
BBIPAYKEHUS 3aMEIIEHUsT 3JIEMEHTOB MACCHBOB TTO3BOJISIOT Pean30BaTh 3(hPHEKTUBHO UCIOJHIAEMBIE
TPOTPAMMBI BBIYUCTUTENBHON WM WHIKEHEPHOH MaTeMaTHku. TakuMm ob6pa3oM, MBI MTOJTATAEM, UTO
HaIlla, AaKCHOMATHYECKAsT CEMAHTUKA JJTsT 9TUX TUTIOB BRIPAYKEHUN MOYKET TPEICTABIATH WHTEPECHBIH
pesymbrat. [Iprpoga Takux mporpaMM MO3BOJISIET JOCTHIhL HE TOJIBKO 3(DDEKTUBHOTO UCTIOTHEHH T,
HO ¥ YIIPOCTUTH Bepudukanuio. JleficTBUTebHO, TPOrPAMMBI BEITHCTUTEIBHON MATEMATHKNA YACTO
OCHOBaHBI Ha UTEPAIHAX HaJ CTPYKTYpaAMH JAHHBIX. CHUMBONMAYIECKUH MeTO ] BepUpUKAINA (DUHUT-
HBIX UTepaIuil siBJIgeTCsT B 9TON CUTYAIMK OU€Hb MOJIE3HBIM, TAK KAK OH JIMMUHUPYET Te mpobieM-
Hble WHBAPUAHTHI MHK/Ia, KOTOPBIE BCeraa MermaoT (hopMaabHoil Bepudukanuu. Bee mpeapiaytme
HCCIe0BAHUsT 9TOT0 MeTo/1a Obimn Teopernueckumu, CPPS npencrasiser coboit mepBy O HTOMBITKY
HCTIOMB30BAHUS €r0 Ha, TPAKTHKE.

Karwuesne caosa: Cloud-Sisal, neaykrusnas sepuduranus, Cloud-Sisal-kernel, C-lightVer, 06-
JIadHasl CUCTeMa TTapaJieibHOTo nmporpamvupoBanus, ACL2, wHBapuanT IHUKJIA.
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