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Two dimensional impulsive flow of a fluid is studied within the potential flow theory.
Initially the fluid is at rest and is held on one side of a vertical plate. The plate is
withdrawn suddenly and gravity driven flow of the fluid starts. Attention is paid to
the singular behaviour of the velocity field at the bottom point, where the vertical
free surface meets the rigid bottom. The linear problem is solved by the Fourier series
method. An inner region solution is found using Mellin transform at the bottom point.
The jet formation is observed at the bottom point. Also the discontinuity at the upper
corner point is dealt with Lagrangian variables. For the second order outer problem,
domain decomposition method is used. Comparison of the shapes of the free surfaces
near the upper corner point with leading and second order solutions shows that the
second order outer solution outer makes a larger difference in the vertical free surface
than in the horizontal portion, compared with leading order solution.The complete
picture of the shapes of the free surfaces using Lagrangian description for the upper
part and Eulerian description for the bottom part at the second order is obtained.
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Introduction

The initial stages of the dam break flow, which is caused when a vertical dam at 𝑥′ = 0,
−𝐻 < 𝑦′ < 0, holding the liquid at the semi infinite strip, 𝑥′ > 0, −𝐻 < 𝑦′ < 0, sud-
denly disappears, is investigated. At 𝑡′ = 0, the fluid is at rest above a rigid bed with
depth 𝐻. A cartesian coordinate system (𝑥′, 𝑦′) with an origin at the free surface and positive
𝑥′-axis directed along the free surface is chosen as shown in Fig. 1. The resulting flow is
gravity driven, two dimensional and potential. The liquid is assumed to be inviscid and
incompressible.

There are two free-surfaces of the flow region, which vary in time and have to be de-
termined as a part of solution. The upper horizontal part of the free-surface is denoted as
𝑦′ = 𝜂′(𝑥′, 𝑡′), 𝑥′ > 0 and the vertical part as 𝑥′ = 𝜉′(𝑦′, 𝑡′). The flow region is bounded by
these free-surfaces and by the rigid bottom 𝑦′ = −𝐻.
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Fig. 1. Flow region at the initial time instant 𝑡′ = 0

In this dam-break problem, we aim to construct a uniformly valid small-time solution by
using matched asymptotic expansions. The solution in time as power series should be con-
sidered ’outer’ solution, which should be corrected with ’inner’ solution near the intersection
point, where there is a logarithmic singularity of the free surface shape and the horizontal
fluid velocity. The outer and inner asymptotic solutions have to be matched in such a way
to get a solution which is uniformly valid in the whole flow domain. The matching is carried
out using the matching principle of Van Dyke [1], that is, the limit of the outer solution
when approaching the corner point must be equal to the limit of the inner solution when
approaching infinity. In principle higher approximations are possible by retaining further
terms in the asymptotic expansions. But, in practice achieving higher order approximations
are difficult due to the amount of calculations involved. In this paper we are satisfied by
keeping the leading order terms of the inner and outer solutions.

There are various numerical and experimental studies on dam break flows. One of the
closely related study of this problem is the experimental study of Stansby et al. [2] which
observes the singularity and shows that horizontal jet occurs at the corner point for classical
dam break problem at small times. They also studied this problem for wet-bed case and
observed that the mushroom-like jet occurs at the triple point both experimentally and
numerically.

Numerical treatment of the dam break flow for small times is rather difficult due to
the logarithmic singularity at the bottom corner point. Stansby et al [2] had to artificially
remove the singularity by smoothing the corner before applying the numerical method. The
numerical treatment of the original dry bed dam break problem is only possible with the
help of an asymptotic analysis; near the corner point inner region problem should be solved
and the size of the inner region should be provided.

Another related problem of impulsive acceleration of a wavemaker is thought to model the
initial stages of the motion of a dam under earthquake loading. The linearized theory of this
problem has been studied by Chwang [3]. He solves, to first order, the initial value problem
in a small-time expansion and shows the free-surface to be singular at the intersection point.
The remarkable point of these flow problems is the jet which occurs at the intersection point
with the jet strength being dependent on the angle between the body surface and the free
surface of the liquid and the direction of the body motion. This problem is studied for
vertical plate in [3 – 5] and for inclined plate [6].

Dam break flows due to gravity is also studied by Pohle [7] and Stoker [8] using the
Lagrangian description. However the Lagrangian variables are not suitable for the dam break
problems (see Korobkin & Yilmaz [9]). Recently, King & Needham [5], solved a relevant
problem of a uniformly accelerating plate into a block of fluid by using Eulerian variables.
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They used the leading order outer solution to derive the size of the inner region and then
employed an integral transform to obtain the inner solution. Korobkin & Yilmaz [9], used
complex analytic function theory to solve the dam break flow problem. They needed the
second order outer solution to derive the inner region dimensions. In this paper, we aim to
use the Eulerian description and the Mellin Transformation to solve the dam-break problem.
Regarding the inner region solution, the free surface shape obtained in this paper is almost
the same as that of Korobkin & Yilmaz [9] but the employed method is different. The main
idea of the paper is to compare the two methods in terms of methodology and the numerical
results. The present method uses the Mellin transform and does not require the second order
outer solution to derive the inner one, whereas the second order outer solution is needed for
the method by Korobkin and Yilmaz [9].

The second order outer solution is needed to correctly capture the behaviour of the fluid
flow near the top corner point and close to the singular corner point at the bottom. Special
care is required to calculate the form of the free surface near the top corner point where
horizontal and vertical free surfaces meet. In [9] it was theoretically shown that the free
surfaces at the top corner point meet up at the order of 𝜖2 using the second order outer
solution where 𝜖 is a small parameter introduced to indicate the initial stages of the flow.
Immediately after the disappearance of the dam, a part of horizontal and vertical free surfaces
is expected to spill over to the region 𝑥

′
< 0 (see Fig. 1). Hence to calculate the free surface

shape it is necessary to use the Lagrangian variables to follow the fluid particles outside the
initial fluid region 𝑥

′ ≥ 0, −𝐻 ≤ 𝑦
′ ≤ 0. The second order outer solution could be found by

the Fourier series method just as is done with the first order solution. However the second
order problem is far more complicated than the first order problem and it is convenient
to use the the domain decomposition method. The main idea of this method is to divide
the whole fluid domain into suitable sub domains where solutions can be written as infinite
series involving unknown coefficients, and then equate the truncated series at collocation
points in the intersection of sub domains to derive the unknowns of the problem. To the
authors best knowledge second order outer solution for the whole fluid domain has not been
obtained before for the classical dam break problem. The domain decomposition method is
used successfully by Needham et al [10] to find the first order outer solution in the problem
of an inclined plate accelerating into a body of fluid.

Domain Decomposition methods suggest a convenient way to solve the complicated two
and three dimensional nonlinear problems numerically by the concept of domain splitting
instead of using arduous finite element approximations for the whole domain [11]. As an
example Glowinski et al solved the numerical simulation of a transonic flow by the Schwarz-
alternating method with the overlapped regions. They showed the efficiency and the stability
of these methods by applying them to the several Poisson problems. Cai [12] is also con-
centrated on one special group of these Domain Decomposition methods using overlapping
subdomains and using the software Diffpack. This study states that the convergence of the
solution on the internal boundaries ensures the convergence of the solution in the entire
solution domain.

A detailed analysis of the Domain Decomposition methods, and of the ’Schwarz method
for overlapping domains’ which is similar to the one adopted here, is given in Quarteroni
and Valli [13], where the mathematical foundations of the different approaches is provided.

In section 1 we formulate the dam break problem using dimensionless variables, and
derive the leading order solution. Next we derive the leading order asymptotics in section 2.
Also, we deal with discontinuity at the upper corner point by using Lagrangian variables
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in section 3. We derive the second order outer solution using the domain decomposition
method in section 4. Finally we draw some conclusions in section 5.

1. Formulation of the problem

The Euler equations of fluid motion are used in the fluid domain together with kinematic
and dynamic free-surface conditions at the free surfaces and the slip boundary condition at
the bottom to model the dynamics of this system. Dimensionless unprimed variables are
introduced as follows,

𝑥′ = 𝐻𝑥, 𝜂′ = 𝐻𝜂,

𝑦′ = 𝐻𝑦, 𝜉′ = 𝐻𝜉,

𝑡′ =

√︃
𝐻

𝑔
𝑡, 𝑝′ = 𝑝𝜌𝑔𝐻.

A mathematical statement of the problem can now be written in non-dimensional form as

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

𝜕𝑝

𝜕𝑥
,

𝜕𝑣

𝜕𝑡
+ 𝑢

𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −

𝜕𝑝

𝜕𝑦
− 1,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
−1 ≤ 𝑦 ≤ 𝜂(𝑥, 𝑡), 𝜉(𝑦, 𝑡) ≤ 𝑥 ≤ ∞, (1)

𝑣 =
𝜕𝜂

𝜕𝑡
+ 𝑢

𝜕𝜂

𝜕𝑥
, 𝑝 = 0 on 𝑦 = 𝜂(𝑥, 𝑡), (2)

𝑢 =
𝜕𝜉

𝜕𝑡
+ 𝑣

𝜕𝜉

𝜕𝑦
, 𝑝 = 0 on 𝑥 = 𝜉(𝑦, 𝑡), (3)

𝑣(𝑥,−1, 𝑡) = 0, (4)

𝜂(𝑥, 0) = 𝜉(𝑦, 0) = 0, 𝑢(𝑥, 𝑦, 0) = 𝑣(𝑥, 𝑦, 0) = 0, (5)

as 𝑥 → ∞, 𝑢, 𝑣 → 0 and 𝑝 → −𝑦, (6)

where equations (1) are Euler equations, (2) and (3) are kinematic and dynamic boundary
conditions at the horizontal and vertical free surfaces, (4) is the slip boundary condition at
the bottom, (5) is the initial conditions which state that the fluid is at rest initially and (6)
is the radiation condition at ∞.

A small-time solution to (1)–(6) may be sought by posing the power series expansions
of the unknown variables, horizontal and vertical components of velocity, horizontal and
vertical free surface shapes and pressure, in time,

𝑢 = 𝑢0(𝑥, 𝑦) + 𝑡𝑢1(𝑥, 𝑦) + 𝑂(𝑡2),

𝑣 = 𝑣0(𝑥, 𝑦) + 𝑡𝑣1(𝑥, 𝑦) + 𝑂(𝑡2),

𝜂 = 𝜂0(𝑥) + 𝑡𝜂1(𝑥) + 𝑡2𝜂2(𝑥) + 𝑂(𝑡3), (7)

𝜉 = 𝜉0(𝑦) + 𝑡𝜉1(𝑦) + 𝑡2𝜉2(𝑦) + 𝑂(𝑡3),

𝑝 = 𝑝0(𝑥, 𝑦) + 𝑡𝑝1(𝑥, 𝑦) + 𝑂(𝑡2)

as 𝑡 → 0 x = 𝑂(1), where x = (𝑥, 𝑦). We find from the initial conditions that 𝑢0 = 𝑣0 = 0,
𝜂0 = 𝜂1 = 0 and 𝜉0 = 𝜉1 = 0.
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1.1. The leading order solution

By substituting the expansions (7) in (1)–(6) and using the Taylor series expansions of
unknown functions about 𝑦 = 0 for the vertical free surface and 𝑥 = 0 for the horizontal
free surface in the boundary conditions, we fix the domain as the semi-infinite horizontal
strip, −1 ≤ 𝑦 ≤ 0, 0 ≤ 𝑥 < ∞ and find the following boundary value problem at the leading
order as

𝜕𝑢1

𝜕𝑥
+

𝜕𝑣1

𝜕𝑦
= 0,

𝑢1 = −
𝜕𝑝0

𝜕𝑥
, 𝑣1 = −

𝜕𝑝0

𝜕𝑦
− 1,

⎫⎪⎪⎬⎪⎪⎭− 1 ≤ 𝑦 ≤ 0, 0 ≤ 𝑥 < ∞, (8)

𝑣1(𝑥,−1) = 0, 𝜂2 =
1

2
𝑣1(𝑥, 0), 𝜉2 =

1

2
𝑢1(0, 𝑦), (9)

𝑝0(𝑥, 0) = 0, 𝑝0(0, 𝑦) = 0 (10)

as 𝑥 → ∞, 𝑢1, 𝑣1 → 0 and 𝑝0 → −𝑦. (11)

Solution to the problem (8)–(11) is quite straightforward and found by the Fourier Series
method as

𝑝0(𝑥, 𝑦) = −𝑦 +
∞∑︁
𝑛=0

8(−1)𝑛

(2𝑛 + 1)2𝜋2
sin

(︂
(2𝑛 + 1)

𝜋

2
𝑦

)︂
𝑒−(2𝑛+1)𝜋

2
𝑥, (12)

𝜉2(𝑦) =
2

𝜋

∞∑︁
𝑛=0

(−1)𝑛 sin

(︂
(2𝑛 + 1)

𝜋

2
𝑦

)︂
2𝑛 + 1

. (13)

1.2. Analysis of the singularity near the bottom point (0,−1)

The sum of the series in (13) is 𝜉2 =
1

𝜋
log
(︁

tan
𝜋

4
(1 + 𝑦)

)︁
which exhibits a singularity in the

free-surface elevation as 𝑦 → −1. It is seen that the infinite sum in (12) converges at the
corner point implying that the pressure is well behaved near the corner point, (0,−1) and
that the horizontal fluid velocity and the free surface shape are singular at the corner point,

𝑢1(0, 𝑦) =
2

𝜋
log

(︃
tan

𝜋

4
(1 + 𝑦)

)︃
.

The singularity at the point (0,−1) suggests that the expansions (7) are outer expansions
to this problem. An inner solution is required in the neighbourhood of the point (0,−1), as

𝑡 → 0. First, the behaviour of 𝑝0 is investigated as (𝑥2 + 𝑦2)
1
2 → 0. The origin is translated

to the bottom point by the transformation 𝜉 = 𝑥 and 𝜂 = 𝑦 + 1 and then the standard polar
coordinates (𝜌, 𝜃) are introduced by 𝜉 = 𝜌 cos 𝜃 and 𝜂 = 𝜌 sin 𝜃 (see Fig. 2). Using (12) and
(13), as 𝜌 → 0, we have the limiting values of the outer solution

𝑝0 = 𝜌 log 𝜌

(︂
−

2

𝜋
cos 𝜃

)︂
+ 𝜌

[︃
− sin 𝜃 +

2

𝜋

(︃
1 − log

(︃
𝜋

4

)︃)︃
+

2

𝜋
𝜃 sin 𝜃

]︃
+ 𝑜(𝜌),
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Fig. 2. New coordinate axes 𝜉, 𝜂 and the inner region

𝜉2 =
1

𝜋
log

𝜋

4
+

1

𝜋
log 𝜂 + 𝑂(𝜂2) as 𝜂 = 𝜌 → 0. (14)

This indicates that 𝑝0 is analytic and 𝜉2 is singular at the corner point; 𝑝0 = 𝑂(𝜌 log 𝜌)
and 𝜉2 = 𝑂(log 𝜌) as 𝜌 → 0. The fluid velocities in the corner region are calculated by the

equations 𝑢1 = −
𝜕𝑝0

𝜕𝜉
and 𝑣1 = −

𝜕𝑝0

𝜕𝜂
−1, from (8). Then we find that the horizontal velocity

has logarithmic singularity at the corner point, 𝑢1 = 𝑂(log 𝜌) and 𝑣1 = 𝑂(1) as 𝜌 → 0.
In the next section, an inner region solution is developed near the singular point.

2. Leading order asymptotic (inner) solution near the bottom
point (0,−1)

The method of this section follows closely that of King & Needham [5]. In order to formulate
an inner solution to this problem when 𝜉, 𝜂 = 𝑜(1) as 𝑡 → 0, the magnitude of terms in the
velocity components in equations (1) are examined. The local analysis at the end of section 1

shows that as 𝜌 = (𝜉2 + 𝜂2)
1
2 → 0;

𝑢 = 𝑂(𝑡 log 𝜌), 𝑣 = 𝑂(𝑡),

𝑝 = 𝑂(𝜌 log 𝜌), 𝜉 = 𝑂(𝑡2 log 𝜌).

Thus a typical term kept in (1) is 𝑣𝑡 = 𝑂(1) whereas a typical neglected term, which
represents fluid inertia, is 𝑢𝑣𝑥 = 𝑂((𝑡2 log 𝜌)/𝜌). These two terms are of equal magnitude
when 𝑡2 log 𝜌 = 𝑂(𝜌). If this is solved iteratively, we find that 𝜌 = 𝑂(−𝑡2 log 𝑡). In this region
inertial terms are important and 𝑣 = 𝑂(𝑡), 𝑢 = 𝑂(𝑡 log 𝑡), 𝑝 = 𝑂(𝑡2 log2 𝑡) and 𝜉 = 𝑂(𝑡2 log 𝑡).
These estimates suggest the following inner variables,

𝜉 = −
𝜉

𝑡2 log 𝑡
, 𝜂 = −

𝜂

𝑡2 log 𝑡
, �̄� = 𝑢, 𝑣 = 𝑣, 𝑝 = 𝑝,

which gives the boundary value problem in the inner region,
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𝜕�̄�

𝜕𝜉
+

𝜕𝑣

𝜕𝜂
= 0,

𝜕�̄�

𝜕𝑡
− 𝜂

(︂
2

𝑡
+

1

𝑡 log 𝑡

)︂
𝜕�̄�

𝜕𝜉
− 𝜂

(︂
2

𝑡
+

1

𝑡 log 𝑡

)︂
𝜕�̄�

𝜕𝜂
−

1

𝑡2 log 𝑡
�̄�
𝜕�̄�

𝜕𝜉
−

−
1

𝑡2 log 𝑡
𝑣
𝜕�̄�

𝜕𝜂
=

1

𝑡2 log 𝑡

𝜕𝑝

𝜕𝜉
,

𝜕𝑣

𝜕𝑡
− 𝜉

(︂
2

𝑡
+

1

𝑡 log 𝑡

)︂
𝜕𝑣

𝜕𝜉
− 𝜂

(︂
2

𝑡
+

1

𝑡 log 𝑡

)︂
𝜕𝑣

𝜕𝜂
−

1

𝑡2 log 𝑡
�̄�
𝜕𝑣

𝜕𝜉
−

−
1

𝑡2 log 𝑡
𝑣
𝜕𝑣

𝜕𝜂
=

1

𝑡2 log 𝑡

𝜕𝑝

𝜕𝜂
− 1,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(15)

in the domain 0 ≤ 𝜂 < ∞, 𝜉 ≥ 𝜉(𝜂, 𝑡)/(−𝑡2 log 𝑡) and subject to free-surface conditions on
𝜉 = 𝜉(𝜂, 𝑡)/(−𝑡2 log 𝑡),

�̄� =
𝜕𝜉

𝜕𝑡
− 𝜂

(︂
2

𝑡
+

1

𝑡 log 𝑡

)︂
𝜕𝜉

𝜕𝜂
−
(︂
−

1

𝑡2 log 𝑡

)︂
𝑣
𝜕𝜉

𝜕𝜂
and 𝑝 = 0. (16)

Matching conditions (14) are also written in terms of the inner variables and are applied as

𝜌 = (𝜉2 + 𝜂2)
1
2 → ∞. So we get the limiting behaviour of the inner solution as 𝜌 → ∞,

which suggest the following inner region form of the expansions

𝑝 = 𝑡2(log 𝑡)2𝑝1 + 𝑡2 log 𝑡𝑝2 + 𝑜(𝑡2 log 𝑡), 𝜉 = 𝑡2 log 𝑡𝜉1 + 𝑡2𝜉2 + 𝑜(𝑡2), (17)

�̄� = 𝑡 log 𝑡�̄�1 + 𝑡�̄�2 + 𝑜(𝑡), 𝑣 = 𝑡 log 𝑡𝑣1 + 𝑡𝑣2 + 𝑜(𝑡), (18)

as 𝑡 → 0 with 𝜉, 𝜂 = 𝑂(1). If the expansions (17) and (18) are substituted into the inner
region problem (15), (16) and by using the Taylor series expansions of unknowns at the free
surface, 𝜉 = 𝜉(𝜂, 𝑡)/(−𝑡2 log 𝑡), at the leading order we obtain

𝜕�̄�1

𝜕𝜉
+

𝜕𝑣1

𝜕𝜂
= 0,

�̄�1 − 2𝜉
𝜕�̄�1

𝜕𝜉
− 2𝜂

𝜕�̄�1

𝜕𝜂
− �̄�1

𝜕�̄�1

𝜕𝜉
− 𝑣1

𝜕�̄�1

𝜕𝜂
=

𝜕𝑝1

𝜕𝜉
,

𝑣1 − 2𝜉
𝜕𝑣1

𝜕𝜉
− 2𝜂

𝜕𝑣1

𝜕𝜂
− �̄�1

𝜕𝑣1

𝜕𝜉
− 𝑣1

𝜕�̄�1

𝜕𝜂
=

𝜕𝑝1

𝜕𝜂
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
in the domain 0 ≤ 𝜂 < ∞, 𝜉 > −𝜉1, subject to the free-surface conditions on 𝜉 = −𝜉1,

�̄�1 = 2𝜉1 − 2𝜂
𝜕𝜉1

𝜕𝜂
− 𝑣1

𝜕𝜉1

𝜕𝜂
and 𝑝1 = 0.

From the limiting behaviour of the inner region solution as 𝜌 → ∞, at the leading order, we
have,

𝑝1 ∼
4

𝜋
𝜉, 𝜉1 ∼

2

𝜋
, �̄�1 ∼

4

𝜋
, 𝑣1 ∼ 0 as (𝜉2 + 𝜂2)

1
2 → ∞.
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These matching conditions must be the solution or a part of the solution of the leading order
problem. By this fact, the exact solution to this problem is

�̄�1 ≡
4

𝜋
, 𝑣1 ≡ 0, 𝑝1 ≡

4

𝜋

(︂
𝜉 +

2

𝜋

)︂
, 𝜉1 ≡

2

𝜋
,

which represents a mass of fluid moving to the left at the bottom, similar to the findings
of [4] where a block of fluid is rising.

Similarly, using the next order terms in the perturbation process, the second order prob-
lem is obtained,

𝜕�̄�2

𝜕𝜉
+

𝜕𝑣2

𝜕𝜂
= 0,

4

𝜋
+ �̄�2 − 2𝜉

𝜕�̄�2

𝜕𝜉
− 2𝜂

𝜕�̄�2

𝜕𝜂
−

4

𝜋

𝜕�̄�2

𝜕𝜉
=

𝜕𝑝2

𝜕𝜉
,

𝑣2 − 2𝜉
𝜕𝑣2

𝜕𝜉
− 2𝜂

𝜕𝑣2

𝜕𝜂
−

4

𝜋

𝜕𝑣2

𝜕𝜉
=

𝜕𝑝2

𝜕𝜂
− 1,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(19)

to be solved in the fixed domain 0 ≤ 𝜂 < ∞, 𝜉 > −
2

𝜋
. The free-surface conditions on 𝜉 = −

2

𝜋
are

𝑝2 =
4

𝜋
𝜉2, �̄�2 =

2

𝜋
+ 2𝜉2 − 2𝜂

𝜕𝜉2

𝜕𝜂
(20)

and the matching conditions, which are obtained from (14), at the second order are,

𝑝2 ∼
2

𝜋

{︃
(𝜇− 1)𝜉 + 𝜉 log 𝜌 +

(︃
𝜋

2
− 𝜃

)︃
𝜂

}︃
, 𝜉2 ∼

1

𝜋
(𝜇 + log 𝜂), (21)

�̄�2 ∼
2

𝜋
𝜇− 1 + log 𝜌, 𝑣2 ∼ −

2

𝜋
𝜃, (22)

as (𝜉2 + 𝜂2)
1
2 → ∞, where 𝜇 = log(− log 𝑡) + log

(︃
𝜋

4

)︃
. Here (𝜌, 𝜃) are the usual polar

coordinates with respect to the Cartesian coordinates (𝜉, 𝜂).
Since horizontal velocity �̄�2 and pressure are unbounded as 𝜌 → ∞, the boundary value

problem (19)–(22) is not easy to solve. This problem is solved in the next subsection.

2.1. Reformulation and the Mellin transform of the boundary value
problem (19)

It would be more convenient at this stage to continue with velocity potential 𝜙. Since the flow
is irrotational at the begining, by the Cauchy — Lagrange theorem, the flow is irrotational

at all times. Thus a velocity potential 𝜙 is introduced by �̄�2 +
4

𝜋
=

𝜕𝜙

𝜕𝑥
, 𝑣2 =

𝜕𝜙

𝜕𝑦
and
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the coordinates are shifted by 𝑥1 = 𝜉 +
2

𝜋
and 𝑦1 = 𝜂. By using this velocity potential,

the quarter plane problem (19)–(22) becomes

Δ𝜙 = 0 in 0 ≤ 𝑦1 < ∞, 𝑥1 > 0,

𝑝0 + 3𝜙− 2𝑦1
𝜕𝜙

𝜕𝑦1
=

4

𝜋
𝜉 − 𝑦1 on 𝑥1 = 0,

𝜕𝜙

𝜕𝑥1

=
6

𝜋
+ 2𝜉 − 2𝑦1

𝜕𝜉

𝜕𝑦1
on 𝑥1 = 0,

𝜕𝜙

𝜕𝑦1
= 0 on 𝑦1 = 0,

𝜑 ∼
2

𝜋

{︃
𝑥1 log(𝑥2

1 + 𝑦21)
1
2 − 𝑦1 tan−1

(︃
𝑦1

𝑥1

)︃
+ (𝜇 + 1)𝑥1

}︃
+ 𝑜

(︁(︀
𝑥2
1 + 𝑦21

)︀ 1
2

)︁
,

𝜉 ∼
1

𝜋
(log 𝑦1 + 𝜇) + 𝑜(1), as 𝑟1 = (𝑥2

1 + 𝑦21)
1
2 → ∞.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(23)

An integral transform can not be applied to (23) for 𝜑 is unbounded as 𝑟1 → ∞. The
standard polar coordinates (𝑟1, 𝜃1) relating to the cartesian coordinates (𝑥1, 𝑦1) are used and
the terms that becomes unbounded as 𝑟1 → ∞ are subtracted from 𝜙 and 𝜉,

𝜙 = 𝜙 +
2

𝜋

{︀
𝑟1 cos 𝜃1 log 𝑟1 − 𝜃1𝑟1 sin 𝜃1 + (𝜇 + 1)𝑟1 cos 𝜃1

}︀
,

𝜉 = 𝜉 +
1

𝜋
(log 𝑟1 + 𝜇),

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (24)

so that 𝜙 is harmonic with
𝜕𝜙

𝜕𝜃1
(𝑟1, 0) = 0 and the free-surface conditions on 𝜃1 =

𝜋

2
can be

written from (23) by using (24) as

𝑝0 + 3𝜙− 2𝑟1
𝜕𝜙

𝜕𝑟1
=

4

𝜋

{︂
𝜉 +

1

𝜋
(log 𝑟1 + 𝜇)

}︂
,

1

𝑟1

𝜕𝜙

𝜕𝜃1
= −2𝜉 + 2𝑟1

𝜕𝜉

𝜕𝑟1
.

It is easily seen that 𝜉 = 𝑜(1) and 𝜑 = 𝑜(𝑟1) as 𝑟1 → ∞. The improper integral of the
transform may still be divergent since the behaviour of 𝜙 at ∞ is 𝑜(𝑟1). Thus a coordinate
expansion of the form 𝜙 = 𝐴 log 𝑟1+𝐵+𝑂(1/𝑟1) for large 𝑟1 is suggested, where 𝐴 = 4/(3𝜋2),

𝐵 =
4

3𝜋2
𝜇 +

8

9𝜋2
−

𝑝0

3
and 𝜉 = 𝑂(1/𝑟21). Now using the coordinate expansion, the potential

is redefined as

𝜙 = 𝜑 +
4

6𝜋2
log(1 + 𝑟21) −𝐵, 𝜉 = 𝜁.
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Thus we get 𝜑 = 𝑂(1/𝑟1) as 𝑟1 → ∞ and the following boundary value problem,

Δ𝜑 = −
4

6𝜋2
Δ log(1 + 𝑟21) in 0 ≤ 𝑟1 < ∞, 0 ≤ 𝜃1 ≤

𝜋

2
,

𝜕𝜑

𝜕𝜃1
= 0 on 𝜃1 = 0,

3𝜑− 2𝑟1
𝜕𝜑

𝜕𝑟1
=

4

𝜋
𝜁 + 𝑓 *(𝑟1) on 𝜃1 =

𝜋

2
,

1

𝑟1

𝜕𝜑

𝜕𝜃1
= −2𝜁 + 2𝑟1

𝜕𝜁

𝜕𝑟1
on 𝜃1 =

𝜋

2
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(25)

where

𝑓 *(𝑟1) =
4

3𝜋2

{︂
3 log 𝑟1 −

3

2
log(1 + 𝑟21) +

2𝑟21
1 + 𝑟21

− 2

}︂
.

Now the Mellin transform,

Φ(𝑠, 𝜃1) =

∞∫︁
0

𝑟𝑠−1
1 𝜑(𝑟1, 𝜃1)𝑑𝑟1,

𝑍(𝑠) =

∞∫︁
0

𝑟𝑠−1
1 𝜁(𝑟1)𝑑𝑟1,

can be applied to the boundary value problem (25). Since 𝜑 = 𝑂(1), 𝜁 = 𝑂(log 𝑟1) as 𝑟1 → 0
and 𝜑 = 𝑂(1/𝑟1), 𝜁 = 𝑂(1/𝑟21) as 𝑟1 → ∞ we expect Φ to exist and be analytic in the strip
0 < Re(𝑠) < 1 of the complex s-plane and 𝑍 will similarly be analytic in 0 < Re(𝑠) < 2.

Taking the Mellin transform of the first equation in (25), we have{︂
𝜕2

𝜕𝜃21
+ 𝑠2

}︂
Φ(𝑠, 𝜃1) = −

2𝑠

3𝜋 sin(𝑠𝜋/2)
.

The general solution to this ordinary differential equation is

Φ(𝑠, 𝜃1) = 𝑎(𝑠) sin(𝑠𝜃1) + 𝑏(𝑠) cos(𝑠𝜃1) −
2

3𝜋𝑠 sin(𝑠𝜋/2)
. (26)

Similarly taking the Mellin transform of the boundary condition
𝜕𝜑

𝜕𝜃1
= 0 on 𝜃1 = 0 gives the

transformed boundary condition
𝜕Φ

𝜕𝜃1
= 0 on 𝜃1 = 0. Application of this boundary condition

to the general solution (26) gives 𝑎(𝑠) = 0. By transforming the free-surface conditions on

𝜃1 =
𝜋

2
, we obtain 𝑏(𝑠) as a solution of a difference equation,

𝑏(𝑠) =
�̄�(𝑠)(−1)𝑠Γ(𝑠)

𝜋𝑠Γ(𝑠 + 5/2)Γ(𝑠 + 2)
,



Asymptotic behaviour of dam break flow for small times 17

where �̄�(𝑠) is a solution of �̄�(𝑠)/�̄�(𝑠 − 1) = 1. This gives the Mellin transform of the free-
surface elevation by the Mellin transformed free-surface condition (third equation in (25)),

𝑍(𝑠) = −
�̄�(𝑠)(−1)𝑠−1 cos(𝑠𝜋/2)

2𝑠(𝑠 + 1)𝜋𝑠−1Γ(𝑠 + 3/2)
.

In order to ensure the convergence of the inversion integral, we require 𝜈 = 𝐼𝑚(𝑠) > −3
and �̄�(𝑠) must have the following behaviour,

�̄�(𝜈 + 𝑖𝜎) =

{︂
𝑂(1), 𝜎 → +∞,

𝑂(𝑒2𝜋𝜎), 𝜎 → −∞,

where 𝑠 = 𝜈 + 𝑖𝜎. A function of period 1 which has this property is

�̄�(𝑠) =
𝑐

(−1)𝑠 sin 𝜋𝑠
,

where 𝑐 is an arbitrary constant. With this choice of 𝑏(𝑝) and by using the following Mellin
inversion formulas of 𝑍(𝑝) and Φ(𝑝, 𝜃1),

𝜁(𝑟1) =
1

2𝜋𝑖

𝜏+𝑖∞∫︁
𝜏−𝑖∞

𝑟−𝑠
1 𝑍(𝑠)𝑑𝑠, 𝜑(𝑟1, 𝜃1) =

1

2𝜋𝑖

𝜏+𝑖∞∫︁
𝜏−𝑖∞

𝑟−𝑠Φ(𝑠, 𝜃1)𝑑𝑠,

we have,

𝜁(𝑟1) =
𝑐𝜋

4

1

2𝜋𝑖

𝜏+𝑖∞∫︁
𝜏−𝑖∞

(1/𝜋𝑟1)
𝑠

𝑠(1 + 𝑠) sin(𝑠𝜋/2)Γ(𝑠 + 3/2)
𝑑𝑠 (27)

for 0 < 𝜏 < 2, and

𝜑(𝑟1, 𝜃1) =
1

2𝜋𝑖

𝜆+𝑖∞∫︁
𝜆−𝑖∞

{︂
𝑐 cos 𝑠𝜃1

𝜋𝑠 sin(𝜋𝑠)𝑠(1 + 𝑠)Γ(𝑠 + 5/2)
−

2

3𝜋 sin(𝑠𝜋/2)

}︂
𝑟−𝑠
1 𝑑𝑠

for 0 < 𝜆 < 1.

2.2. Shape of the free surface and the evaluation of the line integral (27)

Of particular interest now is the form of free-surface that this integral solution represents.
The line integral (27) may be turned into a contour integral in Re(𝑠) > 0 by noting that the

integrand decays on the semicircle 𝑠 = 𝜌𝑒𝑖𝜃, −
𝜋

2
< 𝜃 <

𝜋

2
and a simple application of residue

theorem gives

𝜁(𝑟1) = −
𝑐

2

∞∑︁
𝑛=1

(−1)𝑛(1/𝜋𝑟1)
2𝑛

2𝑛(2𝑛 + 1)Γ(2𝑛 + 3/2)
. (28)

The ratio test reveals that this series is convergent for all 𝑟1 ̸= 0. In fact for large 𝑟1 the
series is asymptotic and 𝜁 = 𝑂(1/𝑟21) from (28). However at 𝑟1 = 0 the series in (28) diverges
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and a rather different approach to the evaluation of 𝜁 is needed for small 𝑟1. Since the line
integral can not be made into a contour integral by addition of a semicircle in the left-s-plane
(due to the growth in the gamma function) we consider a rectangular contour surrounding
only the poles at 𝑠 = −1, 0 of the integral (27). Using that rectangular contour, we obtain,

𝜁(𝑟1) =
𝑐𝜋

4

{︃
2

𝜋Γ(3/2)

(︃
log

(︃
1

𝜋𝑟1

)︃
− 1 −

Γ′(3/2)

Γ(3/2)
+

𝜋2𝑟1

4

)︃}︃
+ 𝑜(𝑟1), (29)

as 𝑟1 → 0.

Recalling that the physical free-surface elevation is 𝜉2 = 𝜁 + (1/𝜋)(log 𝑟1 + 𝜇), the loga-
rithmic term can be eliminated by choosing 𝑐 as 1/

√
𝜋. Thus the form of free surface 𝜁(𝑟1)

for small 𝑟1 in (29) is obtained

𝜉2 =
1

𝜋

{︂
log(− log 𝑡) + log

(︃
1

4

)︃
− 1 −

Γ′(3/2)

Γ(3/2)
+

𝜋2𝑟1

4

}︂
+ 𝑜(𝑟1), (30)

and the form of free surface 𝜁(𝑟1) for large 𝑟1 is

𝜉2 =
1

𝜋

{︃
log 𝑟1 + log(− log 𝑡) + log

(︃
𝜋

4

)︃}︃
−

1

2
√
𝜋

∞∑︁
𝑛=1

(−1)𝑛(1/𝜋𝑟1)
2𝑛

2𝑛(2𝑛 + 1)Γ(2𝑛 + 3/2)
. (31)

Now, we will show that the outer and inner solutions match satisfactorily using numer-
ical calculations. The correction to the leading order free-surface elevation, 𝜉2(𝜂) can be
written as

𝜉2(𝜂) =
1

𝜋
(log 𝜂 + 𝜇) +

√
𝜋

4

1

2𝜋𝑖

𝜏+𝑖∞∫︁
𝜏−𝑖∞

(1/𝜋𝜂)𝑠

𝑠(1 + 𝑠) sin(𝑠𝜋/2)Γ(𝑠 + 3/2)
𝑑𝑠 (32)

with 0 < 𝜏 < 2. The integral appearing in (32) is of 𝑂(1/𝜂2) as 𝜂 → ∞ so that 𝜉2(𝜂) matches
the outer solution as 𝜂 → ∞ satisfactorily with a relative error of 10−4 as 𝑦 varies between
−0.9 and −0.995 as we see from the Table 1. The series in (31) are calculated for 𝑁 = 70,
which gives a maximum relative error of 10−9.

The light gray region in Table 1 shows the matching between the outer solution and the
inner solution for large 𝑟 and the dark gray region shows the matching between the two
forms of the inner solutions.

To compare the expressions for free surface functions (30) with that of Korobkin &
Yilmaz [9], it is convenient to rewrite the expression (30) in dimensional variables as,

𝑥
′

=
𝑔𝑡

′2

𝜋
log

𝑔𝑡
′2

𝐻
+

𝑔𝑡
′2

𝜋
log

𝜋

4
−

𝑔𝑡
′2

𝜋

(︃
1 +

Γ
′
(3/2)

Γ(3/2)

)︃
+

+
𝑔𝑡

′2

𝜋
log
(︁
− log(𝑡

′√︀
𝑔/𝐻)

)︁
−

𝜋

4

𝑦
′
+ 𝐻

log(𝑡′
√︀

𝑔/𝐻)
. (33)
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T a b l e 1. Comparison of the inner solutions (I.S.) of 𝜉(𝑦, 𝑡) near intersection point for 𝑡 = 0.04

𝑦 Outer Solution I.S. for Large r I.S. for Small r

𝑦 = −0.4 −0.00034340 −0.00038318 0.14248134

𝑦 = −0.6 −0.00057253 −0.00058969 0.09368181

𝑦 = −0.8 −0.00093849 −0.00094270 0.04488228

𝑦 = −0.9 −0.00129467 −0.00129571 0.020482515

𝑦 = −0.92 −0.00140869 −0.00140936 0.01560256

𝑦 = −0.94 −0.00155550 −0.00155586 0.01072260

𝑦 = −0.96 −0.00176222 −0.00176234 0.00584265

𝑦 = −0.98 −0.00211536 −0.00211525 0.00096270

𝑦 = −0.99 −0.00246841 −0.00246781 −0.00147727

𝑦 = −0.995 −0.00282143 −0.00281901 −0.00269726

𝑦 = −0.999 −0.00364111 −0.00358329 −0.00367325

𝑦 = −0.9992 −0.00375476 −0.00366690 −0.00372205

𝑦 = −0.9994 −0.00390127 −0.00375409 −0.00377085

𝑦 = −0.9996 −0.00410778 −0.00382576 −0.00381965

𝑦 = −0.9998 −0.00446079 −0.00386599 −0.00386845

𝑦 = −0.9999 −0.00481381 −0.00389300 −0.00389285

𝑦 = −0.99992 −0.00492746 −0.00389740 −0.00389773

𝑦 = −0.99994 −0.00507397 −0.00390249 −0.00390261

𝑦 = −0.99996 −0.00528047 −0.00385408 −0.00390749

𝑦 = −0.99998 −0.00563349 −2.8631× 1017 −0.00391237

𝑦 = −0.99999 −0.00598651 −∞ −0.00391481

The corresponding expression of Korobkin & Yilmaz [9] is

𝑥
′
=

𝑔𝑡
′2

𝜋
log

𝑔𝑡
′2

𝐻
+

𝑔𝑡
′2

𝜋
log

𝜋

4
−

𝑔𝑡
′2

𝜋

(︃
1

3
− log

𝑎

𝜖

)︃
+

+
𝑔𝑡

′2

2𝜋
log

(︃
(𝑦

′
+ 𝐻)2

𝑡′4
𝜖2

𝑎2𝑔2
+

1

9𝜋2

)︃
+

+(𝑦
′
+ 𝐻)

𝜖

𝑎
arctan

(︃
1

3𝜋

𝑔𝑡
′2

𝑦′ + 𝐻

𝑎

𝜖

)︃
−

𝜋

2
𝑔𝑡

′2
𝑆

(︃
𝜖

𝑎𝑔

𝑦
′
+ 𝐻

𝑡′2

)︃
, (34)

where

𝑆(𝑢) =
8

9𝜋2

∞∫︁
0

(︁
(3 − 𝜏 2)𝑒−𝜏2/6 − 3 cos 𝜏

)︁
cos
(︀
𝑢𝜏 2/𝜋

)︀ 𝑑𝜏
𝜏 3
,

𝑎 = −𝜖 log 𝑎, 𝜖 = 𝑔𝑇 2/𝐻,

and 𝑇 is a suitable time scale. The first two terms in the expression (33) match exactly with
those of (34) and the third term of (33) is almost the same as that of (34). However it is
difficult to compare the last two terms.
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Fig. 3. The comparison of the shape of the free surface using the two methods for dimensional
variables 𝑡

′
= 0.0143 s, 𝐻 = 1m, 𝑔 = 9.81m/s2

The tangent of the angle between the free surface and the bed is calculated by differenti-
ating the equations (33) and (34). In the leading order both equations (33) and (34) provide
the same formula,

𝑑𝑦
′

𝑑𝑥′ = −
2

𝜋
log

(︃
𝑔𝑡

′2

𝐻

)︃
, (35)

at the intersection point. Next we compare the expressions numerically and visually in
a graph.

In Fig. 3 the shape of the free surface in the inner region is plotted with the dimensional
variables using the present method and the method of Korobkin & Yilmaz [9]. Note that the
present method which is based on the Mellin transform, is different from that of Korobkin &
Yilmaz [9] which makes use of complex analytic function theory. The shapes of free surfaces
in Fig. 3 are quite close to each other. Maximum relative discrepancy between the results is
about 0.01.

One can observe from the shape of the physical free surface in dimensional variables,
shown in Fig. 3, that a jet is formed near the intersection point. Note that very close to
the bottom the free surface shape becomes almost perpendicular to the 𝑥-axis. In Fig. 3
the angle between the free surface and the bottom is about 75 deg and it decreases as time
increases (see equation (35)). There is also the problem of discontinuity at the point where
the horizontal free surface meets the vertical free surface, (0, 0), which we address in the
next section.

3. The shape of the free surfaces at the upper corner point

To describe the shape of the free surface at the upper corner point (0, 0), Lagrangian variables
should be used, for we should be able to follow the fluid particles outside the domain, 𝑥 > 0.
The velocities of the fluid can be written by differentiating the leading order pressure (12),
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Fig. 4. The shapes of the free surfaces in dimensionless variables at the leading order for times
𝑡 = 0.2, 𝑡 = 0.4 and 𝑡 = 0.6

𝑢 =
𝑑𝑥

𝑑𝑡
= −𝑡

∞∑︁
𝑛=0

8(−1)𝑛

(2𝑛 + 1)2𝜋2

(︂
− (2𝑛 + 1)

𝜋

2

)︂
sin

(︂
(2𝑛 + 1)

𝜋

2
𝑦

)︂
𝑒−(2𝑛+1)𝜋

2
𝑥, 𝑡 > 0, (36)

𝑣 =
𝑑𝑦

𝑑𝑡
= −𝑡

∞∑︁
𝑛=0

8(−1)𝑛

(2𝑛 + 1)2𝜋2

(︂
(2𝑛 + 1)

𝜋

2

)︂
cos

(︂
(2𝑛 + 1)

𝜋

2
𝑦

)︂
𝑒−(2𝑛+1)𝜋

2
𝑥, 𝑡 > 0.

The sum of the infinite series in (36) is found as

𝑑𝑥

𝑑𝑡
= −

2𝑡

𝜋
log

⎯⎸⎸⎸⎸⎸⎸⎸⎸⎷
(1 − 𝑒−𝜋𝑥)2 +

(︃
2 cos

𝜋

2
𝑦𝑒−𝜋𝑥/2

)︃2

(︃
1 + 𝑒−𝜋𝑥 + 2 sin

𝜋

2
𝑦𝑒−𝜋𝑥/2

)︃2 , 𝑡 > 0, (37)

𝑑𝑦

𝑑𝑡
= −

2𝑡

𝜋
arctan

⎛⎜⎜⎝2 cos
𝜋

2
𝑦𝑒−𝜋𝑥/2

1 − 𝑒−𝜋𝑥

⎞⎟⎟⎠ , 𝑡 > 0.

The solution to the coupled nonlinear differential equations (37) is carried out by adaptive
step size Runge — Kutta numerical routine with an initial condition imposed at 𝑡 = 0. The
shape of the free surfaces near the upper corner point (0,0) is seen in Fig. 4, for different
times, with dotted lines denoting the initial shape at 𝑡 = 0.
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4. Second-order outer solution

In order to derive the second-order solution, the domain decomposition method is used
[11 – 13]. In this method, the flow domain is divided into a number of overlapping sub-
domains. General solutions of the original problem are obtained with some undetermined
coefficients in each of the sub-domains. Then the solutions are matched using some colloca-
tion points along the boundaries of the sub domains to determine the unknown coefficients.
The sizes of the sub domains, the number of the collocation points on the boundaries and
the number of terms retained in the solutions of the problem in each sub-domain are the
important parameters of the domain decomposition method.

We shall first solve the leading order problem of the dam-break flow by the domain
decomposition method and compare the obtained results with the solution (12) by the Fourier
series method to determine the optimum parameters for the method. In this method, we
divide the flow domain into three regions: Region 1 is the quarter disk of radius 𝑟1 about
the upper corner point, Region 2 is the quarter disk of radius 𝑟2 about the bottom corner
point and Region 3 is the semi-infinite strip 𝑥 > 𝑥3 (see Fig. 5). The idea is to find general
solutions of the boundary problem (8)–(11) in these three regions. Note that each of the
regions include only two of the three boundaries of the total region. Then the solutions are
matched on the boundaries of sub regions and the corresponding coefficients of the expansions
in each region are determined.

Let 𝑟 and 𝜃 be the polar coordinates about the origin, 𝑥 = 0, 𝑦 = 0, and 𝑟 and 𝜃 be
the polar coordinates centred at 𝑥 = 0, 𝑦 = −1. It is convenient to introduce the shifted
coordinates denoted by tilde, �̃� = 𝑥, 𝑦 = 𝑦 + 1.

A general solution of (8), (10) in Region 1 (𝑅1) is

𝑝0 =
∞∑︁
𝑛=1

𝐶𝐼
𝑛𝑟

2𝑛 sin(2𝑛𝜃), −
𝜋

2
≤ 𝜃 ≤ 0, 𝑟 < 𝑟1.

A general solution of (8)–(10) in Region 2 (𝑅2) reads,

𝑝0 = −𝑦 +
2

𝜋

[︃(︃
1 − log

(︃
𝜋

4

)︃)︃
�̃�− �̃� log 𝑟 + 𝜃𝑦

]︃
+

∞∑︁
𝑛=1

𝐶𝐼𝐼
𝑛 𝑟2𝑛−1 cos((2𝑛− 1)𝜃),

0 ≤ 𝜃 ≤
𝜋

2
, 𝑟 < 𝑟2,

Fig. 5. Sketch of the decomposition adopte
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and, a general solution in Region 3 (𝑅3), which satisfies (8)–(11) except the condition at
𝑥 = 0, is

𝑝0 = (1 − 𝑦) +
∞∑︁
𝑛=1

𝐶𝐼𝐼𝐼
𝑛 cos

(︃
𝜋

2
(2𝑛− 1)𝑦

)︃
exp

(︃
−
𝜋

2
(2𝑛− 1)�̃�

)︃
, �̃� > 𝑥3.

The decomposition is applied with 𝑟2 = 𝑟1, 𝑥3 = 𝑟1/2 and 𝑟1 > 1/2. The coefficients
in the expansions are obtained by a collocation method on a number of points which is
larger than the number of the unknown coefficients. So that an over-determined system of
equations is obtained and solved by the method of Singular Value Decomposition.

Let 𝑁𝑖 denote the number of terms in the expansion considered for region 𝑅𝑖, 𝑖 = 1, 2, 3.
The number of collocation points on the boundary of the regions 𝑅𝑖 and 𝑅𝑗 is chosen to be
𝑁𝑐𝑁𝑖 +𝑁𝑐𝑁𝑗 where 𝑁𝑐 is an integer larger than unity. Due to the peculiarity of the solution
in region 2, the number of terms for this region is chosen to be two times larger than the
other two regions. So, there are three parameters to be selected: the number of terms in the
expansions 𝑁𝑖, the free parameter 𝑁𝑐 and the radius 𝑟1. We get the best solution for the
leading order using the parameters 𝑁1 = 𝑁3 = 8, 𝑁2 = 16, 𝑁𝑐 = 8 and 𝑟1 = 0.8. In order to
validate the procedure, the domain decomposition solution is compared with the analytical
solution (Table 2).

In Table 2 the pressure at the line segment 𝑥 = 0.4,−0.98 < 𝑦 < −0.1 are compared and
it is found that the maximum relative error is 2.036 · 10−6. In Table 3, we aim to investigate
the effect of the free parameter 𝑁𝑐 on the coefficients. It is seen that increasing 𝑁𝑐 from 8
to 10 or 12, which has the effect of increasing the number of collocation points, does not
change the coefficients significantly.

It is seen from Tables 2 and 3 that the domain decomposition method works well
for the leading order problem. Now this method is applied to the second-order problem.

T a b l e 2. Comparison of the leading order pressure 𝑝0(0.4, 𝑦) at the distance 𝑥 = 0.4 from the
vertical free surface given by the analytical solution (12) (second column, A.S.) with the solution
by the domain decomposition method (third column, D.D.S.)

𝑦 A.S. D.D.S. Rel. Err.

𝑦 = −0.1 0.03772292 0.03772284 2.036 · 10−6

𝑦 = −0.2 0.07618666 0.07618652 1.838 · 10−6

𝑦 = −0.3 0.11619080 0.11619080 2.012 · 10−8

𝑦 = −0.4 0.15865982 0.15866034 3.285 · 10−7

𝑦 = −0.5 0.2047235 0.20472455 5.050 · 10−8

𝑦 = −0.6 0.25581418 0.25581716 1.167 · 10−7

𝑦 = −0.7 0.31376662 0.31376923 8.324 · 10−8

𝑦 = −0.8 0.38085756 0.38085983 5.978 · 10−8

𝑦 = −0.9 0.45962375 0.45962585 4.558 · 10−8

𝑦 = −0.92 0.47698906 0.47698698 4.348 · 10−8

𝑦 = −0.94 0.49492189 0.49492395 4.160 · 10−8

𝑦 = −0.96 0.51343904 0.51344109 3.988 · 10−8

𝑦 = −0.98 0.53254616 0.53254820 3.832 · 10−8
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T a b l e 3. Effect of the free parameter 𝑁𝑐 on the coefficients

𝐶 𝑁𝑐 = 8 𝑁𝑐 = 10 𝑁𝑐 = 12

𝐶𝐼
1 −0.589675 −0.585556 −0.584781

𝐶𝐼
2 0.161116 0.161908 0.161601

𝐶𝐼
3 0.044510 0.044659 0.044744

𝐶𝐼
4 0.100245 0.100737 0.101034

𝐶𝐼
5 0.074988 0.075511 0.075808

𝐶𝐼
6 0.136470 0.138244 0.139307

𝐶𝐼
7 0.158118 0.160940 0.162633

𝐶𝐼
8 0.200447 0.200983 0.201161

𝐶𝐼𝐼
1 0.17168 0.170632 0.169947

𝐶𝐼𝐼
2 0.152807 0.153092 0.153275

𝐶𝐼𝐼
3 0.061146 0.061409 0.061579

𝐶𝐼𝐼
4 0.042178 0.042119 0.042081

𝐶𝐼𝐼
5 0.033989 0.034421 0.034701

𝐶𝐼𝐼
6 0.049782 0.049885 0.049947

𝐶𝐼𝐼
7 0.049615 0.049748 0.049828

𝐶𝐼𝐼
8 0.023350 0.025080 0.026204

𝐶𝐼𝐼
9 0.064207 0.064415 0.064544

𝐶𝐼𝐼
10 0.105125 0.105555 0.105819

𝐶𝐼𝐼
11 0.049159 0.054885 0.058603

𝐶𝐼𝐼
12 0.148866 0.148929 0.148907

𝐶𝐼𝐼
13 0.181092 0.184229 0.186180

𝐶𝐼𝐼
14 −0.052022 −0.030383 −0.016215

𝐶𝐼𝐼
15 0.508789 0.504884 0.502257

𝐶𝐼𝐼
16 0.718653 0.732841 0.741539

𝐶𝐼𝐼𝐼
1 −0.414390 −0.415800 −0.416708

𝐶𝐼𝐼𝐼
2 1.525835 1.527664 1.528866

𝐶𝐼𝐼𝐼
3 −1.864034 −1.865337 1.866100

𝐶𝐼𝐼𝐼
4 6.345436 6.356601 6.363730

𝐶𝐼𝐼𝐼
5 −13.89871 −13.92205 −13.93554

𝐶𝐼𝐼𝐼
6 49.18452 49.38880 49.51692

𝐶𝐼𝐼𝐼
7 −105.4966 −105.5670 −105.5876

𝐶𝐼𝐼𝐼
8 425.9344 427.5115 428.4633

The second-order problem is derived from the boundary value problem (1)–(6),

△𝑝2 = −2(𝑢2
1,𝑥 + 𝑢2

1,𝑦), −1 ≤ 𝑦 ≤ 0, 0 ≤ 𝑥 < ∞,

𝑝2(𝑥, 0) = 2𝜂22(𝑥) + 𝜂2(𝑥), 𝑝2(0, 𝑦) = 2𝜉22(𝑦),

𝑝2,𝑦(𝑥,−1) = 0, 𝑝2 → 0 as 𝑥 → ∞,

where 𝜂2(𝑥) and 𝜉2(𝑦) are the leading order terms of the horizontal and vertical free surfaces
respectively, as given in (9). General solution in Region 1 is written in the form:
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𝑝2 =
1

2
𝑣1 + (𝑣21 − 𝑢2
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4
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+
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𝜋

2
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𝑝2 =
3

2
(𝑢2

1 − 𝑣21 + 1) +
∞∑︁
𝑛=1

𝐶𝐼𝐼
𝑛 𝑟2𝑛−1 cos((2𝑛− 1)𝜃) − 𝑢2

1, 0 ≤ 𝜃 ≤
𝜋

2
,

in Region 3,

𝑝2 =
1

2
(𝑣1 + 𝑣21 − 𝑢2

1 + 𝑢1𝑥 + 𝑣1𝑦)+

+
∞∑︁
𝑛=1

𝐶𝐼𝐼𝐼
𝑛 cos

(︃
𝜋

2
(2𝑛− 1)𝑦

)︃
exp

(︃
𝜋

2
(2𝑛− 1)�̃�

)︃
− 𝑢2

1, �̃� > 𝑥3.

The velocities of the fluid at the second order can be written by using these second order
solutions as

𝑢 =
𝑑𝑥

𝑑𝑡
= 𝑡𝑢1 −

𝑡3

3
(𝑢1𝑢1,𝑥 + 𝑣1𝑢1,𝑦 + 𝑝2,𝑥), 𝑡 > 0,

𝑣 =
𝑑𝑦

𝑑𝑡
= 𝑡𝑣1 −

𝑡3

3
(𝑢1𝑣1,𝑥 + 𝑣1𝑣1,𝑦 + 𝑝2,𝑦), 𝑡 > 0.

As with the first order solution, the solution to the second order problem is carried out
by adaptive step size Runge — Kutta numerical routine with an initial condition imposed
at 𝑡 = 0. The second order solution is obtained using the domain decomposition method
described above and the comparison of the shapes of the free surfaces near the upper corner
point using leading and second order solutions with Lagrangian variables is given in Fig. 6.

Fig. 6. The shapes of the free surfaces in dimen-
sionless variables with the comparison of the
leading order and second order for 𝑡 = 0.2

Fig. 7. The shapes of the free surfaces in dimen-
sionless variables at the second order for differ-
ent times
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Fig. 8. The shapes of the free surfaces at the second order for 𝑡 = 0.2

It is seen that the second order solution makes a larger difference in the vertical free surface
than in the horizontal free surface. In Fig. 7, the shapes of the free surfaces near the upper
corner point is plotted using both leading and second order solutions for different times.
Finally the complete picture of the shapes of the free surfaces using Lagrangian description
for the upper part and Eulerian description for the bottom part at the second order can be
seen in Fig. 8.

5. Conclusions and remarks

The linear leading-order outer problem of the two-dimensional dam break flow has been
solved by the Fourier series method and the Domain decomposition method. Comparison of
the leading order solutions of both methods show good agreement. By the analytical solution,
it is observed that the flow is log singular at the bottom point which appears as a jet formation
starting from this point. The leading-order inner region solution and the correction to the
leading order is obtained by using an integral transform method (Mellin transform). From
the free surface shape in the inner region it is found that a jet is formed. The comparison
of the free surface shapes by the present method and the method of Korobkin & Yilmaz [9]
shows that the two methods give quite close results. However due to the particularity of the
present method an artificial discontinuity of the free surface appears at a point very close to
the bed. The angle between the free surface and the bed predicted by both methods is the
same at the leading order.

The second order outer solution is calculated to determine the shape of the free surface
at the upper corner point (0, 0). Lagrangian variables is needed to follow the fluid particles
outside the fluid domain instead of Eulerian variables. Comparison of the shapes of the free
surfaces near the upper corner point with leading and second order solutions showed that
the second order solution outer makes a larger difference in the vertical free surface than in
the horizontal free surface, compared with leading order solution.

The complete picture of the shapes of the free surfaces using Lagrangian description for
the upper part and Eulerian description for the bottom part at the second order is obtained.
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