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Problems of feedback target control for linear and bilinear discrete-time systems un-
der uncertainties and state constraints are considered. We continue the development
of methods of control synthesis using polyhedral (parallelotope-valued) solvability tu-
bes. The paper deals with two types of problems, where the controls appear either
additively or in the system matrix (i. e., in the coefficients of the system). Both pro-
blems are considered for systems with parallelotope-bounded additive uncertainty and
with interval uncertainties in the coefficients. Moreover the systems are considered
under constraints on the state. The techniques for calculation of the polyhedral solva-
bility tubes by the recurrent relations are presented. Control strategies, which can be
constructed on the base of the mentioned polyhedral tubes by explicit formulas, are
proposed. Illustrative examples are given.
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Introduction

We consider problems of feedback target control for linear and bilinear discrete-time sys-
tems with a fixed terminal time under uncertainties and geometric (hard) time-dependent
constraints on the states. There exist a number of approaches to the solution for this kind
of problems, including those for differential systems, based on construction of solvability
tubes [1 – 3]. The problem statement for differential systems, approaches to their solution
and the tight interconnections between solvability tubes (in other terms, maximal stable
bridges, Krasovskii’s bridges, backward reachable tubes), the Pontryagin alternated integral,
Hamilton-Jacobi-Bellman equations, and funnel equations can be found in [2 – 5]. A problem
of target control, which is close in some sense, was considered in viability theory for time-
invariant systems with a given target set under a time-independent state constraint, where
a set of initial states (so called capture basin) should be constructed in a state space [6, 7].
Since practical construction of the trajectory tubes for different problems in control theory
(in particular, the solvability tubes, reachable tubes, viable trajectory tubes) as well as of so
called “kernels” from viability theory may be cumbersome, various numerical methods have
been developed. In particular, these are methods for approximating the set-valued solutions
and for numerical solution of the above mentioned equations, including methods based on
approximations of sets either by arbitrary polytopes with a large number of vertices or by
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unions of a large number of points [7 – 14] (here and below, we note, as examples, only some
references from numerous publications; see also references therein). Such methods are desig-
ned to obtain the most accurate approximations of the solution sets. But they can require
a lot of calculations, especially for large dimensional systems.

A number of methods are based on using estimates of the sets by domains with a fixed
shape, such as ellipsoids and parallelotopes [2, 3, 5, 8, 15–26]. The main advantage of such
techniques is that they enable us to get approximate/particular solutions by rather simple
means (up to explicit formulas). More accurate approximations may be obtained by using
families (varieties) of such simple estimates (as suggested by A.B. Kurzhanski) [2,3,5,18–26].

The techniques based on using ellipsoids and parallelotopes are ideologically close to
methods of interval analysis [27, 28]. Some applications of the methods of interval analysis
to solving control problems can be found in [29–33]. Some of the proposed methods can
give rather conservative estimates for the sets under consideration due to the well-known
“wrapping effect” [27, 28]. Several techniques have been proposed to reduce this effect, in
particular, methods based on a partitioning process and using so called subpavings (sets of
non-overlapping boxes or interval vectors) [31, 33]. Such methods can give rather accurate
guaranteed inner and outer approximations but may require extensive computation and
memory for large dimensional systems.

As for solving the feedback target control problems for differential and discrete-time
systems, constructive computation schemes that employ ellipsoidal techniques were proposed
[2,3,5,18,19] and then expanded to the polyhedral techniques [20,22,24–26] (this had required
the development of a quite different techniques).

In the present paper, we continue the development of methods of the polyhedral control
synthesis for linear and bilinear discrete-time uncertain systems using polyhedral (parallelo-
tope-valued) solvability tubes. The paper deals with two types of problems, where the con-
trols appear either additively or in the system matrix (i. e., in the coefficients of the system).
Both problems are considered for systems with parallelotope-bounded additive uncertainty
and with interval uncertainties in the coefficients (the matrix uncertainty). Moreover the sy-
stems are considered under time-dependent geometric (hard) constraints on the state, where
the state constraints are described in terms of zones (i. e., intersections of strips). Note
that the systems with controls (or uncertainties) in the system matrix are of bilinear type
and have properties of nonlinear systems. In particular, it is known that reachable sets of
systems with uncertain matrices can be non-convex in contrast to reachable sets of linear
systems with convex constraints on controls and initial states (see, for example, [10,34] and
reference [5] from [15]). The same is true for the solvability tubes even for the case without
uncertainties and state constraints because such solvability tubes are backward reachability
tubes. The key issue here is to find suitable techniques which can produce solutions to the
problems without being too computationally demanding. Recall that in [22] only the first
of the mentioned two problems was considered for the case without the matrix uncertainty,
while in [24–26] these problems were considered without state constraints. In the present
paper, the techniques for calculation of the polyhedral solvability tubes by the recurrent
relations are presented. Control strategies, which can be constructed on the base of the
mentioned polyhedral tubes, are proposed. In contrast to [20, 22], these control strategies
can be calculated by explicit formulas. Illustrative examples are given.

We use the following notation: R𝑛 is the 𝑛-dimensional vector space; (𝑥, 𝑦) = 𝑥⊤𝑦
is the scalar product for 𝑥, 𝑦 ∈ R𝑛; ⊤ is the transposition symbol; ‖𝑥‖2 = (𝑥⊤𝑥)1/2,
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‖𝑥‖∞ = max
1≤𝑖≤𝑛

|𝑥𝑖| are the vector norms for 𝑥 = (𝑥1, . . . , 𝑥𝑛)⊤ ∈ R𝑛; e𝑖 = (0, . . . , 0, 1, 0,

. . . , 0)⊤ is the unit vector oriented along the axis 𝑥𝑖 (the unit stands at position 𝑖); e = (1, 1,

. . . , 1)⊤; R𝑛×𝑚 is the space of real 𝑛×𝑚-matrices 𝐴 = {𝑎𝑗𝑖} = {𝑎𝑗} with elements 𝑎𝑗𝑖 and
columns 𝑎𝑗 (the upper index numbers the columns and the lower index numbers the compo-
nents of vectors); 𝐼 is the identity matrix; 0 is the zero matrix (vector); Abs𝐴 = {|𝑎𝑗𝑖 |} for
𝐴 = {𝑎𝑗𝑖} ∈ R𝑛×𝑚; diag 𝜋, diag {𝜋𝑖} are the diagonal matrix 𝐴 with 𝑎𝑖𝑖 = 𝜋𝑖 (𝜋𝑖 are the com-

ponents of the vector 𝜋); det𝐴 is the determinant of 𝐴 ∈ R𝑛×𝑛; ‖𝐴‖ = max
1≤𝑖≤𝑛

𝑚∑︀
𝑗=1

|𝑎𝑗𝑖 | is the

matrix norm for 𝐴∈R𝑛×𝑚 induced by the vector norm ‖𝑥‖∞; and the notation 𝑘 = 1, . . . , 𝑁
is used instead of 𝑘 = 1, 2, . . . , 𝑁 for brevity.

1. Problems formulation

Let 𝑥 ∈ R𝑛 denote the state. Consider the system

𝑥[𝑘] = (𝐴[𝑘] + 𝑉 [𝑘] + 𝑈 [𝑘])𝑥[𝑘 − 1] + 𝐵[𝑘]𝑢[𝑘] + 𝐶[𝑘]𝑣[𝑘], 𝑘 = 1, . . . , 𝑁,

𝑥[𝑁 ] ∈ ℳ
(1)

with a given terminal (target) set ℳ. Here 𝐴[𝑘] ∈ R𝑛×𝑛, 𝐵[𝑘] ∈ R𝑛×𝑛𝑢 , 𝐶[𝑘] ∈ R𝑛×𝑛𝑣 are
given matrices; 𝑈 [𝑘] ∈ R𝑛×𝑛 and 𝑢[𝑘] ∈ R𝑛𝑢 serve as controls and satisfy either (2) or (3):

𝑈 [𝑘] ≡ 0, 𝑢[𝑘] ∈ ℛ[𝑘] ⊂ R𝑛𝑢 , 𝑘 = 1, . . . , 𝑁, (2)

𝑈 [𝑘] ∈ 𝒰 [𝑘] = {𝑈 ∈ R𝑛×𝑛|Abs (𝑈 − �̃� [𝑘]) ≤ �̂� [𝑘]}, 𝑢[𝑘] ≡ 0; (3)

𝑣[𝑘] ∈ R𝑛𝑣 (unknown but bounded disturbances) and 𝑉 [𝑘] ∈ R𝑛×𝑛 (matrix uncertainties)
are subjected to given set-valued constraints:

𝑣[𝑘] ∈ 𝒬[𝑘] ⊂ R𝑛𝑣 , 𝑘 = 1, . . . , 𝑁, (4)

𝑉 [𝑘] ∈ 𝒱 [𝑘] = {𝑉 ∈ R𝑛×𝑛|Abs (𝑉 − 𝑉 [𝑘]) ≤ 𝑉 [𝑘]}, 𝑘 = 1, . . . , 𝑁. (5)

The functions 𝑣[·] and 𝑉 [·] satisfying (4) and (5) are called admissible. Matrix and vector
inequalities (≤, <,≥, >) here and below are understood component-wise.

Below we consider the following cases: (A) without uncertainty: when 𝑣 and 𝑉 ≡ 0 are
given functions, i. e., �̄� ≡ 0, 𝑉 ≡ 𝑉 ≡ 0; (B) under uncertainty including the following two
subcases: (B,i) only additive uncertainty (𝑉 ≡ 0); (B,ii) also matrix uncertainty (𝑉 ̸≡ 0).

The system is complicated by the state constraints:

𝑥[𝑘] ∈ 𝒴 [𝑘] ⊂ R𝑛, 𝑘 = 0, . . . , 𝑁−1. (6)

We presume the given sets ℛ[𝑘] to be parallelepipeds, 𝒬[𝑘] to be parallelotopes, ℳ to
be a parallelepiped, and 𝒴 [𝑘] to be zones. Let us recall the definitions of the objects we have
just mentioned and will use below.

By a parallelepiped 𝒫(𝑝, 𝑃 , 𝜋) ⊂ R𝑛 we mean a set such that 𝒫 = 𝒫(𝑝, 𝑃 , 𝜋) = {𝑥 ∈ R𝑛|
𝑥 = 𝑝 +

𝑛∑︀
𝑖=1

𝑝𝑖𝜋𝑖𝜉𝑖, ‖𝜉‖∞ ≤ 1}, where 𝑝 ∈ R𝑛; 𝑃 = {𝑝𝑖} ∈ R𝑛×𝑛 is a nonsingular matrix

(det𝑃 ̸= 0) such that ‖𝑝𝑖‖2 = 1; 𝜋 ∈ R𝑛, 𝜋 ≥ 0; the condition ‖𝑝𝑖‖2 = 1 may be omitted
to simplify formulas. It may be said that 𝑝 determines the center of the parallelepiped, 𝑃 is
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the orientation matrix, 𝑝𝑖 are the “directions”, and 𝜋𝑖 are the values of its “semi-axes”. We
call a parallelepiped nondegenerate if all 𝜋𝑖 > 0.

By a parallelotope 𝒫 [𝑝, 𝑃 ] ⊂ R𝑛 we mean a set 𝒫 = 𝒫 [𝑝, 𝑃 ] = {𝑥| 𝑥 = 𝑝+𝑃𝜉, ‖𝜉‖∞ ≤ 1},
where 𝑝 ∈ R𝑛 and 𝑃 = {𝑝𝑖} ∈ R𝑛×𝑚, 𝑚 ≤ 𝑛. We call a parallelotope 𝒫 nondegenerate if
𝑚 = 𝑛 and det𝑃 ̸= 0.

By a zone (or 𝑚-zone) 𝒮 = 𝒮(𝑐, 𝑆, 𝜎,𝑚) ⊂ R𝑛 we mean an intersection of 𝑚 ≤ 𝑛 strips

Σ𝑖: 𝒮 = 𝒮(𝑐, 𝑆, 𝜎,𝑚) =
𝑚⋂︀
𝑖=1

Σ𝑖, Σ𝑖 = Σ(𝑐𝑗, 𝑠
𝑗, 𝜎𝑗) = {𝑥 | |(𝑥, 𝑠𝑖) − 𝑐𝑖| ≤ 𝜎𝑖}, where 𝑐 ∈ R𝑚;

𝑆 = {𝑠𝑖} ∈ R𝑛×𝑚, vectors 𝑠𝑖 are linearly independent; 𝜎 ∈ R𝑚, 𝜎 ≥ 0.

Each parallelepiped 𝒫(𝑝, 𝑃 , 𝜋) is a parallelotope 𝒫 [𝑝, 𝑃 ] with 𝑃 = 𝑃 · diag 𝜋. Each
nondegenerate parallelotope is a parallelepiped with 𝑃 = 𝑃 diag {‖𝑝𝑖‖−1

2 }, 𝜋𝑖 = ‖𝑝𝑖‖2 or, in
a different way, with 𝑃 = 𝑃 , 𝜋 = e, where e = (1, . . . , 1)⊤. Each parallelepiped is a zone,
and vice versa if 𝑚 = 𝑛 (corresponding formulas can be found in [21, p. 65]).

Let us consider the following problem (with additive controls 𝑢) similar to [2, 3, 19].

Problem 1. Let 𝑈 [𝑘] ≡ 0. For any 𝑖, 0 ≤ 𝑖 ≤ 𝑁−1, find a solvability set 𝒲 [𝑖] and a
feedback control strategy 𝑢 = 𝑢[𝑘, 𝑥] with 𝑢[𝑘, 𝑥]∈ℛ[𝑘] such that each solution 𝑥[·] to

𝑥[𝑘] = (𝐴[𝑘] + 𝑉 [𝑘])𝑥[𝑘−1] + 𝐵[𝑘]𝑢[𝑘, 𝑥[𝑘−1]] + 𝐶[𝑘]𝑣[𝑘], 𝑘 = 𝑖+1, . . . , 𝑁,

that start from any 𝑥[𝑖] ∈ 𝒲 [𝑖] would reach the target set (𝑥[𝑁 ] ∈ ℳ) and satisfy state
constraints (6) whatever are admissible functions 𝑣[·], 𝑉 [·] subjected to (4), (5).

Similarly to [2,3], we say that the multivalued function 𝒲 [𝑘], 𝑘 = 0, . . . , 𝑁 , is a solvability
tube 𝒲 [·]1.

The tube 𝒲 [·] describes the set of all those positions from which the system can reach
the given target set in specified time, ensuring viability under uncertainties (contractions)
and using all possible controls.

Everywhere below we accept the following assumption.

Assumption 1. The set ℳ = 𝒫(𝑝f , 𝑃f , 𝜋f) = 𝒫 [𝑝f , 𝑃f ] is a nondegenerate parallelepiped
(det𝑃f ̸= 0); the sets ℛ[𝑘] = 𝒫 [𝑟[𝑘], ℛ̄[𝑘]] are parallelepipeds; 𝒬[𝑘] = 𝒫 [𝑞[𝑘], �̄�[𝑘]] are pa-

rallelotopes; 𝒴 [𝑘] are zones: 𝒴 [𝑘] =
𝑚⋂︀
𝑖=1

Σ𝑖[𝑘], Σ𝑖[𝑘] = Σ(𝑐𝑗[𝑘], 𝑠𝑗[𝑘], 𝜎𝑗[𝑘]) = {𝑥 | |(𝑥, 𝑠𝑖[𝑘]) −

𝑐𝑖[𝑘]| ≤ 𝜎𝑖[𝑘]} (or 𝒴 [𝑘] = R𝑛); all matrices 𝐷[𝑘] = 𝐴[𝑘] + 𝑉 [𝑘] + �̃� [𝑘] are nonsingular2.

The solution to Problem 1 for cases (A), (B,i) (i. e., without matrix uncertainty) is known
(see [19] and [22] for the cases without and under disturbances 𝑣[·] respectively) and may be

1Recall that there are also known other terms for constructions of this kind, for example, maximal stable
bridges [1, 12], Krasovskii bridges [2], solvability tubes under counteraction [2], tubes of strongly invariant
sets under counteraction [2, p. 72], backward reachability (or reach) tubes [3], attainability tubes in backward
time [2] (or, for the case under state constraints, also viability tubes and viable trajectory tubes [3]). Along
with the term solvability sets [2, 3, 11, 19] for the cross-sections of the mentioned tubes the following terms
are also used: backward reachable (or reach) sets [3, 13] and, for the case without uncertainties and state
constraints, also weakly invariant sets [3], and so on. The reach sets are also known as the attainability
sets/domains [2, 3, 9].

2Note that the nonsingularity of matrices 𝐷[𝑘] is not too restrictive for many important cases. In
particular, it holds for the case when systems (1)–(5) are some approximations of similar differential systems.
For example, for the Euler discretization with the step ℎ𝑁 (see Remark 3.3 below and [20]), matrices
𝐷[𝑘] = 𝐴[𝑘] + 𝑉 [𝑘] + �̃� [𝑘] are of the type 𝐷[𝑘] = 𝐼 + ℎ𝑁 (𝐴(𝑡𝑘−1) + 𝑉 (𝑡𝑘−1) + �̃�(𝑡𝑘−1)), where 𝐼 is the
identity matrix. Therefore such matrices 𝐷[𝑘] are nonsingular if the discretization step ℎ𝑁 is sufficiently
small.
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described by the following relations:

𝒲 [𝑘−1] = 𝐴[𝑘]−1((𝒲 [𝑘]−̇𝐶[𝑘]𝒬[𝑘])−𝐵[𝑘]ℛ[𝑘])∩𝒴 [𝑘−1], 𝑘 = 𝑁, . . . , 1,

𝒲 [𝑁 ] = ℳ,
(7)

𝑢[𝑘, 𝑥] ∈ 𝒰 [𝑘, 𝑥] = ℛ[𝑘] ∩ {𝑢 |𝐵[𝑘]𝑢 ∈ (𝒲 [𝑘]−̇𝐶[𝑘]𝒬[𝑘]) − 𝐴[𝑘]𝑥}, (8)

where 𝑢[𝑘, 𝑥] is any function with values in 𝒰 [𝑘, 𝑥].
We have the recurrent relations for 𝒲 [·], which involve operations with sets such as

Minkowski’s sum (𝒳 1+𝒳 2 = {𝑦 | 𝑦 = 𝑥1+𝑥2, 𝑥𝑘 ∈ 𝒳 𝑘}), Minkowski’s difference (𝒳 1−̇𝒳 2 =
{𝑦 | 𝑦+𝒳 1 ⊆ 𝒳 2}), and intersection of sets. The sets 𝒲 [𝑘] are not parallelotopes in general,
and exact construction of 𝒲 [·] by these formulas can be very cumbersome. Even more
difficulties arise for the cases with uncertainties/controls in matrices.

Therefore, in the present paper, following ideas from [2, 3], the techniques of control
synthesis are elaborated, which use internal (inner) estimates for the solvability tubes.

We call 𝒫− (𝒫+) an internal (external) estimate for 𝒬 ⊂ R𝑛 if 𝒫− ⊆ 𝒬 (𝒫+ ⊇ 𝒬)3.
In [22], the families of external 𝒫+[·] and internal 𝒫−[·] parallelepiped-valued and paral-

lelotope-valued (shorter, polyhedral) estimates for 𝒲 [·] from (7) (for the case without matrix
uncertainty) were introduced (𝒫−[𝑘] ⊆ 𝒲 [𝑘] ⊆ 𝒫+[𝑘], 𝑘 = 1, . . . , 𝑁), and control strategies
𝑢[𝑘, 𝑥] were proposed, which may be constructed by solving systems of linear inequalities.
Note that if the initial point 𝑥[0] = 𝑥0 is out of at least one of the external estimates 𝒫+[0],
then there is no guarantee that it can be steered to the terminal set for any disturbances, and
if it belongs to one of the internal estimates 𝒫−[0], then it can reach ℳ using the mentioned
control strategy.

Now let us consider two problems, which concerns all above cases (A) – (B,ii), where the
controls appear either additively or in the system matrix.

Problem 2. Let 𝑈 [𝑘] ≡ 0. Find a polyhedral tube 𝒫−[·] that satisfies 𝒫−[𝑁 ] = ℳ
and 𝒫−[𝑘] ⊆ 𝒴 [𝑘], 𝑘 = 0, . . . , 𝑁−1, and find a corresponding feedback control strategy
𝑢 = 𝑢[𝑘, 𝑥] such that 𝑢[𝑘, 𝑥] ∈ ℛ[𝑘] for 𝑥 ∈ 𝒫−[𝑘−1], 𝑘 = 1, . . . , 𝑁 , and each solution 𝑥[·] to

𝑥[𝑘] = (𝐴[𝑘] + 𝑉 [𝑘])𝑥[𝑘−1] + 𝐵[𝑘]𝑢[𝑘, 𝑥[𝑘−1]] + 𝐶[𝑘]𝑣[𝑘], 𝑘 = 1, . . . , 𝑁, (9)

with 𝑥[0] = 𝑥0 ∈ 𝒫−[0] would satisfy 𝑥[𝑘] ∈ 𝒫−[𝑘], 𝑘 = 1, . . . , 𝑁 , whatever are admissible
𝑣[·] and 𝑉 [·]. Moreover, introduce a family of such tubes 𝒫−[·].

Problem 3. Let 𝑢[𝑘] ≡ 0. Find a polyhedral tube 𝒫−[·] that satisfies 𝒫−[𝑁 ] = ℳ
and 𝒫−[𝑘] ⊆ 𝒴 [𝑘], 𝑘 = 0, . . . , 𝑁−1, and find a corresponding feedback control strategy
𝑈 = 𝑈 [𝑘, 𝑥] such that 𝑈 [𝑘, 𝑥] ∈ 𝒰 [𝑘] for 𝑥 ∈ 𝒫−[𝑘−1], 𝑘 = 1, . . . , 𝑁 , and each solution𝑥[·] to

𝑥[𝑘] = (𝐴[𝑘] + 𝑈 [𝑘, 𝑥[𝑘−1]] + 𝑉 [𝑘])𝑥[𝑘−1] + 𝐶[𝑘]𝑣[𝑘], 𝑘 = 1, . . . , 𝑁, (10)

with 𝑥[0] = 𝑥0 ∈ 𝒫−[0] would satisfy 𝑥[𝑘] ∈ 𝒫−[𝑘], 𝑘 = 1, . . . , 𝑁 , whatever are admissible
𝑣[·] and 𝑉 [·]. Moreover, introduce a family of such tubes 𝒫−[·].

We call the tubes 𝒫−[·] polyhedral solvability tubes.
The paper is organized as follows. In Section 2, we briefly recall the known properties of

set operations with parallelotopes and primary polyhedral estimates for the results of such
operations, which are used below. Then we recall a scheme, which was proposed earlier in [22]

3The terms “internal” and “external” are used here to align with close works (see, for example, [2, 3, 16,
17,19,20]). There are also many works, where the other equivalent terms “inner” and “outer” are used (see,
for example, [15, 23,31–33]).
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on this base, to solve Problem 2 for the case without the matrix uncertainty. This gives the
opportunity to compare this scheme with the new one described in Section 3 for more general
case. In Sections 3 and 4, we describe the new unified techniques to solve Problem 2 and
Problem 3 respectively. These techniques are extensions of the ones from [24–26] for the
more complicated case under state constraints. Both techniques provide control strategies
with the attractive property that they can be constructed on the base of the corresponding
polyhedral tubes by explicit formulas. In Section 5, illustrative examples are presented.

To distinguish the control strategy described in [22] and in Section 2 from the control
strategy described in Section 3 we call the first one as the control of type I, and the second
one as the control of type II.

2. Solving Problem 2 for the case without matrix uncertainty
(way I)

Here we briefly recall the first method (way I), which was proposed in [22], to solve Problem 2
for the case without the matrix uncertainty (cases (A) and (B,i)).

This method uses properties of set operations with parallelotopes and primary polyhedral
estimates for the results of such operations.

For completeness of the exposition, recall some known results about mentioned primary
polyhedral estimates. Some of them will be also used in Sections 3 and 4.

Let 𝒫𝑘 = 𝒫 [𝑝𝑘, 𝑃 𝑘], 𝑘 = 1, 2, 𝑃 1 ∈ R𝑛×𝑛, 𝑃 2 ∈ R𝑛×𝑚. Internal parallelotope-valued
estimates for 𝒬 = 𝒫1+𝒫2 can be constructed [20] in the form 𝑃−

Γ (𝒬) = 𝒫 [𝑝1+𝑝2, 𝑃 1+𝑃 2Γ],
where

Γ ∈ 𝒢𝑚×𝑛 = {Γ = {𝛾𝛽
𝛼} ∈ R𝑚×𝑛 | ‖Γ‖ ≤ 1}, ‖Γ‖ = max

1≤𝑖≤𝑚

𝑛∑︁
𝑗=1

|𝛾𝑗
𝑖 |.

The parameter Γ specify the whole family of estimates.
Let det𝑃 1 ̸= 0. Then the Minkowski difference 𝒬 = 𝒫1−̇𝒫2 is either a parallelepiped

or an empty set [20]: if 𝜋* = e − Abs ((𝑃 1)−1𝑃 2) e ≥ 0, then 𝒬 = 𝒫 [𝑝1 − 𝑝2, 𝑃 1 diag 𝜋*];
otherwise 𝒬 = ∅.

Recall the simple way (briefly described in [21]) of constructing for 𝒬 internal estimates
𝑃−

𝑣,𝑉 (𝒬) with arbitrary fixed center 𝑣 ∈ 𝒬 and orientation matrix 𝑉 = {𝑣𝑗} ∈ R𝑛×𝑛 for the

case when the set 𝒬 is a polytope given as the intersection of Υ ≥ 𝑛 + 1 strips: 𝒬 =
ϒ⋂︀

𝑗=1

Σ𝑗,

Σ𝑗 = Σ(𝑐𝑗, 𝑠
𝑗, 𝜎𝑗) = {𝑥| |(𝑥, 𝑠𝑗) − 𝑐𝑗| ≤ 𝜎𝑗}.

Suppose 𝑣 ∈ 𝒬 and det𝑉 ̸= 0. First we describe how to find 𝜈 = 𝜈(𝑣, 𝑉 ) ∈ R𝑛 that
generate the internal estimates 𝒫− = 𝒫(𝑣, 𝑉, 𝜈) for 𝒬. Let us consider the following system
of linear inequalities (where 𝐴 = {𝑎𝑗𝑖} = {𝑎𝑗} ∈ 𝑀𝑛×ϒ, 𝑏 ∈ Rϒ):

𝐴⊤𝜈 ≤ 𝑏, 𝜈 ≥ 0,

𝑎𝑗𝑖 = |(𝑣𝑖, 𝑠𝑗)|, 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . ,Υ,

𝑏𝑗 = min{𝜎𝑗 + 𝑐𝑗 − (𝑣, 𝑠𝑗), 𝜎𝑗 − 𝑐𝑗 + (𝑣, 𝑠𝑗)}, 𝑗 = 1, . . . ,Υ.

(11)

Lemma 2.1. Let 𝑣 ∈ 𝒬 and det𝑉 ̸= 0. Then 𝑎𝑗 ̸= 0, 𝑗 = 1, . . . ,Υ, and 𝐴 ≥ 0, 𝑏 ≥ 0.
If the interior int𝒬 of 𝒬 is nonempty and 𝑣 ∈ int𝒬, then 𝑏 > 0.

Lemma 2.2. If 𝑣 ∈ 𝒬 and det𝑉 ̸= 0, then 𝒫(𝑣, 𝑉, 𝜈) ⊆ 𝒬 iff 𝜈 satisfies (11).
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Lemma 2.3. Let 𝒬 =
ϒ⋂︀

𝑗=1

Σ𝑗 be the bounded polytope with a nonempty interior; 𝑣 ∈

int𝒬, and det𝑉 ̸= 0. Let vectors 𝜈0 and 𝜈* be determined by the formulas

𝜈0
𝑖 = (1/𝑛) min{𝑏𝑗/𝑎𝑗𝑖 | 𝑗 = 1, . . . ,Υ, 𝑎𝑗𝑖 ̸= 0}, 𝑖 = 1, . . . , 𝑛, (12)

𝜈* = 𝛾 𝜈0, 𝛾 = min{𝑏𝑗/(𝑎𝑗, 𝜈0) | 𝑗 = 1, . . . ,Υ, (𝑎𝑗, 𝜈0) ̸= 0}. (13)

Then 𝜈0 > 0 and 𝜈* > 0; both 𝜈0 and 𝜈* satisfy (11), and consequently determine the internal
estimates for 𝒬, and we have 𝒫(𝑣, 𝑉, 𝜈0) ⊆ 𝒫(𝑣, 𝑉, 𝜈*) ⊆ 𝒬.

Note that due to the boundedness of 𝒬, the condition 𝑣 ∈ int𝒬, and Lemma 2.1, the
sets of elements under the signs “min” in (12) and (13) are not empty, and the numerators
of all elements are positive. Let us denote 𝑃−

𝑣,𝑉 (𝒬) = 𝒫(𝑣, 𝑉, 𝜈*).
It was supposed above that the point 𝑣 ∈ int𝒬 is known. It is not difficult to find

such point for some types of sets [21]. Generally, a point 𝑥* ∈ int𝒬 may be found for
a fixed 𝑉 by solving some optimization problem, for example, the following one: find 𝑥* ∈
Argmax {vol𝑃−

𝑣,𝑉 (𝒬)| 𝑣 ∈ 𝒬}, which may be replaced by minimizing 𝑓(𝑣), where 𝑓(𝑣) =

−
𝑛∏︀

𝑖=1

𝜈*
𝑖 if 𝑏 ≥ 0 and 𝑓(𝑣) = −

∑︀
1≤𝑗≤ϒ:𝑏𝑗<0

𝑏𝑗 otherwise (the numerical Nelder-Mead simplex

method may be applied).
The following polyhedral analogue of the control synthesis (7), (8) was proposed in [22]

on the base of the above primary estimates.
Let us consider the parametric family of tubes 𝒫−[·] which satisfy the following system

of recurrent relations:

𝒫−[𝑁 ] = ℳ;

𝒫−[𝑘] =

{︃
𝒫0−[𝑘] if 𝒫0−[𝑘] ⊆ 𝒴 [𝑘],

𝑃−
𝑝−[𝑘],𝑃−[𝑘](𝒫0−[𝑘] ∩ 𝒴 [𝑘]) otherwise,

𝑘 = 𝑁−1, . . . , 0.
(14)

where 𝒫0−[·] = 𝒫 [𝑝0−[·], 𝑃 0−[·]] satisfy the relations

𝒫0−[𝑘−1] = 𝐴[𝑘]−1𝑃−
Γ[𝑘]((𝒫

−[𝑘]−̇𝐶[𝑘]𝒬[𝑘]) −𝐵[𝑘]ℛ[𝑘]), 𝑘 = 𝑁, . . . , 1. (15)

Thus, for each time step 𝑘 ∈ {𝑁−1, . . . , 0}, first we calculate the parallelotope 𝒫0−[𝑘]
using the formulas for the Minkowski difference and for the described primary internal esti-
mate for the Minkowski sum of parallelotopes. Secondly we calculate the internal estimate
for the intersection of the constructed parallelotope and a zone. Here matrices Γ[𝑘] ∈ R𝑛𝑢×𝑛

and 𝑃−[𝑘] ∈ R𝑛×𝑛, and vectors 𝑝−[𝑘] should be such that ‖Γ[𝑘]‖ ≤ 1, det𝑃−[𝑘] ̸= 0,
𝑝−[𝑘] ∈ int (𝒫0−[𝑘] ∩ 𝒴 [𝑘]); they serve as admissible parameters of the family of tubes.

If we have solved this system (14), (15) from 𝑘 = 𝑁 backwards towards 𝑘 = 0 for fixed
admissible parameters Γ[·], 𝑃−[·], and 𝑝−[·], then we can construct the following control
strategy (the control of type I), which is connected with the obtained polyhedral tube 𝒫−[·]:

𝑢[𝑘, 𝑥] ∈ 𝒰−[𝑘, 𝑥] = ℛ[𝑘] ∩ {𝑢 |𝐵[𝑘]𝑢 ∈ 𝒫−[𝑘]−̇𝐶[𝑘]𝒬[𝑘] − 𝐴[𝑘]𝑥}, 𝑘 = 1, . . . , 𝑁. (16)

Theorem 2.1. (See [22]). We consider Problem 2 for the system (1), (2), (4), (6)
under Assumption 1 for the case without the matrix uncertainty (i. e., either case (A) or
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case (B,i)). In the system (14)–(15), let Γ[𝑘] be arbitrary matrices that satisfy Γ[𝑘] ∈ 𝒢𝑛𝑢×𝑛,
𝑘 = 𝑁, . . . , 1, 𝑃−[𝑘] be arbitrary nonsingular matrices, 𝑝−[𝑘] be arbitrary vectors such that
𝑝−[𝑘] ∈ int (𝒫0−[𝑘] ∩ 𝒴 [𝑘]), and let the sets 𝒫0−[𝑘] and 𝒫−[𝑘] turn out to be nondegenerate
parallelotopes for all 𝑘 = 𝑁−1, . . . , 0. Then the tube 𝒫−[·] and any control strategy 𝑢[·, ·]
that satisfies (16) give a particular solution to Problem 2.

Remark 2.1. To find the value 𝑢[𝑘, 𝑥] we need to find some point in 𝒰−[𝑘, 𝑥]. Since ℛ[𝑘]
are parallelepipeds, it is easy to present this sets 𝒰−[𝑘, 𝑥] in the form of the intersection

of several strips:
ϒ⋂︀
𝑖=1

Σ𝑖, Υ = 𝑛𝑢+𝑛. Such point can be found, for example, by a Fejér

processes [22].

3. Solving Problem 2 (way II)

Let us consider Problem 2 in general case. Let us introduce the parametric family of tubes
𝒫−[·] which satisfy the following system of recurrent relations:

𝒫−[𝑁 ] = 𝒫 [𝑝−[𝑁 ], 𝑃−[𝑁 ]] = ℳ, i. e., 𝑝−[𝑁 ] = 𝑝f , 𝑃−[𝑁 ] = 𝑃f ,

𝒫−[𝑘] =

{︃
𝒫0−[𝑘] if 𝒫0−[𝑘] ⊆ 𝒴 [𝑘],

𝑃−
𝑝−[𝑘],𝑃−[𝑘](𝒫0−[𝑘] ∩ 𝒴 [𝑘]) otherwise,

𝑘 = 𝑁−1, . . . , 0,
(17)

where 𝒫0−[·] = 𝒫 [𝑝0−[·], 𝑃 0−[·]] satisfy the relations (𝑘 = 𝑁, . . . , 1)

𝑝0−[𝑘−1] = 𝐷[𝑘]−1(𝑝−[𝑘] −𝐵[𝑘]𝑟[𝑘] − 𝐶[𝑘]𝑞[𝑘]), 𝐷[𝑘] = 𝐴[𝑘] + 𝑉 [𝑘], (18)

𝑃 0−[𝑘−1] = 𝐷[𝑘]−1(𝑃−[𝑘] diag (e − 𝛾[𝑘] − 𝛽[𝑘]) −𝐵[𝑘]�̄�[𝑘]Γ[𝑘]). (19)

𝛾[𝑘] = (Abs (𝑃−[𝑘]−1𝐶[𝑘]�̄�[𝑘])) e, (20)

𝛽[𝑘] = max
𝑧∈E(𝒫0−[𝑘−1])

(Abs (𝑃−[𝑘]−1))𝑉 [𝑘] Abs 𝑧. (21)

Here the symbol E(𝒫 ) denotes the set of all vertices of 𝒫 = 𝒫 [𝑝, 𝑃 ] (i. e., the set of points

𝑝 +
𝑚∑︀
𝑖=1

𝑝𝑖𝜉𝑖 with 𝜉𝑖 ∈ {−1, 1}); the operation of maximum is understood component-wise.

Thus, for each time step 𝑘 ∈ {𝑁−1, . . . , 0}, first we calculate the parallelotope 𝒫0−[𝑘] using
the relations for centers 𝑝0−[𝑘] and matrices 𝑃 0−[𝑘] of parallelotopes, where the right-hand
sides in (18), (19) are determined by the explicit formulas except vectors 𝛽[𝑘]. These vectors
𝛽[𝑘] satisfy the systems of nonlinear equations (21) which can be written in the following
form:

𝛽[𝑘] = 𝐻[𝑘, 𝛽[𝑘]],

𝐻[𝑘, 𝛽] = max
𝜉∈E(𝒞)

(Abs (𝑃−[𝑘]−1))𝑉 [𝑘] Abs (𝑝0−[𝑘−1]+

+𝐷[𝑘]−1((𝑃−[𝑘]diag (e − 𝛾[𝑘]) −𝐵[𝑘]�̄�[𝑘]Γ[𝑘])𝜉 − 𝑃−[𝑘]diag 𝜉 · 𝛽),

(22)

where 𝒞 = 𝒫(0, 𝐼, e). For cases (A) and (B,i), the situation is simplified and we have 𝛽[𝑘] = 0.
Secondly we calculate the internal estimate for 𝒫0−[𝑘] ∩ 𝒴 [𝑘] similarly to (14).

Here matrices Γ[𝑘] ∈ R𝑛𝑢×𝑛 and 𝑃−[𝑘] ∈ R𝑛×𝑛, and vectors 𝑝−[𝑘] play the same role as
in Section 2 and serve as admissible parameters of the family of tubes.

Let us consider the following control strategy (the control of type II):

𝑢[𝑘, 𝑥] = 𝑟[𝑘] + 𝜆[𝑘, 𝑥] �̄�[𝑘]Γ[𝑘]𝑃 0−[𝑘−1]−1(𝑥− 𝑝0−[𝑘−1]),

𝜆[𝑘, 𝑥] = min{1, ‖Γ[𝑘]𝑃 0−[𝑘−1]−1(𝑥− 𝑝0−[𝑘−1])‖−1
∞ }, 𝑘 = 1, . . . , 𝑁.

(23)
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Theorem 3.1. We consider Problem 2 for the system (1), (2), (4)–(6) under Assump-
tion 1. In the system (17)–(21), let Γ[𝑘] be arbitrary matrices that satisfy Γ[𝑘] ∈ 𝒢𝑛𝑢×𝑛,
𝑘 = 𝑁, . . . , 1, 𝑃−[𝑘] be arbitrary nonsingular matrices, 𝑝−[𝑘] be arbitrary vectors such that
𝑝−[𝑘] ∈ int (𝒫0−[𝑘] ∩ 𝒴 [𝑘]); let the following inequalities e − 𝛾[𝑘] − 𝛽[𝑘] ≥ 0 be satisfied, and
the sets 𝒫0−[𝑘] and 𝒫−[𝑘] turn out to be nondegenerate parallelotopes for all 𝑘 = 𝑁−1, . . . , 0.
Then the tube 𝒫−[·] = 𝒫 [𝑝−[·], 𝑃−[·]] and the control strategy (23) give a particular solution
to Problem 2.

The scheme of the proof is the development of the one from [26, Theorem 3] and is similar
to the proof of Theorem 4.1 (see below). Note that 𝑢[𝑘, 𝑥] ∈ ℛ[𝑘] for any 𝑥 ∈ R𝑛, and it
follows from the proof that if we start from 𝑥0 ∈ 𝒫−[0] and apply (23), then we obtain
𝑢[𝑘, 𝑥[𝑘 − 1]] with 𝜆[𝑘, 𝑥[𝑘 − 1]] = 1 for all 𝑘 = 1, . . . , 𝑁 .

Remark 3.1. It is not difficult to see that for cases (A) and (B,i) (without matrix
uncertainty) we have 𝛽[𝑘] = 0, 𝑘 = 1, . . . , 𝑁 , and formulas (18)–(21) for calculating the
parallelotopes 𝒫0−[𝑘] coincide with the ones from (15). Thus in these cases the families of
tubes 𝒫−[·] from Theorem 2.1 and Theorem 3.1 are the same, but control strategies (16) and
(23) are different. The attractive property of the controls of type II is their explicit form.

Remark 3.2. It follows from the contraction operator principle [35, p.319] that if the
operator 𝐻[𝑘, 𝛽] in (22) is contractive, i. e., ‖𝐻[𝑘, 𝛽1] − 𝐻[𝑘, 𝛽2]‖∞ ≤ 𝐿‖𝛽1 − 𝛽2‖∞ for
any 𝛽1, 𝛽2 ∈ R𝑛, where 𝐿 = 𝐿[𝑘] ∈ (0, 1), then the equation 𝛽 = 𝐻[𝑘, 𝛽] has the uni-
que solution 𝛽 = 𝛽[𝑘] (it is nonnegative for our operator 𝐻), which can be found by
the simple iteration 𝛽𝑙+1 = 𝐻[𝑘, 𝛽𝑙], 𝑙 = 0, 1, . . ., starting from arbitrary 𝛽0; if 𝛽0 = 0,
then we have ‖𝛽𝑙−𝛽‖∞ ≤ 𝐿𝑙(1−𝐿)−1‖(Abs (𝑃−[𝑘]−1))𝑉 [𝑘]‖ (‖𝑝0−[𝑘−1]‖∞+‖𝑃 1[𝑘]‖), where
𝑃 1[𝑘] = 𝐷[𝑘]−1(𝑃−[𝑘]diag (e − 𝛾[𝑘]) −𝐵[𝑘]�̄�[𝑘]Γ[𝑘]).

Remark 3.3. Let the system (1)–(5) be obtained by the Euler approximations of a si-
milar differential system so that 𝐴[𝑘] = 𝐼+ℎ𝑁𝐴(𝑡𝑘−1), 𝑉 [𝑘] = ℎ𝑁𝑉 (𝑡𝑘−1), 𝑉 [𝑘] = ℎ𝑁𝑉 (𝑡𝑘−1),
𝐵[𝑘] = ℎ𝑁𝐵(𝑡𝑘−1), ℛ[𝑘] = ℛ(𝑡𝑘−1), 𝐶[𝑘] = ℎ𝑁𝐶(𝑡𝑘−1), 𝒬[𝑘] = 𝒬(𝑡𝑘−1), 𝑡𝑘 = 𝑘ℎ𝑁 ∈ [0, 𝜃],
ℎ𝑁 = 𝜃𝑁−1. Consider a fixed 𝑘. If det𝑃−[𝑘] ̸= 0 and the discretization step ℎ𝑁 is sufficient
small, then the operator 𝐻[𝑘, 𝛽] turns out to be contractive and we have the desired inequa-
lity e − 𝛾[𝑘] − 𝛽[𝑘] > 0 for this 𝑘. However, this does not generally imply the existence of
nonempty parallelotopes 𝒫−[𝑘] with nonsingular matrices 𝑃−[𝑘] for all 𝑘 = 𝑁, . . . , 1, since
the value of such “small” ℎ𝑁 depends on 𝑘.

Remark 3.4. Theorem 3.1 describes the whole parametric family of tubes 𝒫−[·] for
a fixed 𝑁 > 0. The set 𝒲−

0,𝑁 =
⋃︀
𝒫−[0], where the union is taken over all tubes 𝒫−[·]

satisfying Theorem 3.1, is a subset of the set of all initial positions which can be steered to the
terminal set ℳ during the time 𝑁 by solving Problem 2. Also we have 𝒫−[0] ⊆ 𝒲 [0] for any
mentioned tube 𝒫−[·] and 𝒲−

0,𝑁 ⊆ 𝒲 [0], where 𝒲 [0] is the solvability set for Problem 1.
Remark 3.5. Let us also indicate some connections between the solutions to Problem 1

and Problem 2 and results from viability theory [6]. Let system (1), (2), (4)–(6) without
uncertainty (case (A)) be time-invariant (i. e., the coefficients and the sets ℛ and 𝒴 do not
depend on 𝑘), ℳ ⊆ 𝒴 , and 𝑘 = 1, 2, . . .. According to [6, p.71], the subset Capt (𝒴 ,ℳ) of
initial states 𝑥0 ∈ 𝒴 such that at least one solution to this system starting at 𝑥0 is viable
in 𝒴 (i. e., (6) is satisfied for some 𝑁) until it reaches ℳ in finite time is called the capture
basin of ℳ viable in 𝒴 . If we denote by 𝒲𝑁 [0] the solvability set 𝒲 [0] for Problem 1
formulated for a fixed final time 𝑁 , then we obviously obtain

⋃︀
𝑁≥0𝒲𝑁 [0] = Capt (𝒴 ,ℳ).

If we fix some 𝑁 > 0 and solve the corresponding Problem 2, then 𝒫−[0] ⊆ Capt (𝒴 ,ℳ).
Therefore the set 𝒲−

0,𝑁 from Remark 3.4 is also some internal estimate for Capt (𝒴 ,ℳ):

𝒲−
0,𝑁 ⊆ Capt (𝒴 ,ℳ), and also

⋃︀
𝑁≥0𝒲

−
0,𝑁 ⊆ Capt (𝒴 ,ℳ).
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4. Solving Problem 3

Now let us consider Problem 3 with controls in the matrices.

Let us introduce the parametric family of tubes 𝒫−[·] which satisfy the following system
of recurrent relations:

𝒫−[𝑁 ] = 𝒫 [𝑝−[𝑁 ], 𝑃−[𝑁 ]] = ℳ, i. e., 𝑝−[𝑁 ] = 𝑝f , 𝑃−[𝑁 ] = 𝑃f ,

𝒫−[𝑘] =

{︃
𝒫0−[𝑘] if 𝒫0−[𝑘] ⊆ 𝒴 [𝑘],

𝑃−
𝑝−[𝑘],𝑃−[𝑘](𝒫0−[𝑘] ∩ 𝒴 [𝑘]) otherwise,

𝑘 = 𝑁−1, . . . , 0,
(24)

where 𝒫0−[·] = 𝒫 [𝑝0−[·], 𝑃 0−[·]] satisfy the relations (𝑘 = 𝑁, . . . , 1)

𝑝0−[𝑘−1] = 𝐷[𝑘]−1(𝑝−[𝑘] − 𝐶[𝑘]𝑞[𝑘]), 𝐷[𝑘] = 𝐴[𝑘] + �̃� [𝑘] + 𝑉 [𝑘], (25)

𝑃 0−[𝑘−1] = 𝐻[𝑘, 𝑃 0−[𝑘−1]], 𝑘 = 𝑁, . . . , 1, (26)

𝐻[𝑘, 𝑃 ] = (𝐷[𝑘] − diag𝛼[𝑘, 𝑃 ])−1𝑃−[𝑘] diag (e − 𝛽[𝑘, 𝑃 ] − 𝛾[𝑘]), (27)

𝛼𝑖[𝑘, 𝑃 ] = 𝛼𝑖[𝑘, 𝑃 ; 𝐽 [𝑘]] = �̂�𝑗𝑖
𝑖 [𝑘] 𝜂𝑗𝑖 [𝑘, 𝑃 ] (e𝑖

⊤
(Abs𝑃 ) e)−1, 𝑖 = 1, . . . , 𝑛, (28)

𝜂[𝑘, 𝑃 ] = max{0,Abs 𝑝0−[𝑘−1] − (Abs𝑃 )e}, (29)

𝛽[𝑘, 𝑃 ] = max{Abs (𝑃−[𝑘]−1)𝑉 [𝑘] Abs (𝑝0−[𝑘−1] + 𝑃𝜉) | 𝜉 ∈ E(𝒞)}, (30)

𝛾[𝑘] = (Abs (𝑃−[𝑘]−1𝐶[𝑘]�̄�[𝑘]))e, 𝑘 = 𝑁, . . . , 1. (31)

Here the centers of parallelotopes 𝒫0−[𝑘] are determined by system of explicit recurrent
relations (25) while the matrices 𝑃 0−[𝑘] are determined by the relations (26)–(31), where,
for any step 𝑘, we need to solve a system of nonlinear equations 𝑃 = 𝐻[𝑘, 𝑃 ] with re-
spect to the unknown matrix 𝑃 = 𝑃 0−[𝑘−1]. Formulas for 𝛼𝑖[𝑘, 𝑃 ] contain 𝐽 [𝑘], where
𝐽 [𝑘] = {𝑗1[𝑘], . . . , 𝑗𝑛[𝑘]} are arbitrary permutations of natural numbers {1, . . . , 𝑛}. Thus,
we have again the parametric family of polyhedral tubes, where the parameters are this
vector function 𝐽 [·] and also the matrix function 𝑃−[·] and the vector function 𝑝−[·]. The
last two parameters, which appear in formulas (24) for internal estimates for intersections of
parallelotopes with zones, are the same as in Sections 2 and 3 for the solutions to Problem 2.

Again, if we have solved the above system from 𝑘 = 𝑁 backwards towards 𝑘 = 0 for
fixed admissible parameters, then we can construct by explicit formulas the following control
strategy, which is connected with the obtained pair of polyhedral tubes 𝒫−[·] and 𝒫0−[·]:

e𝑖
⊤
𝑈 [𝑘, 𝑥] =

{︃
e𝑖

⊤
�̃� [𝑘] − 𝛼𝑖[𝑘, 𝑃

0−[𝑘−1]](𝑥𝑖−𝑝0−𝑖 [𝑘−1])(𝑥𝑗𝑖)
−1e𝑗𝑖

⊤
if 𝑥𝑗𝑖 ̸= 0,

e𝑖
⊤
�̃� [𝑘] if 𝑥𝑗𝑖 = 0, 𝑖 = 1, . . . , 𝑛.

(32)

First of all note that the control strategy (32) has the following property.

Lemma 4.1. If det𝑃 0−[𝑘−1] ̸= 0 and 𝒫−[𝑘−1] ⊆ 𝒫0−[𝑘−1], then the control strategy
𝑈 [𝑘, 𝑥] from (32) acts on 𝑥 ∈ 𝒫−[𝑘−1] according to the following rule:

𝑈 [𝑘, 𝑥]𝑥 = �̃� [𝑘]𝑥− diag𝛼[𝑘, 𝑃 0−[𝑘−1]] (𝑥− 𝑝0−[𝑘−1]) (for 𝑥 ∈ 𝒫−[𝑘−1]). (33)
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Proof. If the matrix 𝑃 0−[𝑘−1] is nonsingular, then it can not have zero rows. There-
fore the denominators of all the components of 𝛼[𝑘, 𝑃 0−[𝑘−1]; 𝐽 [𝑘]] are different from zero:

e𝑖
⊤

(Abs𝑃 0−[𝑘−1]) e ̸= 0. Obviously, if 𝑥𝑗𝑖 ̸= 0, then both formulas (32) and (33) give

the same result for e𝑖
⊤
𝑈 [𝑘, 𝑥]𝑥. Let 𝑥𝑗𝑖 = 0. Let us consider two possible cases for va-

lues of 𝜂𝑗𝑖 [𝑘, 𝑃
0−[𝑘−1]]. If 𝜂𝑗𝑖 [𝑘, 𝑃

0−[𝑘−1]] = 0, then 𝛼𝑖[𝑘, 𝑃
0−[𝑘−1]] = 0 due to (28), and

both formulas (32) and (33) give the same result for e𝑖
⊤
𝑈 [𝑘, 𝑥]𝑥 again. Now suppose that

𝜂𝑗𝑖 [𝑘, 𝑃
0−[𝑘−1]] > 0, i. e., |𝑝0−𝑗𝑖 [𝑘−1]|−(e𝑗𝑖)⊤(Abs𝑃 0−[𝑘−1])e > 0. It follows from the inclu-

sions 𝑥 ∈ 𝒫−[𝑘−1] ⊆ 𝒫0−[𝑘−1] that 𝑥 = 𝑝0−[𝑘−1] + 𝑃 0−[𝑘−1]𝜁0, where ‖𝜁0‖∞ ≤ 1. Thus
|𝑥𝑗𝑖 | ≥ |𝑝0−𝑗𝑖 [𝑘−1]| − |(e𝑗𝑖)⊤𝑃 0−[𝑘−1]𝜁0| ≥ |𝑝0−𝑗𝑖 [𝑘−1]| − (e𝑗𝑖)⊤(Abs𝑃 0−[𝑘−1])e > 0, i. e., in
the considered case the equality 𝑥𝑗𝑖 = 0 is impossible. �

Theorem 4.1. We consider Problem 3 for the system (1), (3), (4)–(6) under Assump-
tion 1. Let 𝐽 [𝑘] = {𝑗1[𝑘], . . . , 𝑗𝑛[𝑘]}, 𝑘 = 𝑁, . . . , 1, be arbitrary permutations of natural
numbers {1, . . . , 𝑛} and the system (24)–(31) has a solution (𝑝0−[·], 𝑃 0−[·], 𝑝−[·], 𝑃−[·]) that
satisfy the following relations:

e − 𝛽[𝑘, 𝑃 0−[𝑘−1]] − 𝛾[𝑘] > 0, 𝑘 = 𝑁, . . . , 1, (34)

det𝑃 0−[𝑘] ̸= 0, det𝑃−[𝑘] ̸= 0, 𝑝−[𝑘] ∈ int (𝒫0−[𝑘] ∩ 𝒴 [𝑘]), 𝑘 = 𝑁−1, . . . , 0. (35)

Then the tube 𝒫−[·] = 𝒫 [𝑝−[·], 𝑃−[·]] and the control strategy (32) give a particular solution
to Problem 3.

Proof. Let 𝒫0−[𝑘] and 𝒫−[𝑘], 𝑘 = 𝑁, . . . , 0, that satisfy (34), (35) be found from (24)–
(31). Inclusions 𝒫−[𝑘] ⊆ 𝒴 [𝑘] follow from (24) and Section 2.

Let 𝑥[·] be the solution of (10) that corresponds to 𝑥[0] = 𝑥0 ∈ 𝒫−[0] (where 𝑥0 =
𝑝−[0] + 𝑃−[0]𝜁0, ‖𝜁0‖∞ ≤ 1), to the control strategy 𝑈 = 𝑈 [𝑘, 𝑥] from (32), and to arbi-
trary admissible 𝑣[·] and 𝑉 [·] = 𝑉 [·] + ∆𝑉 [·] (i. e., 𝑣[𝑘] = 𝑞[𝑘] + �̄�[𝑘]𝜒[𝑘], ‖𝜒[𝑘]‖∞ ≤ 1;
Abs (∆𝑉 [𝑘]) ≤ 𝑉 [𝑘] for all 𝑘). Let us represent vectors 𝑥[𝑘] in the form

𝑥[𝑘] = 𝑝−[𝑘] + 𝑃−[𝑘]𝜁[𝑘] = 𝑝0−[𝑘] + 𝑃 0−[𝑘]𝜁0[𝑘], 𝑘 = 0, . . . , 𝑁. (36)

First we prove by induction that if 𝑥 = 𝑥[𝑘−1] ∈ 𝒫−[𝑘−1] (therefore ‖𝜁0[𝑘−1]‖∞ ≤ 1
due to 𝑥[𝑘−1] ∈ 𝒫−[𝑘−1] ⊆ 𝒫0−[𝑘−1]), then ‖𝜁[𝑘]‖∞ ≤ 1, i. e., 𝑥[𝑘] ∈ 𝒫−[𝑘].

Let we already have 𝑥[𝑘−1] ∈ 𝒫−[𝑘−1]. Using (24), we have 𝑥[𝑘−1] ∈ 𝒫−[𝑘−1] ⊆
𝒫0−[𝑘−1]. Then there exist 𝜁[𝑘−1] and 𝜁0[𝑘−1] such that

𝑥[𝑘−1] = 𝑝−[𝑘−1] + 𝑃−[𝑘−1]𝜁[𝑘−1] = 𝑝0−[𝑘−1] + 𝑃 0−[𝑘−1]𝜁0[𝑘−1],

Abs 𝜁[𝑘−1] ≤ e, Abs 𝜁0[𝑘−1] ≤ e.
(37)

It follows from (36), (10), (37), and (4) that

𝜁[𝑘] = 𝑃−[𝑘]−1(𝑥[𝑘] − 𝑝−[𝑘]) =

= 𝑃−[𝑘]−1((𝐷[𝑘] + 𝑈 [𝑘, 𝑥[𝑘−1]] − �̃� [𝑘] + ∆𝑉 [𝑘])𝑥[𝑘−1] + 𝐶[𝑘]𝑣[𝑘] − 𝑝−[𝑘]) =

= 𝑃−[𝑘]−1(𝐷[𝑘](𝑝0−[𝑘−1] + 𝑃 0−[𝑘−1]𝜁0[𝑘−1]) + (𝑈 [𝑘, 𝑥[𝑘−1]] − �̃� [𝑘])𝑥[𝑘−1]+

+∆𝑉 [𝑘]𝑥[𝑘−1] + 𝐶[𝑘](𝑞[𝑘] + �̄�[𝑘]𝜒[𝑘]) − 𝑝−[𝑘]).
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Using the equality
𝐷[𝑘]𝑝0−[𝑘−1] + 𝐶[𝑘]𝑞[𝑘] − 𝑝−[𝑘] = 0,

which follows from (25), we obtain

𝜁[𝑘] = 𝑃−[𝑘]−1(𝐷[𝑘]𝑃 0−[𝑘−1]𝜁0[𝑘−1] + (𝑈 [𝑘, 𝑥[𝑘−1]] − �̃� [𝑘])𝑥[𝑘−1]) + 𝑐[𝑘, 𝑥[𝑘−1]], (38)

where
𝑐[𝑘, 𝑥] = 𝑃−[𝑘]−1∆𝑉 [𝑘]𝑥 + 𝑃−[𝑘]−1𝐶[𝑘]�̄�[𝑘]𝜒[𝑘].

According to (26), (27), we have

(𝐷[𝑘] − diag𝛼[𝑘, 𝑃 0−[𝑘−1]])𝑃 0−[𝑘−1] = 𝑃−[𝑘] diag (e − 𝛽[𝑘, 𝑃 0−[𝑘−1]] − 𝛾[𝑘]).

Taking into account the last equality and formula (33) from Lemma 4.1, and also (37), we
can conclude from (38) that

𝜁[𝑘] = 𝑃−[𝑘]−1(𝐷[𝑘]𝑃 0−[𝑘−1]𝜁0[𝑘−1] − diag𝛼[𝑘, 𝑃 0−[𝑘−1]](𝑥[𝑘−1]−𝑝0−[𝑘−1]))+

+𝑐[𝑘, 𝑥[𝑘−1]] = 𝑃−[𝑘]−1(𝐷[𝑘] − diag𝛼[𝑘, 𝑃 0−[𝑘−1]])𝑃 0−[𝑘−1]𝜁0[𝑘−1] + 𝑐[𝑘, 𝑥[𝑘−1]] =

= diag (e − 𝛽[𝑘, 𝑃 0−[𝑘−1]] − 𝛾[𝑘]) 𝜁0[𝑘−1] + 𝑐[𝑘, 𝑥[𝑘−1]]. (39)

Using the relations 𝑥[𝑘−1] ∈ 𝒫−[𝑘−1] ⊆ 𝒫0−[𝑘−1], we obtain the following estimate for
𝑐[𝑘, 𝑥[𝑘−1]]:

Abs 𝑐[𝑘, 𝑥[𝑘−1]] ≤ Abs (𝑃−[𝑘]−1)𝑉 [𝑘] max
𝑧∈𝒫−[𝑘−1]

Abs 𝑧 + (Abs (𝑃−[𝑘]−1𝐶[𝑘]�̄�[𝑘])) e ≤

≤ Abs (𝑃−[𝑘]−1)𝑉 [𝑘] max
𝑧∈𝒫0−[𝑘−1]

Abs 𝑧 + 𝛾[𝑘] =

= 𝛽[𝑘, 𝑃 0−[𝑘−1]] + 𝛾[𝑘] for 𝑥[𝑘−1] ∈ 𝒫−[𝑘−1]. (40)

To obtain the last equality we have also used the following fact. If 𝑎 ∈ R𝑛, 𝐴,𝐵 ∈ R𝑛×𝑛,
𝐵 ≥ 0, 𝜑(𝜉) = 𝐵 Abs (𝑎 + 𝐴𝜉), where 𝜉 ∈ R𝑛, then max

𝜉∈𝒞
𝜑(𝜉) = max

𝜉∈E(𝒞)
𝜑(𝜉), where the

maximum is component-wise. This follows from the convexity of any component of the
function 𝜑 and the fact that 𝒞 coincides with the convex hull of its extreme points 𝜉𝑗 ∈ E(𝒞).

From (39), (40), (34), and (37) we conclude that

|𝜁𝑖[𝑘]| ≤ |1 − 𝛽𝑖[𝑘, 𝑃
0−[𝑘−1]] − 𝛾𝑖[𝑘])| · |𝜁0𝑖 [𝑘−1]| + 𝛽𝑖[𝑘, 𝑃

0−[𝑘−1]] + 𝛾𝑖[𝑘] ≤
≤ (1 − 𝛽𝑖[𝑘, 𝑃

0−[𝑘−1]] − 𝛾𝑖[𝑘])) · 1 + 𝛽𝑖[𝑘, 𝑃
0−[𝑘−1]] + 𝛾𝑖[𝑘] = 1, 𝑖 = 1, . . . , 𝑛,

and consequently Abs 𝜁[𝑘] ≤ e, i. e., 𝑥[𝑘] ∈ 𝒫−[𝑘] indeed.
It remains to prove that if 𝑥 ∈ 𝒫−[𝑘−1], then Abs (𝑈 [𝑘, 𝑥] − �̃� [𝑘]) ≤ �̂� [𝑘]. Let us show

that e𝑖
⊤

Abs (𝑈 [𝑘, 𝑥]−�̃� [𝑘]) ≤ e𝑖
⊤
�̂� [𝑘] for every fixed 𝑖 ∈ {1, . . . , 𝑛}. If 𝑥 is such that 𝑥𝑗𝑖 = 0,

then the above inequality is satisfied because (32) yields e𝑖
⊤

Abs (𝑈 [𝑘, 𝑥]− �̃� [𝑘]) = 0⊤ (where
0 ∈ R𝑛). If 𝑥 ∈ 𝒫−[𝑘−1] and 𝑥𝑗𝑖 ̸= 0, then, according to (32), it is sufficient to show that we
have |𝛿𝑖[𝑘, 𝑥]| ≤ �̂�𝑗𝑖

𝑖 [𝑘] for such 𝑥, where 𝛿𝑖[𝑘, 𝑥] = 𝛼𝑖[𝑘, 𝑃
0−[𝑘−1]] (𝑥𝑖−𝑝0−𝑖 [𝑘−1])(𝑥𝑗𝑖)

−1. The
inclusions 𝑥 ∈ 𝒫−[𝑘−1] ⊆ 𝒫0−[𝑘−1] imply that we have 𝑥− 𝑝0−[𝑘−1] = 𝑃 0−[𝑘−1]𝜁0, where
Abs 𝜁0 ≤ e. Therefore 𝑥𝑗𝑖 = 𝑝0−𝑗𝑖 [𝑘−1] + (e𝑗𝑖)⊤(𝑥− 𝑝0−[𝑘−1]) = 𝑝0−𝑗𝑖 [𝑘−1] + (e𝑗𝑖)⊤𝑃 0−[𝑘−1]𝜁0

and

|𝛿𝑖[𝑘, 𝑥]| =
�̂�𝑗𝑖
𝑖 [𝑘] max{0, |𝑝0−𝑗𝑖 [𝑘−1]| − (e𝑗𝑖)⊤(Abs𝑃 0−[𝑘−1])e} · |(e𝑖)⊤𝑃 0−[𝑘−1]𝜁0|

(e𝑖)⊤(Abs𝑃 0−[𝑘−1])e · |𝑝0−𝑗𝑖 [𝑘−1] + (e𝑗𝑖)⊤𝑃 0−[𝑘−1]𝜁0|
.
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If |𝑝0−𝑗𝑖 [𝑘−1]| < (e𝑗𝑖)⊤(Abs𝑃 0−[𝑘−1])e, then |𝛿𝑖[𝑘, 𝑥]| = 0 ≤ �̂�𝑗𝑖
𝑖 [𝑘]. Otherwise we have the

desired inequality again because

|𝛿𝑖[𝑘, 𝑥]| ≤
�̂�𝑗𝑖
𝑖 [𝑘] (|𝑝0−𝑗𝑖 [𝑘−1]|−(e𝑗𝑖)⊤(Abs𝑃 0−[𝑘−1])e) · (e𝑖)⊤(Abs𝑃 0−[𝑘−1])e

(e𝑖)⊤(Abs𝑃 0−[𝑘−1])e · (|𝑝0−𝑗𝑖 [𝑘−1]|−(e𝑗𝑖)⊤(Abs𝑃 0−[𝑘−1])e)
= �̂�𝑗𝑖

𝑖 [𝑘].

Here we used the elementary inequations of the following types: max{0, 𝑎} ≤ 𝑎 for 𝑎 ≥ 0,
|𝑎 + 𝑏| ≥ |𝑎| − |𝑏|, and |(e𝑖)⊤𝑃𝜁| ≤ (e𝑖)⊤(Abs𝑃 )e for 𝜁 such that Abs 𝜁 ≤ e, and then we
reduced the obtained fraction. �

Remark 4.1. The remarks similar to Remarks 3.2, 3.3, and [26, Remark 8], concerning
the situation with contractive operators 𝐻, may be formulated.

Remark 4.2. A remark similar to Remark 3.5 concerning connections between soluti-
ons to Problem 3 for time-invariant systems without uncertainty and the related Capt (𝒴 ,ℳ)
may be formulated.

Remark 4.3. With an unsuccessful choice of admissible parameters in the formulas
for the polyhedral tubes from Theorems 2.1, 3.1, and 4.1, a case when at some time step 𝑘
we can obtain the empty set 𝒫−[𝑘] is not excluded and therefore we can not construct the
solution of the problem under consideration using such parameters.

Remark 4.4. The described tubes 𝒫−[·] that correspond to different values of ad-
missible parameters can be calculated independently of each other. This allows a natural
parallelization of computations. Numerical simulation results testify for efficiency of paral-
lelization for the case without uncertainty and state constraints. Otherwise, the situation
is worse (see Remark 4.3). Issues of parallel computations for constructing solvability tubes
using ellipsoidal techniques are discussed in [3, 18].

5. Examples

Let us consider two illustrating examples of polyhedral control synthesis for systems obtained
by discretization of some differential ones determined on time interval [0, 𝜃].

Example 5.1. Let Problem 2 be considered and 𝐴 ≡ 𝐼 + 𝜏

[︂
0 1
−8 0

]︂
; 𝑉 ≡ 0; 𝑉 ≡ 0 or

𝑉 ≡ 𝜏

[︂
0 0

0.1 0

]︂
; 𝐵 ≡ 𝐶 ≡ 𝜏𝐼; ℛ ≡ 𝒫(0, 𝐼, (0, 1)⊤); 𝒬 ≡ 𝒫(0, 𝐼, 0) or 𝒬 ≡ 𝒫(0, 𝐼, (0.2, 0)⊤);

ℳ = 𝒫((−0.5, 0)⊤, 𝐼, (0.5, 0.5)⊤); 𝜏 = 𝜃/𝑁 ; 𝜃 = 2; 𝑁 = 200.
We use the following values of parameters of the tubes: Γ[𝑘] are constructed by special

formulas similar to [20]; 𝑃−[𝑘] = 𝑃 0−[𝑘], 𝑘 = 𝑁−1, . . . , 0; 𝑝−[𝑘] are constructed by the
Nelder-Mead method to maximize vol𝑃−

𝑝−[𝑘],𝑃−[𝑘](𝒫0−[𝑘] ∩ 𝒴 [𝑘]) under above 𝑃−[𝑘].

In Figures 1 and 2, we present results for two cases, namely, case (A) without uncertainty
and state constraints and case (B,ii;SC) under both additive and matrix uncertainties and
under state constraints. We consider the state constraints of the form |𝑥1 + 0.2| ≤ 0.8,
|𝑥2| ≤ 2.1, and for simulations we put 𝑣[·] similar to [20] and 𝑉 [·] ≡ 𝑉 [·] + 𝑉 [·]. Target sets
ℳ here and below are shown by dashed lines, state constraints are shown by dash-dot lines.

In the left part of Figure 1, which corresponds to case (A), we present cross-sections 𝒫−[0]
for several tubes 𝒫−[·] from Theorem 3.1 (Theorem 2.1) and trajectories, which correspond
to two types of controls (dash lines for controls of type I and solid lines for controls of type
II) for two initial points 𝑥0 = (−0.3, 2)⊤ and 𝑥0 = (−0.45, 1.33)⊤. In the right part of
Figure 1, we show some tube 𝒫−[·] and the corresponding controlled trajectory.



32 E.K. Kostousova

−1 0 1
−3

−2

−1

0

1

2

3

x1

x
2

−3

0

3

0

2

−3

0

3

t

x1

x
2

Fig. 1. Example 5.1, case (A): cross-sections 𝒫−[0] for several tubes 𝒫−[·] and controlled trajectories
of two types for two initial points (left); some tube 𝒫−[·] and the corresponding controlled trajectory
(right)

Figure 2, which corresponds to case (B,ii;SC), is similar to the previous one, but here,
in the right part, we show also several cross-sections 𝒫−[𝑘] of the tube 𝒫−[·] in the phase
plane.

We see that all the presented trajectories reach the target set. Note that if 𝑥0 /∈ 𝒫−[0],
then there is no guarantee that the trajectory can be steered, by the corresponding control,
into ℳ satisfying state constraints under any disturbances. For the case (B,ii;SC) with
𝑥0 = (−0.3, 2)⊤ /∈ 𝒫−[0], we obtained that that the target set is reached, but the state
constraints are slightly violated.
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Fig. 2. Example 5.1, case (B,ii;SC): cross-sections 𝒫−[0] for several tubes 𝒫−[·] from Theorem 3.1
and controlled trajectories for two initial points (left); some tube 𝒫−[·] (middle); several cross-
sections 𝒫−[𝑘] for this 𝒫−[·] and the corresponding controlled trajectory (right)



On feedback control through polyhedral techniques 33

Example 5.2. Let Problem 3 be considered and 𝐴 ≡ 𝐼 + 𝜏

[︂
−0.5 0

0 −0.5

]︂
; �̃� ≡

𝜏

[︂
0 2
0 0

]︂
; �̂� ≡ 𝜏

[︂
0 1.5
0 0

]︂
; 𝑉 ≡ 𝜏

[︂
0 0
2 0

]︂
; 𝑉 ≡ 0 or 𝑉 ≡ 𝜏

[︂
0 0

0.1 0

]︂
; 𝒬 ≡ 𝒫(0, 𝐼, 0)

or 𝒬 ≡ 𝒫(0, 𝐼, (0.05, 0.05)⊤); 𝐶 ≡ 𝜏 · 𝐼; ℳ = 𝒫((1, 1)⊤, 𝐼, (0.1, 0.1)⊤); 𝜏 = 𝜃/𝑁 ; 𝜃 = 0.25;
𝑁 = 200. State constraints, if any, are determined by the strip |𝑥1 − 0.75| ≤ 0.35.

We use Theorem 4.1 with the following values of parameters of the tubes: 𝐽 [𝑘] are either
constant or are constructed using arguments of a “local” volume optimization; 𝑃−[𝑘] and
𝑝−[𝑘] are constructed similarly to Example 5.1.

In Figure 3, we can compare the results of modeling for the following three cases: the case
without uncertainties and state constraints ((A), left pictures), and two cases under state
constraints, namely, without uncertainties ((A;SC), middle pictures) and with uncertainties
in both matrix and additive terms ((B,ii;SC), right pictures). The polyhedral solvability sets
for the cases with state constraints and uncertainties turn out to be smaller than for the
first one. For each case, we calculated three tubes 𝒫−[·] that correspond to three parameters
𝐽 [·], where 𝐽 [𝑘] ≡ {1, 2}, 𝐽 [𝑘] ≡ {2, 1}, and 𝐽 [𝑘] are constructed using arguments of a
“local” volume optimization; the second and the third tubes visually coincide; the first tube
for case (B,ii;SC) could not be calculated up to 𝑘 = 0. At the top of Figure 3, we show
the set ℳ (dashed lines), state constraints (dash-dot lines), parallelotopes 𝒫−[0] obtained,
and controlled trajectories for the initial point 𝑥0 = (0.5, 0.8)⊤ calculated using the third
tubes. At the bottom of Figure 3, we once again present the trajectories and also several
cross-sections 𝒫−[𝑘] of the used polyhedral solvability tubes 𝒫−[·] to show the dynamics of
cross-sections. We see that 𝒫−[𝑘] satisfy the state constraints. The controlled trajectories
obtained reach the target set and also satisfy the state constraints.
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Fig. 3. Results of polyhedral synthesis in Example 5.2 for cases (A), (A;SC), and (B,ii;SC)
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Conclusion

Two types of problems of feedback terminal target control for linear and bilinear discrete-time
uncertain systems under state constraints are considered, where controls appear either addi-
tively or in the system matrix. Polyhedral control synthesis using polyhedral (parallelotope-
valued) solvability tubes is elaborated. The cases without uncertainties, with additive un-
certainties, and also with a matrix uncertainty are considered. Nonlinear recurrent relations
are presented for polyhedral solvability tubes. Control strategies, which can be calculated by
explicit formulas on the base of these tubes, are proposed. Proposed polyhedral solvability
tubes may turn out to be rather conservative. But we can easily compute them, while the
maximal solvability tubes are hard to construct. One should also bear in mind that the
use of the strategies proposed for Problem 3 does not exhaust, in general, all possibilities to
control systems (1), (3), (4)–(6) with controls in matrix.
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