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1. Introduction

We know from Trione [2, p. 11|, that the generalized function R (z) defined by (2.1) is an
elementary solution of the operator [JF, that is O"RE = § where (¥ is the ultra-hyperbolic

operator iterated k-times, defined by
p+q
92
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the point = = (21, za, ..., x,) € R™ and ¢ is the Dirac-delta distribution.
In this paper, we developed the operator of (1.1) to be
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We study the elementary solution of the equation
OF OF u(z) = 6. (1.4)
We can obtain
u(@) = Sy, () * Ty () (1.5)

as an elementary solution of (1.2) where the symbol * denote the convolution S (z) and
RE (x) are defined by (2.3) and (2.4) respectively with a = 2k and x = (21,29, ...,7,) € R".
In particular if £ = 1, p = 1 with 2y = t(time), ¢; and ¢y are velocity then (1.3) becomes
the elementary solution of the Elastic Waves of fourth order. Moreover,in the case of Elastic

0
equilibium <_u = O) we obtain the elementary solution of the equation A*u(x) = § where

ot
A?F is the Laplace operator iterated 2k defined by
& o 8\
AQk — .. _ 1.
(axg Tt axg) ’ (16)

where z = (z9, 23, ..., 2,) € R L.

2. Preliminaries

Definition 2.1. Let © = (21, %3, ..., x,) be a point of the n-dimensional Euclidean Space R".
Denote by v = 27 + 22 + -+ + 3;227 — ;1;'127+1 — = xgﬂ, p+ q = n, the nondegenerated quadratic
form. By I we designate the interior of the forward cone, I'y = {z € R" : 1 > 0 and v > 0}

and by ', designate its closure. For any complex number o define

,U(a—n)/2 ; r
Ri(z) =3 K@) &7 (2.1)
0 for z ¢T,
where K, («) is given by the formula
2 — 11—
(n=1)/2p (%) T ( > O‘) ()
K,(a) = : (2.2)

r 24+a—p r pP—«
2 2
The function R (z) was introduced by Nozaki [3, p. 72|. It is well known that RZ(x) is an
ordinary function if Re(«) > n and is distribution of « if Re(a) < n.

Let suppRY (z) C Ty, where suppR% (x) denote the support of R (z).
From (2.1) we redefine

V(a—n)/2
SH(w)={ K@) T+ (2.3)
0 for = ¢TIy,
W(afn)/Q
TH(z)={ Ko@) o *el+ (2.4)

0 for v ¢ T,
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— 22( 2 2 2 2 2 2 — 22( 2 2 2
W2here V2— cl(x1+x22—|—-~-+xp)—xp+1—xp+2—---—xp+q and W = c5(vf + a5+ -+ +x5) —
Tppg = Tpio =" = Tpig C1 and cy are positive constants.

By putting p =1 in (2.2), (2.3) and (2.4) and using the Legendre’s duplication of T'(2).
1
['(2z) = 22210~ 120 (2)I(2 + 5) then the formulae (2.3) and (2.4) reduced to

V(a—n)/Q
M) = Hia) o TE (2.5)
0 for v ¢ 'y,
W(a—n)/Q
Ni(@)=§ TH@) T (2.
0 for v ¢TI,
here V =c22? —a2 — 22— — 22 W =c2a? — 22— 22— — 22 and H,(a) = 7(n2)/22071 x
— 2
I % , M (z) and NI (z) are, precisely, the hyperbolic Kernel of Marcel Riesz.
Lemma 2.1. Given the equations
k
Oc,u(z) =46, (2.7)
and
OF u(z) =4, (2.8)

where OF and OF are defined by (1.2) and (1.3) respectively, © = (x1,2a,...,x,) € R" and
§ is the Dirac-delta distribution. Then u(z) = Si(z) and u(z) = TH(x) are the elementary
solution of (2.7) and (2.8) respectively, where Sit (x) and TJ(x) are defined by (2.3) and (2.4)
respectively, with o = 2k.

Proof. See |2, p. 11].

Lemma 2.2. (The convolution SH (x) « TH(x)).

The function SH(x) and TH (x) are tempered distributions. The convolution SH (z)+ TH ()

exists and also a tempered distribution.
Proof. See [4].

3. Main Results

Theorem. Given the equation
OF OF u(z) =4, (3.1)

where 0% and OF are defined by (1.2) and (1.3) respectively, & is the Dirac-delta distribution,
r = (x1,29,...x,) € R". Then
u(a) = Si(x) * Raj () (3.2)

is an elementary solution of (3.1), where SH(x) and R (x) are defined by (2.1) and (2.3)
respectively, with o = 2k. Moreover, in particular if p =1 with x1 = t, and ¢; # ¢y then (3.2)
becomes u(x) = M (x) * NH(x) is an elementary solution of Elastic Wave equation

102 &) (12 &)
RN o Y AN N _§
i ot? & O} 30t £ O} uz) =0,
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where M (z) and NI (z) are defined by (2.5) and (2.6) respectively. If elastic equilibrium

(% = 0) then (3.1) becomes A* u(z) = §, where A* is defined by (1.6) and we obtain

u(r) = R, (x), where v = (xq, 23, ...,x,) € RT is an elementary solution of such equation and
R¢(z) defined by
|x|a7n
R = 3.3

0= 33

(3
r(%32)

Proof. Convolving both sides of (3.1) by S (z) we obtain

where |x| = (22 + 23 + -+ 22)V2, W, (a) = , « s a complex parameter.

Soi(x) * O, O, u(z) = Syi(w) * 8 = Sz(w),

O, Sai(2) * Og,u(w) = 6% Og,u(x) = Sai(x),
or % u(x) = S3i (z) by Lemma 2.1. Convolving both sides of the equation again by Ty (z) and
Lemma 2.1 we obtain u(z) = TH (z) * Sii (z). Since T (x) * SH (v) = S (z) « T (x) exists by
Lemma 2.2.

Thus u(x) = SH (z) * TH(z) is an elementary solution of (3.1). In particular, if p = 1 with
x1 =t and ¢; # ¢y the function S¥(x) reduces to M (z) defined by (2.5) and T (z) reduces
to NH(x) defined by (2.6). Thus the equation (3.2) becomes u(x) = M (z) * NI (z) as the
elementary solution of the Elastic Wave. Moreover if elastic equilibrium <_u = 0 ) we obtain

ot
u(r) = RS, (7) is an elementary solution of the Laplace equation A% u(z) = 6, see [1, p. 31,
Lemma 2.4], where RS, (z) is defined by (3.3) and A% is defined by (1.6).
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