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The fidelity of a model relies both on its accuracy to predict the physical phe-
nomena and its capability to estimate unknown parameters using observations. This
article focuses on this second aspect by analyzing the reliability of two mathematical
models proposed in the literature for the simulation of heat losses through building
walls. The first one, named DF, is the classical heat diffusion equation combined with
the DuFort–Frankel numerical scheme. The second is the so-called RC lumped
approach, based on a simple ordinary differential equation to compute the tempera-
ture within the wall. The reliability is evaluated following a two stages method. First,
samples of observations are generated using a pseudo-spectral numerical model for the
heat diffusion equation with known input parameters. The results are then modified
by adding a noise to simulate experimental measurements. Then, for each sample of
observation, the parameter estimation problem is solved using one of the two math-
ematical models. The reliability is assessed based on the accuracy of the approach
to recover the unknown parameter. Three case studies are considered for the estima-
tion of (i) the heat capacity, (ii) the thermal conductivity or (iii) the heat transfer
coefficient at the interface between the wall and the ambient air. For all cases, the
DF mathematical model has a very satisfactory reliability to estimate the unknown
parameters without any bias. However, the RC model lacks of fidelity and reliability.
The error on the estimated parameter can reach 40% for the heat capacity, 80% for
the thermal conductivity and 450% for the heat transfer coefficient.
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Introduction

Within the environmental context, several works have been carried out to propose tools to
assess the building energy performance. Among all physical phenomena involved, these tools
are based on models to assess the heat losses through building walls.
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As illustrated in Fig. 1, several steps can be identified in the construction of a model
for the prediction of heat losses through walls. First, the model is based on a qualitative
representation of the real physical world. One can easily observe that in winter time, the
heat flux is directed from the inside to the outside part of the wall. Then, this knowledge
is translated into the so-called mathematical model1. The mathematical model includes
the governing equations of the physical phenomena. The third step aims at building a
numerical model2 to obtain a solution of the governing equations. This model can employ
numerical3 or analytical, i.e. approximate or exact, methods with defined discretisation of
the continuous variables. Last, once the model is built, the numerical model can be developed
using computational technologies so that predictions and analysis of the physical phenomena
can be carried out. An alternative application is to estimate uncertain parameters entering
in the definition of the model using experimental observations. Fig. 1 also illustrates the
approximations introduced modeling procedure. Namely, some physical approximations are
added when defining the mathematical model. Then, some numerical approximations appear
when building the computational tool to solve the problem.

Undeniably, the main issue is to build efficient models. The word efficiency can desig-
nate several aspects. One important is to validate the numerical model by comparison to
reference solutions. This work intends to check the numerical approximations introduced
when obtaining the solution of the governing equations. A second aspect is to evaluate the
fidelity or reliability of the model by comparison with experimental observations. To be
more precise, the objective is to assess the physical approximations when translating the
qualitative representation into the mathematical model. So the reliability of a model is its
capacity to predict the physical phenomena. It is also the model’s ability to estimate un-
known parameters using experimental observations. Other criteria of efficiency can be based
on computational costs, ease to implement, etc.

Nowadays, in building physics, two main mathematical models are employed in the lit-
erature to predict the heat transfer through building walls. The first one is the most known
mathematical model, based on the heat diffusion equation proposed in the early work of
J. Fourier in 1822 in Théorie analytique de la chaleur [1]. During the second world war,
when no powerful computers were available, an analogical model was proposed to solve the
heat diffusion equation as illustrated in Fig. 2. This ingenuous approach enabled fast com-
putations to predict the heat transfer through walls caused by fire. Interested readers are
invited to consult [2–4]. Then, with the hardware evolution, numerical models have been
proposed. Today, they are based on numerical approaches such as finite-differences or finite-
volumes as surveyed in [5]. The second mathematical model is the so-called RC approach.
A lumped model for the heat diffusion equation is proposed based on ordinary differential
equation [6–8].

Despite the simplicity of these models, several works can be referenced in the literature
using these two mathematical models to estimate uncertain parameters in building walls as
for instance [9, 10] for the RC model or [11] for the heat transfer one. However, to our
knowledge, no works have been proposed to evaluate the reliability of the two mathemat-
ical models. A complementary work [12] investigates the fidelity of the two approaches to
predict the physical phenomena with comparison to experimental observations. As a second
step, this work intends to appraise their reliability to estimate unknown parameter from

1The word “mathematical” is used because the mathematical language is used to write the model.
2The word “numerical” is adopted in the sense of computational.
3Here, the word “numerical” stands for the type of method used to compute the solution.
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Fig. 1. Procedure of building models to represent the heat losses through building walls
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Fig. 2. Illustration of the analogy between the physical problem of heat transfer through a wall
with the electrical model (a) and picture of the analogical model developed (b). Both illustrations
are taken from [4] with the authorization of the Journal of Research of NIST

experimental observations through the resolution of parameter estimation problem [13, 14].
The article is organized as follows. First section presents the two direct mathematical models.
Then, the procedure to evaluate the reliability for the estimation of unknown parameters
is described. Particularly, samples of experimental observations are first generated using
a pseudo-spectral numerical model for the heat equation. Then, for each generated sample,
the parameter estimation problem is solved using two mathematical models. The metrics
for evaluating the reliability are also proposed in Section 2. In Section 3, three case studies
are considered for the estimation of (i) the heat capacity, (ii) the thermal conductivity and
(iii) the heat transfer coefficient at the interface between the material and the ambient air.
In last Section 4, some general remarks are synthesized.

1. Direct mathematical models

In this section, two models used to represent the physical phenomena of heat transfer in the
wall are described. Each model includes the mathematical model translating the physical
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phenomena using a mathematical formalism. The numerical model denotes the numerical
method used to compute the solution of the mathematical model on a given space-time mesh.
In the context of parameter estimation problem, the mathematical model is also called the
direct model. First, the heat diffusion model using the DuFort–Frankel numerical scheme
is presented. This approach is denoted by DF in the whole manuscript. Then, the lumped
RC model is described.

1.1. Heat diffusion with DuFort–Frankel numerical model

1.1.1. Heat diffusion in building material

The field of interest is the temperature 𝑇 [K] evolving in a building wall material illustrated
in Fig. 3. The space domain is defined by 𝑥 ∈

[︀
0 , 𝐿

]︀
, where 𝐿 [m] is the length of the wall.

The time domain is defined by 𝑡 ∈
[︀

0 , 𝑡 f
]︀
. Thus, the function 𝑇 is defined by:

𝑇 :
[︀

0 , 𝐿
]︀
×
[︀

0 , 𝑡 f
]︀
−→ R> 0 ,(︀

𝑥 , 𝑡
)︀
↦−→ 𝑇 (𝑥 , 𝑡 ) .

The temperature verifies the diffusion equation:

𝑐 · 𝜕𝑇
𝜕𝑡

= 𝑘 · 𝜕
2𝑇

𝜕𝑥 2
, (1)

where 𝑘
[︀

W / (m ·K)
]︀

is the thermal conductivity and 𝑐
[︀

J / (kg ·K)
]︀

is the volumetric
heat capacity.

At the boundaries, in the ambient air, time dependent temperatures 𝑇∞ , 𝐿 (− ) and
𝑇∞ , 𝑅 (− ) force the heat diffusion into the wall:

𝑇∞ , 𝐿 ,𝑅 :
[︀

0 , 𝑡 f
]︀
−→ R> 0 ,

𝑡 ↦−→ 𝑇∞ , 𝐿 ,𝑅

(︀
𝑡
)︀
.

Robin-type boundary conditions are assumed at the interface between ambient air and the
wall:

𝑘 · 𝜕𝑇
𝜕𝑛

= ℎ𝐿 ·
(︀
𝑇 − 𝑇∞ , 𝐿

)︀
, 𝑥 = 0 , 𝑡 > 0 , (2a)

𝑘 · 𝜕𝑇
𝜕𝑛

= ℎ𝑅 ·
(︀
𝑇 − 𝑇∞ , 𝑅

)︀
, 𝑥 = 𝐿 , 𝑡 > 0 , (2b)

Fig. 3. Illustration of the physical domain



8 J. Berger, D. Dutykh

where ℎ
[︀

W / (m 2 ·K)
]︀

is the surface heat transfer coefficient. The derivative is defined as
𝜕𝑦

𝜕𝑛

def
:=

𝜕𝑦

𝜕𝑥
𝑛 with 𝑛 = ± 1, depending on the considered boundary

{︀
0 , 𝐿

}︀
.

A uniform temperature is assumed in the material as initial condition:

𝑇 = 𝑇 0 , 𝑡 = 0

with 𝑇 0 (− ) a constant function defined by:

𝑇 0 :
[︀

0 , 𝐿
]︀
−→ R> 0 ,

𝑥 ↦−→ 𝑇 0 .

1.1.2. The DuFort–Frankel numerical model

Dimensionless formulation. As discussed and thoroughly motivated in [15–17], it is of
capital importance to obtain a dimensionless problem before elaborating a numerical model.
For this, dimensionless fields are defined:

𝑢
def
:=

𝑇

𝑇 ref

, 𝑢∞ , 𝐿
def
:=

𝑇∞ , 𝐿

𝑇 ref

, 𝑢∞ , 𝑅
def
:=

𝑇∞ , 𝑅

𝑇 ref

, 𝑢 0
def
:=

𝑇 0

𝑇 ref

,

where 𝑇 ref is a user-defined reference temperature. The space and time coordinates are also
transformed into dimensionless variables:

𝑡 ⋆
def
:=

𝑡

𝑡 ref
, 𝑥 ⋆ def

:=
𝑥

𝐿
.

The thermophysical properties and the heat transfer coefficients are re-scaled using reference
values:

𝑘 ⋆ def
:=

𝑘

𝑘 ref

, 𝑐 ⋆
def
:=

𝑐

𝑐 ref
, ℎ ⋆

𝐿

def
:=

ℎ𝐿

ℎ ref

, ℎ ⋆
𝑅

def
:=

ℎ𝑅

ℎ ref

.

Last, dimensionless numbers are defined as the Fourier and Biot ones:

Fo
def
:=

𝑡 ref · 𝑘 ref

𝑐 ref · 𝐿 2
, Bi

def
:=

ℎ ref · 𝐿
𝑘 ref

.

The former quantifies the magnitude of diffusion inside the material while the second evalu-
ates the importance of heat penetration from the ambient air to the solid part. With these
transformations, the dimensionless problem is written as:

𝑐 ⋆ · 𝜕𝑢
𝜕𝑡 ⋆

= Fo · 𝑘 ⋆ · 𝜕
2𝑢

𝜕𝑥 ⋆ 2
(3)

with the Robin-type boundary condition:

𝑘 ⋆ · 𝜕𝑢
𝜕𝑛

= Bi · ℎ ⋆
𝐿 ·
(︀
𝑢− 𝑢∞ , 𝐿

)︀
, 𝑥 ⋆ = 0 , 𝑡 ⋆ > 0, (4)

𝑘 ⋆ · 𝜕𝑢
𝜕𝑛

= −Bi · ℎ ⋆
𝑅 ·
(︀
𝑢− 𝑢∞ , 𝑅

)︀
, 𝑥 ⋆ = 1 , 𝑡 ⋆ > 0 . (5)
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The initial condition is expressed as:

𝑢
(︀
𝑥 ⋆, 0

)︀
= 𝑢 0 .

To have a well-posed problem, initial and boundary conditions must be compatible. The
dimensionless formulation is written in a way to highlight the parameter 𝑘 ⋆, 𝑐 ⋆ and ℎ ⋆

that will be estimated by solving the identification problem. In this work, the numerical
values of the reference parameters are 𝑡 ref = 3600 s, 𝑇 ref = 273.15 K, 𝑘 ref = 1 W / (m ·K),
𝑐 ref = 1.5 MJ / (m 3 ·K) and ℎ ref = 5 W / (m 2 ·K).

Numerical model. A uniform discretisation is considered for space and time intervals.
The discretisation parameters are denoted using ∆𝑡 ⋆ for the time and ∆𝑥 ⋆ for the space.

The discrete values of the function 𝑢 (𝑥 ⋆, 𝑡 ⋆ ) are denoted by 𝑢𝑛
𝑗

def
:= 𝑢 (𝑥 𝑗 , 𝑡

𝑛 ) with 𝑗 =
1 , . . . , 𝑁𝑥 and 𝑛 = 1 , . . . , 𝑁 𝑡. It is important to note that the numerical model is built for
the dimensionless problem using the MatlabTMenvironment.

The so-called DuFort–Frankel scheme is used. It is an explicit numerical scheme
with an increased stability domain. Interested readers are invited to consult [18] for the
original work, [19, 20] for the results on the stability analysis and [20, 21] for further details
and its applications for heat and moisture transfer in building porous materials. Since a
complete description is provided in [21], only the main steps are recalled here. The idea of

the approach is to replace the term 𝑢𝑛
𝑗 ←−

1

2

(︀
𝑢𝑛+1

𝑗 + 𝑢𝑛−1
𝑗

)︀
in the forward in time central

scheme to obtain the following fully discrete dynamical system:

𝑢𝑛+1
𝑗 =

1

1 + 𝜆
·

(︃
𝜆 · 𝑢𝑛

𝑗+1 + 𝜆 · 𝑢𝑛
𝑗−1 +

(︀
1− 𝜆

)︀
· 𝑢𝑛−1

𝑗

)︃
, (6)

with the coefficient:

𝜆
def
:= 2 · Fo · 𝑘

⋆

𝑐 ⋆
· ∆𝑡 ⋆(︀

∆𝑥 ⋆
)︀ 2 .

It is important to remind that the boundary conditions are discretized using second
order approach for the space derivatives to maintain the properties of stability [19].

Fig. 4. Illustration of the DuFort–Frankel space-time stencil
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So, the boundary conditions (4) are discretized according to:

𝑘 ⋆

2 ·∆𝑥 ⋆
·
(︀
−𝑢𝑛

3 + 4 · 𝑢𝑛
2 − 3 · 𝑢𝑛

1

)︀
= Bi𝐿 · ℎ ⋆

𝐿 ·
(︀
𝑢𝑛

1 − 𝑢∞ , 𝐿

)︀
,

𝑘 ⋆

2 ·∆𝑥 ⋆
·
(︀
𝑢𝑛

𝑁 𝑥
− 4 · 𝑢𝑛

𝑁 𝑥−1 + 3 · 𝑢𝑛
𝑁 𝑥−2

)︀
= −Bi𝑅 · ℎ ⋆

𝑅 ·
(︀
𝑢𝑛

𝑁 𝑥
− 𝑢∞ , 𝑅

)︀
.

The stencil of the DuFort–Frankel scheme is illustrated in Fig. 4.

1.2. The lumped RC model

The second model is the RC one. Interested readers are invited to consult [6, 22] for more
details on this approach and [10, 23, 24] for examples of recent applications in building
physics.

1.2.1. Formulation

In the lumped RC approach, three temperature points are defined in the material as illus-
trated in Fig. 5. Two temperatures are defined at the boundaries of the material:

𝑇 1 :
[︀

0 , 𝑡 f
]︀
−→ R> 0 ,

𝑡 ↦−→ 𝑇 ( 0 , 𝑡 )

and

𝑇 3 :
[︀

0 , 𝑡 f
]︀
−→ R> 0 ,

𝑡 ↦−→ 𝑇 ( 1 , 𝑡 ) .

The temperature 𝑇 2 is defined inside the cell 𝒞 is ℓ
def
:=

𝐿

2
. According to the mean value

theorem, this temperature is not necessarily in the middle of the wall. The formulation of
the model is:

ℓ · 𝑐 · d𝑇 2

d𝑡
= 𝑘 ·

(︃
𝜕𝑇

𝜕𝑥

⃒⃒⃒⃒
𝑥= 3·𝐿

4

−𝜕𝑇

𝜕𝑥

⃒⃒⃒⃒
𝑥=𝐿

4

)︃
.

Fig. 5. Illustration of the three temperature defined in the lumped RC model



Evaluation of the reliability of building energy performance models ... 11

Using Fourier’s law to express the flux at the boundary of the cell, one obtains:

ℓ 2 · 𝑐 · d𝑇 2

d𝑡
= 𝑘 ·

(︂
𝑇 3 − 2 · 𝑇 2 + 𝑇 1

)︂
. (7)

It can be remarked that by integration, the partial differential heat diffusion equation is
transformed into a simple ordinary equation in the RC lumped approach. Using a first order
in space central discretisation for the boundary conditions given by equation (2), we obtain:

𝑘

ℓ
·
(︀
𝑇 2 − 𝑇 1

)︀
= ℎ𝐿 ·

(︀
𝑇 1 − 𝑇∞ , 𝐿

)︀
, (8a)

𝑘

ℓ
·
(︀
𝑇 3 − 𝑇 2

)︀
= −ℎ𝑅 ·

(︀
𝑇 3 − 𝑇∞ , 𝑅

)︀
. (8b)

In the literature, this model is also referenced as R2C approach due to the straightforward
electric analogy.

1.2.2. Numerical model

The algorithm of the lumped RC model is developed in the MatlabTM environment. As per-
formed in many works of literature [6–8], the numerical model is not written in a dimension-
less form. The physical dimensional variables are used. As for the previous numerical model,

the discrete values of 𝑇 ( 𝑡 ) are denoted using 𝑇 𝑛
𝑗

def
:= 𝑇 𝑗 ( 𝑡𝑛 ), 𝑗 ∈

{︀
1 , 2 , 3

}︀
. The time

discretisation parameter is designated by ∆𝑡. The ordinary differential Equation (7) is ap-
proximated using an explicit Euler time scheme:

𝑇 𝑛+1
2 = 𝑇 𝑛

2 +
𝑘

𝑐 · ℓ 2
·∆𝑡 ·

(︂
𝑇 𝑛

3 − 2 · 𝑇 𝑛
2 + 𝑇 𝑛

1

)︂
.

This choice of time discretisation scheme imposes a stability condition and the choice of the
time step ∆𝑡 :

∆𝑡 6
1

2
· ℓ

2 · 𝑐
𝑘

.

To compute the temperatures 𝑇 1 and 𝑇 3 at the boundaries, the following equations are used:(︀
ℎ𝐿 +

𝑘

ℓ

)︀
· 𝑇 𝑛+1

1 − 𝑘

ℓ
· 𝑇 𝑛+1

2 = ℎ𝐿 · 𝑇∞ , 𝐿 ,(︀
ℎ𝑅 +

𝑘

ℓ

)︀
· 𝑇 𝑛+1

3 − 𝑘

ℓ
· 𝑇 𝑛+1

2 = ℎ𝑅 · 𝑇∞ , 𝑅 .

In the end, the numerical model is written in a matrix form to compute the vector

T𝑛+1 def
:=
[︀
𝑇 𝑛+1

1 , 𝑇 𝑛+1
2 , 𝑇 𝑛+1

3

]︀𝑇
,

using:

A ·T𝑛+1 = B ·T𝑛 + Q , (9)
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where

A
def
:=

⎡⎢⎢⎢⎣
ℎ𝐿 +

𝑘

𝑒
−𝑘

𝑒
0

0 1 0

0 −𝑘

𝑒
ℎ𝑅 +

𝑘

𝑒

⎤⎥⎥⎥⎦ , B
def
:=

⎡⎢⎢⎣
0 0 0

𝑘 ·∆𝑡

𝑐 · 𝑒 2
1− 2 · 𝑘 ·∆𝑡

𝑐 · 𝑒 2

𝑘 ·∆𝑡

𝑐 · 𝑒 2

0 0 0

⎤⎥⎥⎦ ,

Q
def
:=

⎡⎣ℎ𝐿 · 𝑇 𝑛+1
∞ , 𝐿

0
ℎ𝑅 · 𝑇 𝑛+1

∞ , 𝑅

⎤⎦ .

It can be noticed that the lumped RC model only requires the solution of three equations,
while the complete model based on the heat diffusion equation needs 𝑁𝑥 calculations.

2. Evaluating the reliability for the estimation
of unknown parameter

The procedure to evaluate the reliability of the mathematical model for the estimation of
unknown parameters is illustrated in Fig. 6. It is divided into two steps. The first one aims
at generating experimental observations using a numerical model different from the DF or
the RC ones. A total of 𝑁 𝑠 samples of observations are generated in silico. Then, for each
sample, the parameter estimation problem is solved using the direct model based on the DF
or the RC approaches. The suitable metrics to evaluate the reliability of each direct model
for the estimation of unknown parameters are detailed in Section 2.3.

Before detailing the two steps, some preliminary definitions are provided. First, the
singleton set Ω 𝑝 of the unique unknown parameter 𝑝 is defined by:

Ω 𝑝 =
{︀
𝑝
}︀
, 𝑝 ∈ R .

The distinction is done between the real parameter 𝑝 r used to generate the experimental
observations. The identification problem aims to determine an estimate of parameter 𝑝∘.
If the model is reliable, it is expected that the difference between the real and estimated

Fig. 6. Illustration of the procedure to evaluate the reliability of the mathematical model for the
estimation of unknown parameters
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parameter to be as small as possible. An initial guess on the unknown parameter is required
in the parameter estimation procedure, denoted 𝑝 apr using the subscript apr for the a priori
estimation.

To prove the theoretical identifiability of the unknown parameter 𝑝 the Structurally
Globally Identifiable (SGI) property [25] is recalled. A parameter 𝑝 defined in the model 𝑢
is SGI if the following condition is satisfied:

∀
(︀
𝑝 , 𝑝 ′ )︀ ∈ Ω 𝑝 × Ω 𝑝 , 𝑢

(︀
𝑝
)︀
≡ 𝑢

(︀
𝑝 ′ )︀ =⇒ 𝑝 ≡ 𝑝 ′ .

In other words, the mapping of 𝑢 is injective with respect to the parameter 𝑝.
We also define the ordered set of observation times:

Ω 𝑡 =
(︀
𝑡 ⋆1 , . . . , 𝑡

⋆
𝑘

)︀
⊂
[︀

0 , 𝑡 ⋆f
]︀𝐾

, 𝑘 = 1 , . . . , 𝐾 .

From a practical point of view, the set Ω 𝑡 corresponds to the time grid where the experimental
measurements are acquired. The point of coordinate 𝑥 ⋆

obs ∈
[︀

0 , 1
]︀

corresponds to the place
where the sensor is located in the material to acquire the observation. The singleton set of
sensor position is denoted by:

Ω𝑥 =
{︀
𝑥 ⋆

𝑜𝑏𝑠

}︀
⊂
[︀

0 , 1
]︀
, 𝑥 ⋆

𝑜𝑏𝑠 ∈
[︀

0 , 1
]︀
.

In this work, only one sensor is settled so Ω𝑥 ⊂ R.

2.1. Step 1: generation of experimental observations

The observations are generated with a numerical model based on pseudo-spectral approach
using the MatlabTM open source toolbox Chebfun [26]. The model employs the function
pde23t of Chebfun to compute a numerical reference solution 𝑢 ref of the partial derivative
equation (3) based on the Chebyshev polynomials representation in space. The reference
solution is computed using the real value of the parameter 𝑝 r. It is directly obtained for the
sensor location 𝑥 obs and the observation time set Ω 𝑡. Then, to obtain the 𝐾 observations
𝑢 obs, a noise is added to simulate the experimental uncertainties due to the sensor design
and location:

𝑢 obs : Ω𝑥 × Ω 𝑡 × Ω 𝑝 −→ Ω obs ,(︀
𝑥 ⋆

obs , 𝑡
⋆
𝑘 , 𝑝 r

)︀
↦−→ 𝑢 ref

(︀
𝑥 ⋆

obs , 𝑡
⋆
𝑘

)︀
+ 𝜂

(︀
𝜔
)︀
,

where 𝜂 ∼ 𝒩
(︀

0 , 𝜎 obs

)︀
is a noise following a Gauß normal distribution with zero mean

and standard deviation 𝜎 obs. The co-domain of 𝑢 obs verifies Ω obs ⊂ R𝐾 .

2.2. Step 2: solving the parameter estimation

The parameter estimation problem is solved using the (numerically generated) experimental
observations and the solution of the direct model 𝑢dir. The latter is defined by:

𝑢dir : Ω𝑥 × Ω 𝑡 × Ω 𝑝 −→ Ωdir ,(︀
𝑥 ⋆

obs , 𝑡
⋆
𝑘 , 𝑝

)︀
↦−→ 𝑢dir

(︀
𝑥 ⋆

obs , 𝑡
⋆
𝑘 , 𝑝

)︀
.

It is computed using the DF model (described in Section 1.1) or the RC one (described
in Section 1.2). The domain and the co-domain of 𝑢dir verifies dom 𝑢 obs − dom 𝑢dir and
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Ωdir ⊂ R𝐾 , respectively. The identification problem aims at computing the estimated
parameter 𝑝 ∘ verifying:

𝑝 ∘
def
:= arg min

Ω 𝑝

𝐽 , (10)

where 𝐽 is the so-called cost function defined by the least square estimator:

𝐽 : Ω dir × Ω obs −→ R> 0 , (11)(︀
𝑢dir , 𝑢 obs

)︀
↦−→

⃒⃒⃒⃒
𝑢dir − 𝑢 obs

⃒⃒⃒⃒
2
,

where
⃒⃒⃒⃒
∙
⃒⃒⃒⃒

2
is the least square estimator ℒ 2 defined by:

⃒⃒⃒⃒
∙
⃒⃒⃒⃒

2
: 𝑦 ↦−→ 1

𝑡 f
·
∫︁
Ω 𝑡

(︀
𝑦 (𝑡)

)︀2
d𝑡 .

The dependency of the cost function 𝐽 on the unknown parameter 𝑝 can be understood by
the diagram of mapping illustrated in Fig. 7. The minimization of the cost function (10)
is realized using the Gauß algorithm [27–29]. Specifically, the necessary condition for the
minimum of 𝐽 is:

𝜕𝐽

𝜕𝑝
= 0 ,

which is equivalent to

1

𝑡 f
·
∫︁
Ω 𝑡

2 · 𝜕𝑢 dir

𝜕𝑝

(︀
𝑢dir ( 𝑝 )− 𝑢 obs

)︀
d𝑡 = 0 . (12)

Assuming we have a candidate for the unknown parameter 𝑝𝑚, the Taylor expansion gives:

𝑢dir ( 𝑝 ) = 𝑢dir ( 𝑝𝑚 ) +
𝜕𝑢

𝜕𝑝

⃒⃒⃒⃒
𝑝=𝑝𝑚

·
(︀
𝑝− 𝑝𝑚

)︀
+𝒪

(︂(︀
𝑝− 𝑝𝑚

)︀ 2)︂
.

So, Equation (12) after truncation becomes:∫︁
Ω 𝑡

2 · 𝜕𝑢 dir

𝜕𝑝
·

(︃
𝑢dir ( 𝑝𝑚 ) +

𝜕𝑢 dir

𝜕𝑝

⃒⃒⃒⃒
𝑝=𝑝𝑚

·
(︀
𝑝− 𝑝𝑚

)︀
− 𝑢 obs

)︃
d𝑡 = 0 . (13)

Fig. 7. Diagram of mapping involving the cost function 𝐽
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Equation (13) provides the Gauß linearization to compute a candidate 𝑝 better than 𝑝𝑚 to
minimize the cost function 𝐽 . To indicate the iterative procedure, the notation is slightly
changed and parameter 𝑝 ← 𝑝𝑚+1. Thus, the candidate 𝑝𝑚+1 is computed by forcing
equation (13) to vanish:

𝑝𝑚+1 = 𝑝𝑚 +
𝑢 obs − 𝑢dir

𝜕𝑢 dir

𝜕𝑝

⃒⃒⃒⃒
𝑝=𝑝𝑚

.

The computation of the candidate 𝑝𝑚+1 requires the knowledge of the sensitivity function
𝜕𝑢 dir

𝜕𝑝
. For this, for each direct model (DF or RC ones), the sensitivity equation is obtained by

differentiating the main equation with respect to the unknown parameter 𝑝. All sensitivity
equations for the two direct models and some comments on their resolution are provided
in Appendix A. The iterative procedure is implemented starting from the initial guess 𝑝 apr.
Two stopping criteria 𝛾 1 and 𝛾 2 are defined on the magnitude of changes of the cost function
and unknown parameter:

𝛾 1

(︀
𝑝𝑚 , 𝑝𝑚+1

)︀ def
:=

⃒⃒⃒⃒
𝑝𝑚+1 − 𝑝𝑚

⃒⃒⃒⃒
2⃒⃒⃒⃒

𝑝𝑚

⃒⃒⃒⃒
2

,

𝛾 2

(︀
𝑝𝑚 , 𝑝𝑚+1

)︀ def
:=

⃒⃒⃒⃒
𝑢dir ( 𝑝𝑚+1 )− 𝑢 obs

⃒⃒⃒⃒
2
−
⃒⃒⃒⃒
𝑢dir ( 𝑝𝑚 )− 𝑢 obs

⃒⃒⃒⃒
2⃒⃒⃒⃒

𝑢dir ( 𝑝𝑚 )− 𝑢 obs

⃒⃒⃒⃒
2

.

The algorithm stop when the following conditions are reached:(︀
𝛾 1 6 𝜂 1

)︀
&

(︀
𝛾 2 6 𝜂 2

)︀
.

Where 𝜂 1 and 𝜂 2 are small positive values set in this work to 𝜂 1 = 𝜂 2 = 10−6.

2.3. Metrics for the evaluation of the reliability

Several metrics are defined for the evaluation of the reliability of the two models to estimate
one unknown parameter among {𝑐, 𝑘, ℎ𝐿}. Since the estimation of the unknown parameter is
realized for 𝑁 𝑠 samples of observations, it is possible to compute classical statistical metrics.
The expectation E [−] and the standard deviation 𝜎 [−] of the random variable 𝑦 are defined
by:

E
(︀
𝑦
)︀ def

:=
1

𝑁 𝑠

𝑁 𝑠∑︁
𝑠=1

𝑦 𝑠 , 𝜎 2
(︀
𝑦
)︀ def

:= E

(︂(︀
𝑦 − E

(︀
𝑦
)︀ )︀ 2)︂

.

These metrics can be applied to the ratio
𝑝 ∘

𝑝 r

between the estimated and real parameters

and to the number of iterations 𝑁𝑚 or the computational (CPU) time 𝑡CPU required for the
algorithm to estimate the parameter. The latter is measured using MatlabTM environment
on a computer equipped with Intel i7− 6820HQ CPU, 2.70 GHz and 32 GB of RAM.
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3. Case studies

The reliability of the mathematical model is evaluated to estimate one unknown parameter
among {𝑐, 𝑘, ℎ𝐿}, two others being fixed. Five types of usual building materials are con-
sidered as summarized in Table 1. The thickness of the material is 𝐿 = 22 cm. The initial
condition is 𝑇 0 = 20 ∘C. At both boundary conditions, the ambient temperatures follow the
sinusoidal variations:

𝑇∞ , 𝐿

(︀
𝑡
)︀

= 𝑇 0 + 10 · sin
(︂

2𝜋

20 · 3600
· 𝑡
)︂

+ 10 · sin
(︂

2𝜋

2 · 3600
· 𝑡
)︂
,

𝑇∞ , 𝑅

(︀
𝑡
)︀

= 𝑇 0 + 20 · tanh

(︂
1

4 · 3600
· 𝑡
)︂
− 10 · sin

(︂
2 𝜋

4 · 3600
· 𝑡
)︂
,

which are illustrated in Fig. 8. The heat transfer coefficient at the right boundary equals to
ℎ𝑅 = 5 W / (m 2 ·K).

For each case, 𝑁 𝑠 = 10 4 samples of observations are generated with a noise of standard
deviation 𝜎 obs = 0.2 ∘C, corresponding to usual uncertainty of temperature measurement.
The point of observation is the middle of the wall 𝑥 obs = 11 cm. The time grid of each
sample of observations is set as 𝑡 𝑘 = 𝑘 · 360 s , 𝑘 ∈

{︀
0 , . . . , 200

}︀
⊂ N 0. Thus, each

sample includes 𝐾 = 201 observations obtained with a time step of 360 s.

T a b l e 1. Real properties of the material considered for the case studies

Identification Volumetric heat capacity Thermal conductivity Material

𝑁 ∘ 𝑐
[︀
MJ / (kg ·K)

]︀
𝑘
[︀
W / (m ·K)

]︀
type

1 510−2 510−2 insulation

2 510−1 510−1 wood

3 1.5 1 brick

4 2.0 1.5 concrete

5 2.5 2.5 stone

0 5 10 15 20

h
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10

20

30

40

50

C

Fig. 8. Time variation of the boundary conditions
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The discretisation parameter are set to ∆𝑡 = 3.6 s and ∆𝑥 = 2.2 mm for the DuFort–
Frankel model. For the RC lumped model, the time discretisation parameter is also
∆𝑡 = 3.6 s.

3.1. Estimation of the volumetric heat capacity

The purpose is to estimate the thermal capacity 𝑐 for the five types of materials. Before
generating the experimental observations and performing the estimation, it is necessary to
prove the identifiability of the parameter 𝑐 for both models using the SGI property. First,
the demonstration is realized for the DF model.

Proposition 1. The parameter 𝑐 is identifiable in Equation (1).

Proof. We assume an observable 𝑇 (− , − ) verifies the model:

𝑐 · 𝜕𝑇
𝜕𝑡

= 𝑘 · 𝜕
2𝑇

𝜕𝑥 2
. (14)

Another observable, denoted with a superscript ′, obtained with another parameter 𝑐 ′ holds:

𝑐 ′ · 𝜕𝑇
′

𝜕𝑡
= 𝑘 · 𝜕

2𝑇 ′

𝜕𝑥 2
. (15)

If 𝑇 −𝑇 ′ then
𝜕𝑇

𝜕𝑡
− 𝜕𝑇 ′

𝜕𝑡
and

𝜕 2𝑇

𝜕𝑥 2
− 𝜕 2𝑇 ′

𝜕𝑥 2
. Thus, from equations (14) and (15), we obtain:

(︀
𝑐− 𝑐 ′

)︀
· 𝜕𝑇
𝜕𝑡

= 0

so 𝑐− 𝑐 ′ and parameter 𝑐 is SGI. �

Now, the identifiability is proven for the RC model.

Proposition 2. The parameter 𝑐 is identifiable in Equation (7).

Proof. We assume an observable 𝑇 (− ) obtained from the RC model:

𝑒 2 · 𝑐 d𝑇 2

d𝑡
= 𝑘 ·

(︂
𝑇 3 − 2 · 𝑇 2 + 𝑇 1

)︂
. (16)

Another observable, denoted with a superscript ′, obtained with another parameter 𝑐 ′ :

𝑒 2 · 𝑐 ′ d𝑇 ′
2

d𝑡
= 𝑘 ·

(︂
𝑇 ′

3 − 2 · 𝑇 ′
2 + 𝑇 ′

1

)︂
. (17)

If 𝑇 − 𝑇 ′ then
d𝑇

d𝑡
− d𝑇 ′

d𝑡
. Thus, from Equations (16) and (17), one obtains:

(︀
𝑐− 𝑐 ′

)︀
· d𝑇 2

d𝑡
= 0

so 𝑐− 𝑐 ′ and parameter 𝑐 is SGI in the RC model. �
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The experimental observations are generated using the real heat capacity 𝑐 r given in
Table 1. The thermal conductivity is a known parameter given for each material in the
same Table. The heat transfer coefficient at the left boundary conditions is set to ℎ𝐿 =
15 W / (m 2 ·K). For the solution of the parameter estimation problem, the initial guess of
𝑐 is fixed in the algorithm as 𝑐 apr = 0.1 · 𝑐 r.

The expectation of the estimated parameter 𝑐∘ using both mathematical models DF and
RC is compared with the real parameter 𝑐 r in Fig. 9. More detailed results are provided in
Table 2. The DF model allows to estimate accurately the unknown parameter 𝑐. For the
five materials, the expectation of the ratio between the estimated and real parameter ap-
proximately equal to 1. For the RC model, the estimation lacks of accuracy for all materials.
There is slight decrease of the expectation of the estimated parameter with the increase of
volumetric heat capacity 𝑐 r. For the material 𝑁 ∘ 5, the RC lumped model estimates a pa-
rameter with almost 50 % of the relative error. As reported in Table 2, for both models the
standard deviation of the estimated parameter is small. The number of iterations required
for the estimation of the parameter are illustrated in Fig. 10, a with more detailed results
in Table 2. Mainly, the DF model requires fewer iterations to estimate the parameter than
the RC one. The number of iterations is eight times more in average for the RC model,
while it seems to decrease for the DF model together with the heat capacity. Fig. 10, b gives
the computational time needed by the algorithm to converge to the estimated parameter.
The DF model has a higher computational cost, around 2.5 s for one estimation. Even if

T a b l e 2. Results for the estimation of the unknown volumetric heat capacity 𝑐

Material
Ratio 𝑐∘/𝑐 r Number of iterations 𝑁𝑚 Computational time 𝑡CPU [ s ]

Identification
DF model RC model DF model RC model DF model RC model

E 𝜎 E 𝜎 E 𝜎 E 𝜎 E 𝜎 E 𝜎

1 1.0 0.004 0.89 0.004 7.9 0.32 8 0.03 2.8 0.15 0.7 0.05

2 1.0 0.005 0.71 0.003 7.0 0.22 7.3 0.56 2.5 0.13 0.7 0.05

3 1.0 0.005 0.63 0.003 6.2 0.38 8 0 2.3 0.26 0.7 0.05

4 1.0 0.005 0.6 0.003 6.0 0.26 8 0.06 2.3 0.16 0.7 0.05

5 1.0 0.006 0.57 0.003 6.0 0.22 8 0.2 2.4 0.16 0.7 0.05
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Fig. 9. Comparison of the expectation of the estimated parameter 𝑐∘ with the real parameter 𝑐 r
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Fig. 10. Variation of the expectation of the number of iteration 𝑁𝑚 (a) and the computational
time 𝑡 cpu (b) for the algorithm to estimate the unknown parameter 𝑐 for the five types of materials
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Fig. 11. Time evolution of the temperature at 𝑥 = 𝑥 obs = 11 cm for material 1 (a) and material 3
(b) computed with the numerical model for 𝑐 = 𝑐∘
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Fig. 12. Variation of the expectation of the convergence criteria 𝛾 1 (a) and 𝛾 2 (b) for the estimation
of the unknown parameter 𝑐 for the material 3
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the algorithm based on the DF approach needs fewer iterations, these computational effort
differences are due to the construction of each numerical model. Indeed, at each time itera-
tion, 𝑁𝑥 = 100 equations are computed for DF approach while only 3 for the RC model. It
should be recalled that the same time discretisation parameters were used for both models.

An insight of the results for the materials 1 and 3 is illustrated in Fig. 11. The time
evolution of the temperature expectation computed with the estimated parameter for both
models is compared to the experimental observations. The RC model lacks of accuracy to
represent the physical phenomena. On the other hand, there is a satisfactory agreement
between the predictions of the DF model and the experimental observations. Fig. 12 show
the convergence of the algorithm relatively to the number of iterations for both models.
It can be remarked that the DF model convergence is faster than for the RC one. These
results may be due to lack of accuracy in the computation of the sensitivity equations by
the RC model.

3.2. Estimation of the thermal conductivity

The issue is now to estimate the thermal conductivity 𝑘 for the five material. Let us prove
the identifiability of the parameter in each model. The demonstration is similar to the one
for the previous case study.

Proposition 3. For the DF model, the parameter 𝑘 is identifiable in equation (1).

Proof. We assume an observable 𝑇 (− , −) verifies the model:

𝑐 · 𝜕𝑇
𝜕𝑡

= 𝑘 · 𝜕
2𝑇

𝜕𝑥 2
. (18)

Another observable, denoted with a superscript ′, obtained with another parameter 𝑘 ′ is
detained:

𝑐 · 𝜕𝑇
′

𝜕𝑡
= 𝑘 ′ · 𝜕

2𝑇 ′

𝜕𝑥 2
. (19)

If 𝑇 −𝑇 ′ then
𝜕𝑇

𝜕𝑡
− 𝜕𝑇 ′

𝜕𝑡
and

𝜕 2𝑇

𝜕𝑥 2
− 𝜕 2𝑇 ′

𝜕𝑥 2
. Thus, from equations (18) and (19), we obtain:

(︀
𝑘 − 𝑘 ′ )︀ · 𝜕 2𝑇

𝜕𝑥 2
= 0 .

Thus, 𝑘 − 𝑘 ′ and parameter 𝑘 is SGI. �

Secondly, the identifiability is proven for the RC model.

Proposition 4. The parameter 𝑘 is identifiable in equation (7).

Proof. We assume an observable 𝑇 obtained for the RC model:

𝑒 2 · 𝑐 d𝑇 2

d𝑡
= 𝑘 ·

(︀
𝑇 3 − 2 · 𝑇 2 + 𝑇 1

)︀
. (20)

Another observable, denoted with a superscript ′, obtained with another parameter 𝑘 ′ holds:

𝑒 2 · 𝑐 d𝑇 ′
2

d𝑡
= 𝑘 ′ ·

(︀
𝑇 ′

3 − 2 · 𝑇 ′
2 + 𝑇 ′

1

)︀
. (21)
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If 𝑇 − 𝑇 ′ then
d𝑇

d𝑡
− d𝑇 ′

d𝑡
. Thus, from equations (20) and (21), one obtain:(︀

𝑘 − 𝑘 ′ )︀ · (︀𝑇 3 − 2 · 𝑇 2 + 𝑇 1

)︀
= 0 .

Since
(︀
𝑇 3 − 2 · 𝑇 2 + 𝑇 1

)︀
̸= 0, one can deduce that 𝑘 − 𝑘 ′ and that parameter 𝑘 is SGI in

the RC model. �

Before generating the experimental observations, an important remark can be formulated.
From mathematical point of view, it can be noted that only the ratio 𝑘/𝑐 is identifiable in
each model. One could question the necessity of evaluating the reliability of the models for
the estimation of 𝑘 since the results might be similar to the ones obtained for the parameter 𝑐.
Nevertheless, from a practical point of view, once estimated, these parameters are used in
computational tools for evaluating the building energy requirements in the context of thermal
regulations. Thus, it is of major importance to evaluate the accuracy of each model to recover
each parameters.

With this results, the experimental observations can be generated using the real thermal
conductivity 𝑘 r given in Table 1. For each material, 𝑁 𝑠 experimental observations are
produced. The heat capacity is a given parameter from Table 1 for each case. The heat
transfer coefficient at the left boundary is also fixed to ℎ𝐿 = 15 W / (m 2 ·K). In the
algorithm to estimate the unknown parameter, the initial guess is prescribed as 𝑘 apr = 0.1·𝑘 r.

T a b l e 3. Results for the estimation of the unknown thermal conductivity 𝑘

Material
Ratio 𝑘∘/𝑘 r Number of iterations 𝑁𝑚 Computational time 𝑡CPU [ s ]

Identification
DF model RC model DF model RC model DF model RC model

E 𝜎 E 𝜎 E 𝜎 E 𝜎 E 𝜎 E 𝜎

1 1.0 0.005 0.89 0.004 7.9 0.24 8.8 0.36 2.8 0.18 0.7 0.05

2 1.0 0.007 0.68 0.004 7.9 0.22 8.0 0 2.8 0.10 0.7 0.05

3 1.0 0.011 0.46 0.005 7.9 0.21 10.0 0.04 2.8 0.10 0.9 0.1

4 1.0 0.015 0.36 0.005 8.0 0.18 10.7 0.45 2.8 0.10 0.9 0.05

5 1.0 0.02 0.26 0.005 8.0 0.16 12 0.17 2.8 0.10 0.9 0.05
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Fig. 13. Comparison of the expectation of the estimated parameter 𝑘 ∘ with the real parameter 𝑘 r
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Fig. 14. Variation of the expectation of the number of iteration 𝑁𝑚 (a) and the computational
time 𝑡 cpu (b) for the algorithm to estimate the unknown parameter 𝑘 for the five types of material
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Fig. 15. Time evolution of the temperature at 𝑥 = 𝑥 obs = 11 cm for material 2 (a) and material 5
(b) computed with the numerical model for 𝑘 = 𝑘 ∘
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Fig. 16. Variation of the expectation of the convergence criteria 𝛾 1 (a) and 𝛾 2 (b) for the estimation
of the unknown parameter 𝑘 for the material 5
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Fig. 13 compares the expectation over the 𝑁 𝑠 samples of observation of the estimated
parameter with respect to the real parameter. As in the previous case, the estimation using

the DF approach is accurate and the order of the ratio is the unity 𝒪
(︂

𝑘 ∘

𝑘 r

)︂
≃ 1. A slight

increase of the standard deviation with the thermal conductivity can be noted in Table 3. For
the RC model, the estimation is not satisfactory. The maximum error goes up to 80 % and
is observed for large thermal conductivity 𝑘 r = 2.5 W / (m 2 ·K). In addition, the estimation
error is decreasing faster than for the previous case with a slope around ≃ −0.18. The
number of iterations to estimate the parameter is stable around 8 for the algorithm using
the DF model. For the RC approach, the algorithm needs more iterations. The number of
iterations tends to increase with the thermal conductivity. Fig. 14 gives the mean of the
computational time required by the algorithm to estimate the unknown parameter 𝑘. More
details are provided in Table 3. As expected, the approach using DF is longer. As the
number of iterations to converge increases with 𝑘 r for the RC approach, the ratio of CPU
times between both models decreases.

A comparison between the prediction of the models, computed with the estimated pa-
rameter 𝑘 ∘, and the experimental observations is shown in Fig. 15 for materials 2 and 5,
respectively. The predictions obtained with the RC model are not reliable. The difference
between the observations and the RC numerical predictions can reach 2 ∘C. Fig. 16 present
the variation of the convergence criteria with the number of iterations for material 5. It is
consistent with results presented in Fig. 14. The algorithm based on RC model requires
more iterations to converge. It can be remarked that for 8 iterations, in the algorithm using
the DF model, both criteria 𝛾 1 and 𝛾 2 are satisfied. It indicates that both magnitudes of
changes in the cost function and in the unknown parameter are low. For the algorithm
with the RC model, only criteria 𝛾 2 on the magnitude of the cost function is satisfied for
12 iterations.

3.3. Estimation of the heat transfer coefficient

The last case study concerns the estimation of the heat transfer coefficient ℎ𝐿. The identi-
fiability of this parameter is first proven for the DF model.

Proposition 5. The parameter ℎ𝐿 is identifiable in Equation (2a).

Proof. We assume an observable 𝑇
(︀
− , −

)︀
obtained for the model:

𝑘
𝜕𝑇

𝜕𝑛
= ℎ𝐿 ·

(︀
𝑇 − 𝑇∞ , 𝐿

)︀
. (22)

Another observable, denoted with a superscript ′, obtained with another parameter 𝑘 ′ is
detained:

𝑘
𝜕𝑇 ′

𝜕𝑛
= ℎ ′

𝐿 ·
(︀
𝑇 ′ − 𝑇∞ , 𝐿

)︀
. (23)

If 𝑇 − 𝑇 ′ then
𝜕𝑇

𝜕𝑛
− 𝜕𝑇 ′

𝜕𝑛
. Thus, from Equations (22) and (23), we obtain:(︀

ℎ𝐿 − ℎ ′
𝐿

)︀
· 𝑇 = 0 .

Thus, ℎ𝐿 − ℎ ′
𝐿 and parameter ℎ𝐿 is SGI. �

Secondly, the identifiability is proven for the RC model.
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Proposition 6. The parameter ℎ𝐿 is identifiable in Equation (8).

Proof. We assume an observable 𝑇 (− , −) obtained from the RC model:

𝑘

𝑒
·
(︀
𝑇 2 − 𝑇 1

)︀
= ℎ𝐿 ·

(︀
𝑇 1 − 𝑇∞ , 𝐿

)︀
. (24)

Another observable, denoted with a superscript ′, obtained with another parameter 𝑘 ′ holds:

𝑘

𝑒
·
(︀
𝑇 ′

2 − 𝑇 ′
1

)︀
= ℎ ′

𝐿 ·
(︀
𝑇 ′

1 − 𝑇∞ , 𝐿

)︀
. (25)

If 𝑇 − 𝑇 ′ then from Equations (24) and (25), one obtain:(︀
ℎ𝐿 − ℎ ′

𝐿

)︀
· 𝑇 1

and ℎ𝐿 − ℎ ′
𝐿 and parameter ℎ𝐿 is SGI in the RC model. �

The properties are the one from material 3 identified in Table 1. The 𝑁 𝑠 samples of
observations are generated for four cases identified in Table 4. The chosen real values for ℎ𝐿

corresponds to classical one encountered in the literature for building physics applications.
The initial guess used in the algorithm to estimate the unknown parameter is ℎ𝐿 , apr =
0.1 ·ℎ𝐿 , r. The expectation of the estimated parameter is shown in Fig. 17 for the four cases.

T a b l e 4. Results for the estimation of the unknown thermal conductivity ℎ𝐿

Case
Real value Ratio Number Computational time

ℎ𝐿 , r [W/(m2· K)] ℎ𝐿 , ∘/ℎ𝐿 , r of iterations 𝑁𝑚 𝑡CPU [ s ]

DF model RC model DF model RC model DF model RC model

1 0.5 1.0 0.07 5.5 0.06 4 0.06 6 0 1.1 0.08 0.7 0.05

2 5 1.0 0.01 1.05 0.01 5 0.07 6 0 1.1 0.08 0.6 0.05

3 10 1.0 0.01 0.82 0.01 5.9 0.32 6 0 1.3 0.08 0.6 0.05

4 15 1.0 0.01 0.74 0.06 6 0.13 6.5 0.5 1.3 0.05 0.7 0.05
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Fig. 17. Comparison of the expectation of the estimated parameter ℎ𝐿 , ∘ with the real parameter
ℎ𝐿 , r
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Fig. 18. Variation of the expectation of the number of iteration 𝑁𝑚 (a) and the computational
time 𝑡 cpu (b) for the algorithm to estimate the unknown parameter ℎ𝐿 for the four cases
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Fig. 19. Time evolution of the temperature at 𝑥 = 𝑥 obs = 11 cm for cases 1 (a) and 3 (b) computed
with the numerical model for ℎ𝐿 = ℎ𝐿 , ∘
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Fig. 20. Variation of the expectation of the convergence criteria 𝛾 1 (a) and 𝛾 2 (b) for the estimation
of the unknown parameter ℎ𝐿 for the case 3
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Again, the estimation performed with the DF model is accurate. The expectation of the ratio
ℎ𝐿 , ∘

ℎ𝐿 , r

scales with 1 for all values of ℎ𝐿 , r. When using the RC model, the estimation lacks of

reliability. Particularly, for small values of heat transfer coefficient ℎ𝐿 , r = 0.5 W / (m 2 ·K),
the estimated parameter is more than five time higher than the real one. For higher values
of heat transfer coefficient ℎ𝐿 , r = 0.5 W / (m 2 ·K), the error on the estimation reaches
≃ 30 %. Fig. 18 show the variation of the number of iterations and the CPU time for the
algorithms to estimate the unknown parameter. The number of iterations remains stable
for the RC approach while it increases for the DF one. As expected, the DF model has a
higher computational cost, increasing the time required to solve the parameter estimation
problem. Detailed results are also provided in Table 4. Compared to previous case study,
the computational cost is divided by two for the algorithm using the DF model. Indeed, the
algorithm requires fewer iterations to converge.

The comparison between the numerical predictions and the experimental observations is
provided in Fig. 19. Important discrepancies are noted for the predictions using the RC model
with the estimated heat transfer coefficient ℎ𝐿 , ∘. For the case 1, the error can reach ≃ 4 ∘C.
For lower values of heat transfer coefficient ℎ𝐿 , r = 0.5 W / (m 2 ·K), the boundary conditions
at 𝑥 = 0 tends to be adiabatic. The RC model is completely unreliable to predict the physical
phenomena for such cases. For larger heat transfer coefficient values, the discrepancies are
lower but the predictions of the model are still not satisfactory. The speed of convergence
of the algorithm is illustrated in Fig. 20. As for the previous cases, only the criteria 𝛾 2 on
the magnitude of the changes in the cost function is reached for the algorithm using the
RC approach. It is another indication of the poor accuracy of the method.

4. Conclusion

In building physics, it is of capital importance to build reliable models to simulate the
physical phenomena of heat losses through the walls. The fidelity of a model can be evaluated
by comparing the numerical predictions with experimental observations. The reliability can
also be assessed by the robustness of the model to estimate accurate unknown parameters
using given observations. This article deals with this second aspect of reliability.

Two main mathematical models are proposed in the literature for heat losses through
building wall. The first one, denoted by DF, is based on the heat diffusion equation combined
with the DuFort–Frankel scheme to build the numerical model. The second one is
the so-called lumped RC model which approximates the diffusion processes by an ordinary
differential equation. Within this approach, only three temperatures are evaluated in the
wall. Section 1 presents the two mathematical models used to obtain the solution of the direct
problem when estimating the parameter. Then, in Section 2, the methodology to evaluate the
reliability is detailed. First, samples of observations are generated using a pseudo-spectral
numerical method for the heat diffusion equation and a known parameter. A noise is then
added to the numerical results to generate experimental observations in silico. The second
step consists in solving the parameter estimation problem for each sample of observations
using both mathematical model. The main criterion to evaluate the reliability is the accuracy
of recovering the unknown parameter. Secondary criteria focus on computational time and
number of iterations to solve the inverse problem.

In Section 3, three case studies are considered for the estimation of (i) the heat capacity,
(ii) the thermal conductivity or (iii) the heat transfer coefficient at the interface between
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the wall and the ambient air. For each case, a total of 10 4 samples of observations are gen-
erated. The parameter estimation problem is then solved with each mathematical model.
The results highlight a very satisfactory robustness of the DF approach to estimate the un-
known parameter. For each case, the parameter is recovered with 100 % accuracy. On the
other hand, the reliability of the RC model is not satisfactory. For the estimation of the
heat capacity or the thermal conductivity, the error can reach 40 % or 80 %, respectively.
For the estimation of the heat transfer coefficient at the interface between the ambient air
and the material, the relative error goes up to 450 % for small magnitude of the coefficient.
The accuracy of the estimation is unacceptable for the RC approach revealing a lack of
reliability in the mathematical model. For all cases, the algorithm using the DF approach
has a higher computational time even if it requires less iterations to converge. The com-
putational cost of the DF model is a reasonable price to pay to have a reliable model to
estimate parameters. Beyond these results, it should be recalled the importance of having
confidence in the estimated thermal conductivity 𝑘, heat capacity 𝑐 or surface heat transfer
coefficient. Once estimated, these parameters are used in computational tools to perform
direct simulations and evaluate building energy efficiency, particularly in the context of ther-
mal regulations. Thus, if the parameters values are not reliable, the predictions of building
energy requirements might be inaccurate.

As a conclusion, the choice of the mathematical model to simulate the heat losses through
a building wall has to be done carefully to be able to rely later on this model predictions.
Further studies will investigate the reliability of more complex mathematical models involv-
ing coupled heat and mass transfers. Indeed, the latent effects impact strongly the prediction
of the building energy efficiency as it was demonstrated in [5].

Nomenclature

Latin letters
Bi Biot number

[︀
∅
]︀

𝑐 specific heat capacity
[︀
W / (kg ·K)

]︀
𝑒 length [m]
Fo Fourier number

[︀
∅
]︀

ℎ surface heat transfer coefficient
[︀
W / (m 2 ·K)

]︀
𝑘 thermal conductivity

[︀
W / (m ·K)

]︀
𝑁 number

[︀
∅
]︀

𝐿 length [m]
𝑡 time coordinate

[︀
s
]︀

𝑇 temperature [K]
𝑢 dimensionless temperature

[︀
∅
]︀

𝑥 space coordinate [m]

Subscript or super script
∞ ambient air
∘ estimated parameter
⋆ dimensionless variable
apr a priori value parameter
obs experimental observation
r real parameter
ref reference value
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A. Sensitivity equations

The sensitivity equations for each direct model are detailed in this section. From these
equations, numerical models are built to compute the sensitivity functions using the same
approach as for the direct model. More specifically, for the DF model, the numerical scheme
for the sensitivity equations is built by differentiating the fully discrete equation (6) to
the unknown parameter. Thus, the direct extension of the DuFort–Frankel scheme for
the sensitivity equations is obtained. For the lumped RC model, the numerical scheme
is constructed by differentiating each term of the matrix formulation in equation (9) with
respect to to the unknown parameter. So the computation of the sensitivity function is also
based on explicit Euler time scheme.
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A.1. Estimation of the volumetric heat capacity

A.1.1. The DF model

We define the sensitivity function of the dimensionless temperature relatively to the dimen-
sionless heat capacity by:

Θ :
[︀

0 , 1
]︀
×
[︀

0 , 𝑡 ⋆f
]︀
−→ R ,(︀

𝑥 ⋆ , 𝑡 ⋆
)︀
↦−→ 𝜕𝑢

𝜕𝑐 ⋆
(︀
𝑥 ⋆ , 𝑡 ⋆

)︀
.

It is computed by solving the following differential equation by differentiating Eq. (3) rela-
tively to 𝑐 ⋆ :

𝑐 ⋆ · 𝜕Θ

𝜕𝑡 ⋆
= Fo · 𝑘 ⋆ · 𝜕

2Θ

𝜕𝑥 ⋆ 2
− 𝜕𝑢

𝜕𝑡 ⋆
,

with the following boundary conditions:

𝑘 ⋆ · 𝜕Θ

𝜕𝑥 ⋆
= Bi · ℎ ⋆

𝐿 ·Θ , 𝑥 ⋆ = 0 ,

𝑘 ⋆ · 𝜕Θ

𝜕𝑥 ⋆
= −Bi · ℎ ⋆

𝑅 ·Θ , 𝑥 ⋆ = 1 ,

and the initial condition:

Θ = 0 .

The solution of this problem gives the sensitivity of the dimensionless field 𝑢 with respect
to the heat capacity for the DF model.

A.1.2. The RC model

We define the sensitivity function of the temperature relatively to the volumetric heat ca-
pacity:

𝑋 𝑗 :
[︀

0 , 𝑡 f
]︀
−→ R , 𝑗 ∈

{︀
1 , 2 , 3

}︀
,

𝑡 ↦−→ 𝜕𝑇 𝑗

𝜕𝑐

(︀
𝑡
)︀
.

Three equations are obtained by differentiating Eqs. (7) and (8) with respect to 𝑐 :

𝑒 2 · 𝑐 · d𝑋 2

d𝑡
= 𝑘 ·

(︀
𝑋 3 − 2 ·𝑋 2 + 𝑋 1

)︀
− 𝑒 2 · d𝑇 2

d𝑡
,

𝑘

𝑒

(︀
𝑋 2 −𝑋 1

)︀
= ℎ𝐿 ·𝑋 1 ,

𝑘

𝑒

(︀
𝑋 3 −𝑋 2

)︀
= −ℎ𝑅 ·𝑋 3 .

The initial condition is:

𝑋 𝑗 = 0 , 𝑗 ∈
{︀

1 , 2 , 3
}︀
.

The solution gives the sensitivity of the temperature with respect to the heat capacity for
the RC model.
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A.2. Estimation of the thermal conductivity

A.2.1. The DF model

We define the sensitivity function of the dimensionless temperature relatively to the dimen-
sionless thermal conductivity by:

Θ :
[︀

0 , 1
]︀
×
[︀

0 , 𝑡 ⋆f
]︀
−→ R ,(︀

𝑥 ⋆ , 𝑡 ⋆
)︀
↦−→ 𝜕𝑢

𝜕𝑘 ⋆

(︀
𝑥 ⋆ , 𝑡 ⋆

)︀
.

It is computed by solving the following differential equation by differentiating Eq. (3) rela-
tively to 𝑘 ⋆ :

𝑐 ⋆ · 𝜕Θ

𝜕𝑡 ⋆
= Fo · 𝑘 ⋆ · 𝜕

2Θ

𝜕𝑥 ⋆ 2
+ Fo · 𝜕

2𝑢

𝜕𝑥 ⋆ 2
,

with the following boundary conditions:

𝑘 ⋆ · 𝜕Θ

𝜕𝑥 ⋆
= Bi · ℎ ⋆

𝐿 ·Θ−
𝜕𝑢

𝜕𝑥 ⋆
, 𝑥 ⋆ = 0 ,

𝑘 ⋆ · 𝜕Θ

𝜕𝑥 ⋆
= −Bi · ℎ ⋆

𝑅 ·Θ−
𝜕𝑢

𝜕𝑥 ⋆
, 𝑥 ⋆ = 1 ,

and the initial condition:

Θ = 0 .

This problem enables to compute the sensitivity of the field 𝑢 with respect to the parameter
𝑘 ⋆ for the DF model.

A.2.2. The RC model

We define the sensitivity function of the temperature relatively to the thermal conductivity:

𝑋 𝑗 :
[︀

0 , 𝑡 f
]︀
−→ R , 𝑗 ∈

{︀
1 , 2 , 3

}︀
,

𝑡 ↦−→ 𝜕𝑇 𝑗

𝜕𝑘

(︀
𝑡
)︀
.

Three equations are obtained by differentiating Eqs. (7) and (8) relatively to 𝑘 :

𝑒 2 · 𝑐 · d𝑋 2

d𝑡
= 𝑘 ·

(︀
𝑋 3 − 2 ·𝑋 2 + 𝑋 1

)︀
+
(︀
𝑇 3 − 2 · 𝑇 2 + 𝑇 1

)︀
,

𝑘

𝑒

(︀
𝑋 2 −𝑋 1

)︀
= ℎ𝐿 ·𝑋 1 −

1

𝑒

(︀
𝑇 2 − 𝑇 1

)︀
,

𝑘

𝑒

(︀
𝑋 3 −𝑋 2

)︀
= −ℎ𝑅 ·𝑋 3 −

1

𝑒

(︀
𝑇 3 − 𝑇 2

)︀
.

The initial condition is:

𝑋 𝑗 = 0 , 𝑗 ∈
{︀

1 , 2 , 3
}︀
.

The solution of this problem gives the sensitivity of temperature with respect to the thermal
conductivity in the RC model.
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A.3. Estimation of the left heat transfer coefficient

A.3.1. The DF model

We define the sensitivity function of the dimensionless temperature relatively to the dimen-
sionless heat transfer coefficient by:

Θ :
[︀

0 , 1
]︀
×
[︀

0 , 𝑡 ⋆f
]︀
−→ R ,(︀

𝑥 ⋆ , 𝑡 ⋆
)︀
↦−→ 𝜕𝑢

𝜕ℎ ⋆
𝐿

(︀
𝑥 ⋆ , 𝑡 ⋆

)︀
.

It is computed by solving the following differential equation by differentiating Eq. (3) rela-
tively to ℎ ⋆

𝐿 :

𝑐 ⋆ · 𝜕Θ

𝜕𝑡 ⋆
= Fo · 𝑘 ⋆ · 𝜕

2Θ

𝜕𝑥 ⋆ 2
,

with the following boundary conditions:

𝑘 ⋆ · 𝜕Θ

𝜕𝑥 ⋆
= Bi · ℎ ⋆

𝐿 ·Θ + Bi · 𝑢 , 𝑥 ⋆ = 0

𝑘 ⋆ · 𝜕Θ

𝜕𝑥 ⋆
= −Bi · ℎ ⋆

𝑅 ·Θ , 𝑥 ⋆ = 1

and the initial condition:

Θ = 0 .

It permits to compute the sensitivity of the field 𝑢 with respect to the parameter ℎ ⋆
𝐿 for the

DF model.

A.3.2. The RC model

We define the sensitivity function of the temperature relatively to the heat transfer coeffi-
cient:

𝑋 𝑗 :
[︀

0 , 𝑡 f
]︀
−→ R , 𝑗 ∈

{︀
1 , 2 , 3

}︀
,

𝑡 ↦−→ 𝜕𝑇 𝑗

𝜕ℎ𝐿

(︀
𝑡
)︀
.

Three equations are obtained by differentiating Eqs. (7) and (8) relatively to ℎ𝐿 :

𝑒 2 · 𝑐 d𝑋 2

d𝑡
= 𝑘 ·

(︀
𝑋 3 − 2 ·𝑋 2 + 𝑋 1

)︀
,

𝑘

𝑒

(︀
𝑋 2 −𝑋 1

)︀
= ℎ𝐿 ·𝑋 1 + 𝑇 1 − 𝑇∞ , 𝐿 ,

𝑘

𝑒

(︀
𝑋 3 −𝑋 2

)︀
= −ℎ𝑅 ·𝑋 3 .

The initial condition is:

𝑋 𝑗 = 0, 𝑗 ∈
{︀

1 , 2 , 3
}︀
.

With this model, we compute the sensitivity of temperature with respect to parameter ℎ𝐿

in the RC model.
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