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For piecewise smooth signals, ['-method is the best
among [P-methods: an interval-based justification
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Traditional engineering techniques often use the Least Squares Method (i.e., in
mathematical terms, minimization of the /2-norm) to process data. It is known that
in many real-life situations, [P-methods with p # 2 lead to better results, and different
values of p are optimal in different practical cases. In particular, when we need to
reconstruct a piecewise smooth signal, the empirically optimal value of p is close to 1.
In this paper, we provide a new theoretical explanation for this empirical fact based
on ideas and results from interval analysis.
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1. Formulation of the problem

I2-methods: brief reminder. Traditional engineering techniques frequently use the Least
Squares Method — LSM (i.e., in mathematical terms, the [>-norm) to process data. For
example, if we know that measured values by, ..., b,, are related to the unknowns z,...,z,

by the known dependence
Z Aijxj ~ bi,
j=1

and we know the accuracy o; of each measurement, then the LSM means that we find the
values x; for which the function

2
m 1 n
V = _ A.r. — b
- <O‘Z‘ - iyt bz)
=1 7=1

takes the smallest possible value.
By the Gauss— Markov Theorem [1], this method is provably optimal (being the best
linear unbiased estimator) under the assumption that the measurement errors
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are uncorrelated with zero mean and standard deviation o;. In addition, if the Ab; are
independent and normally distributed, then the maximum likelihood method [2, 3], which
requires p(Aby, ..., Ab,) — max, takes the form

| A
pilAb) = T oxp (‘ 202) ‘

7
Since the logarithm is a strictly increasing function, and the logarithm of a product
p1 ... py is equal to the sum of the logarithms, maximizing the maximal likelihood is
equivalent to minimizing the sum of negative logarithms — log(p;) of p;, i. e., minimizing the

¢<%)+...+¢(Ab"> (1)
o1 On

with ¢(x) = z%. We thus get the Least Squares Method.

Similarly, if we know that the next value x;,; is close to the previous value z; of the
desired signal, and that the average difference between x;.; — x; is about o;, then we can
use LSM to find the values x; which minimize the sum

n—1 2
<€l7i+1 - ZEz> '
i=1 i

M-methods: brief reminder. In many practical situations, different measurement
errors are independent, but the distribution may be different from normal; see, e. g., [4—6].
In this case, the maximum likelihood method is still equivalent to minimizing the sum (1),
but with a different function ¢ (z) = —log(p(x)).

In many other practical situations, we know that the distribution is not normal, but we
do not know its exact shape. In such situations of robust statistics, we can still use a similar
method, with an appropriately selected function (). Such methods are called M-methods;
see, e. g., [2, 3, 7].

In such situations, if we know that the next value x;,; is close to the previous value z;
of the desired signal, and that the average difference between x;,; — x; is about o;, then we
can use LSM to find the values x; which minimize the sum

n—1
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[P-methods: a brief reminder. Among different M-methods, empirically, P-meth-

ods — with ¢(z) = |z|P for some p > 1 — turn out to be the best for several practical
applications; see, e.g., [8]. In this case, we select a signal (= tuple) z; for which the value

where
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is the smallest possible. These methods have been successfully used to solve inverse problems
in geophysics; see, e. g., [9, 10].
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In [11], the empirical success of [P-methods was theoretically explained: it was shown that
[P-methods are the only scale-invariant ones, and that they are the only methods optimal
with respect to all reasonable scale-invariant optimality criteria. It is therefore reasonable
to use [P-methods for processing data.

[P-methods: how to select p. The above-mentioned justification explains that with
respect to each optimality criterion, one of the [”-methods is optimal — but does not explain
which one. It is known that in different practical situations, different values of p lead to the
best signal reconstruction.

For example, in the situation when the errors are normally distributed, p = 2 is the best
value. For other situations, we may get p =1 or p € |1,2].

In each situation, we must therefore empirically select p — e. g., by comparing the result
of data processing with the actual (measured) values of the reconstructed quantity.

Empirical fact. In several situations, we know that the reconstructed signal is piece-
wise smooth. For example, in geophysics, the Earth consists of several layers with abrupt
transition between layers; in image processing, an image often consists of several zones with
an abrupt boundary between the zones, etc.

It turns out that in many such situations, the empirically optimal value of p is close to
1; see, e. g., [9] for the inverse problem in geophysics, and [12—15] for image reconstruction.

How this fact is explained now (see, e.g., [12]). In the continuous approximation, the
[P-criterion leads to the minimization of [|#[Pdt (in the 1D case; multidimensional case is
handled similarly). For a transition of magnitude C' and width ¢, the derivative & is = C'/e,
so the contribution of the transition zone to the integral is of order ¢/e? = ¢~®=Y_ For p > 1,
when € — 0, this contribution tends to oo. Thus, for p > 1, the minimum is never attained
at the discontinuous transition (“jump”) e = 0, but always at a smoother transition £ > 0.

For p = 1, the contribution is finite, so jumps are not automatically excluded — and
indeed, they may be correctly reconstructed.

Limitations of our explanation. There are two limitations to this explanation:

e first, it explains why [P-methods for p > 1 do not reconstruct a jump, but it does not

explain why [! methods reconstruct the jump correctly;

e second, it strongly relies on the continuous case and does not fully explain why a similar

phenomenon occurs for real-life (discretized) computations.

What we do in this paper. In this paper, we provide a new interval-based theoretical
explanation for the above mentioned empirical fact, an explanation that is directly applicable
to real-life (discretized) computations.

2. Analysis of the problem and the main results

For simplicity, we will consider 1-D signals z(¢). In the interval setting, for several moments
of time t; < ... < t, (usually, equidistant t; = ¢; + (i — 1)At), we know the intervals
x; = [z;,T;] that contain the actual (unknown) values x; = x(¢;). Based on this interval
information, we would like to select the values z; € x;. According to the [P-criterion, among
all the tuples (z1,...,x,) for which x; € @y, ..., x, € x,, we select the one for which the
value
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To select p, we will consider the case of a “transition zone”, i.e., the case when for some
values | < u, we know two things:
e that the value x;_; right before the zone cannot be equal to the value x,,, right after
the zone — i.e., that ;1 Nx,,; = (); and
e that we have (practically) no information about the values of x; inside the zone —1i.e.,
at least that for all ¢ from [ to u, the interval a; contains both a; | and a,.
In this case, the above criterion interpolates the values x; inside the zone. If we assumed
that the signal is smooth, then, no matter how steep the transition, we would have had
a smooth interpolation. However, since we consider the situations when the signal is only
piecewise smooth, we would rather prefer to have a signal which “jumps” discontinuously
from one value to another.
In this section, we will show that for p = 1, we will indeed get such a jump, while for
p > 1, we have a smooth transition instead. Let us describe this result in precise terms.
Definition 1. By an [P-problem, we mean the following problem:
GIVEN: n intervals x; = [x,,T1], ..., [x,,Tn], n real numbers oy, ..., oy,
and a real number p > 1;
AMONG: tuples xy ...,x, such that z; € [z;,T;| for every i;
p

FIND: the tuple for which the value V = nzzl %' 18 the smallest possible.
i=1 i

Definition 2. An [P-problem is called degenerate if all the values o; are different.

Comment. Almost all combinations o4, ..., 0, are degenerate.

Definition 3. Let | < u be integers. We say that an [P-problem contains a transition
zone between | and u if the following two conditions hold (Fig. 1):

e x;_1MN Lyt+1 = Q),' and

e for alli from [ to u, we have ; O ;1 and x; O Tyy.

Proposition 1. For p =1, for each solution x; to a non-degenerate [P-problem, in each
transition zone, we have x;_ 1 =x; = ... = and Ty = ... = Ty = Tyy1 for some t.

In other words, for p = 1, in each transition zone, we have a “jump” from the value z;_;
before the transition zone to the value x,.; after the transition zone (Fig. 2).

Comment. In the degenerate case, when different values o; are equal, the jump is still
an optimal solution, but we may also get other solutions, with a smooth transition from

-1 l U u—+1 (-1 l U u—+1

Fig. 1 Fig. 2
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211 to x,y1. For example, if all the values o; are the same, then, as one can easily see, the
minimized criterion is proportional to the sum

n—1
Z |z — Tigal-
i=1

So, for each solution that monotonically changes from x;_; to x,_1, the corresponding part

u
Z |£Ez - $i+1|

1=l—1

of the sum is equal to |x;_1 — 2,4 1|. Thus, the value of the minimized criterion is the same for
the jump solution and for a different solution in which z; is the same outside [l — 1, u+ 1] —
but strictly monotonically changes between [ — 1 and u + 1.

Proposition 2. For p > 1, for each solution x; to an [P-problem, in each transition
zone, we have a strictly monotonic sequence ;1 < T; < ... < Ty < Tyyy OT Ty_1 > T >
e > Ty > Tyt

Proposition 3. For p > 1, in the limit when all the values o; tend to the same value
o, each solution x; to an [P-problem, in each transition zone, is linear, i.e., has the form
x; = a+ bi for some numbers a and b (Fig. 3).

These results explain why p ~ 1 is indeed empirically best for processing piecewise smooth
signals: only for p = 1, [P-interpolation leads to a piecewise smooth signal.

Comment. The fact that [*-methods are the best among [P-methods does not mean that
they are always the best possible interpolation techniques. For example, the above results
show that, with an /'-method, we always get a jump, both

e for the steep transition from «; ; to «,1, where such a jump is desirable, and

e for a smoother transition from a;_; to x, 1, where, from the physical viewpoint,

we may want to prefer a smooth interpolation.
In other words,

e for small differences z; — x;,1, we would like to have smooth transitions, while

e for large differences z; — x;.1, we would like to have a jump.

Since a jump is reconstructed when ¢ (x) = |z| and a smooth transition, when, e.g., ¥(x) =
|z|?, a natural idea is to use a Huber function v (x) which is equal to |z|?> when |z| is below

-1 ) U u—+1

Fig. 3
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a certain threshold zy, and which is linear ¢(x) = C' - |z| for |z| > x¢; from the requirement
that the function ¢ (z) be continuous, we conclude that C' = |z2| = C - |z¢l, i.e., that
C = z¢. Such technique indeed leads to a better reconstruction of piecewise smooth signals;
see, e. g. [12] and references therein. Various related choices for ¢ (z) have been explored in
the context of computer tomography by Kaufman and Neumaier [16, 17].

Huber’s function ¢ (x), in its turn, has its own limitations; it is worth mentioning that in
general, the problem of optimally reconstructing piecewise smooth 2-D signals is NP-hard;
see, e.g. [18-20].

3. Proofs

1. First, we observe that the solution to an [P-problem minimizes a continuous function
V on a bounded closed set (box) &1 X ... X @,. Thus, this minimum is always attained, i.e.,
a solution always exists.

2. Let us prove that for every p, the solution z; to the [P-problem is (non-strictly)
monotonic in each transition zone, i.e., that v, | < < ... <z, <z or 1 > 70 >
cen 2Ty 2 Tyl

Let us prove this result by reduction to a contradiction. Namely, let us assume that the
solution is attained on some non-monotonic sequence. The fact that x; is not monotonic on
the transition zone means that not all inequalities between the neighboring values are of the
same sign, i.e., that we have x;_; < x; and x; > x4, for some indices ¢ and j from this
zone. Among such pairs (7, j), let us select a one with the smallest distance |i — j| between
¢t and j.

Without losing generality, we can assume that ¢ < j in this selected pair.

For the selected pair, for indices k& between z; and x;, we cannot have z, < zj41 or
T > Ty — otherwise we would get a pair with an even smaller difference | — j|. Thus,
for all intermediate indices k, we get x; = xy41. Since x; = x;1; = ... = x;, we thus have
zr; = xj. So, we have z,_1 < x; = ... = x; > ¥j11. Let ¢ = min(z; — z;_1,2; — xj41).
Let us now keep all the z-values outside (4, j) intact and replace z; = ... = z; with the
values ; — e = ... = x; — €. The resulting value x; — ¢ is equal to either z;_; € x;_; or
to xj11 € x;41. By the definition of a transition zone, all intermediate intervals &) contain
both x;_; and x;,;. Hence, the new value of x; is within the corresponding interval ;.

By making this change, we decrease the differences |z; — x;_1| and |z;11 — z;| and leave
all other differences intact — and hence, we decrease the value of the minimized objective
function V' (Fig. 4).

Since the objective function V' attains its minimum at the original tuple z;, the possibility
to minimize even further is a contradiction. This proves that the solution is monotonic in
each transition zone.

3. For the solution, we have ;| < 2; < ... <2y, < Ty 1 O Ty 1 > T; 2> ... 2> Xy = Tyaq
according to Part 2 of this proof. To complete the proof of Proposition 2, it is now sufficient
to prove that for p =1 and for k =1, ..., u, we cannot have any strictly intermediate values
T € (x1_1, Tyr1) (O T € (Tyr1, -1))-

We will prove this ad absurdum. Let us assume that an intermediate value x; does exist.
In principle, we may have values equal to x;. Due to monotonicity, these values form an
interval within [/, u|. Let x; be the first value equal to xy, and let x, be the last value equal
to . Then, we have ... <z 1 <zp=... =Te < Ty < ...
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Let us now choose a value € € [xp_1 — xp, Tey1 — |, keep all the z-values from outside
[b, e] intact, and replace all the z-values from [b, e] with 2, + ¢ = ... = 2. + €. Similarly to
Part 2 of this proof, we can show that for every ¢, we still have x, +¢ € @y, ..., . +¢€ € x..

After this replacement, we change only two differences |z;.1 — x;]:

e the difference |z, — 21| = 2, — xp—1 is replaced with x, — 2,1 + £, and

e the difference |z — x| = Tey1 — x, is replaced with x. 1 — 2. — €.
Thus, after this replacement, the original value V' of the minimized objective function is
replaced with V' + AV, where (Fig. 5)

NI (L _ i) ,
Op—1 Oe

Since the problem is non-degenerate, i. e., all the values o; are different, the coefficient at
e in AV is non-zero. If this coefficient is positive, we can take negative ¢ and decrease V; if
it is negative, we can decrease V' by taking € > 0. In both cases, we get a contradiction with
the fact that the original tuple x; minimizes V. This contradiction proves that intermediate
values are impossible. Proposition 2 is proven.

4. Let us now prove that the solution is strictly monotonic for p > 1, using reduction to
a contradiction once again.

We assume that the solution is not strictly monotonic, while usual monotonicity holds
(Part 2 of the proof). Since it is monotonic, the only way for the solution to be not strictly
monotonic is to have x; = x;,1 for some index ¢. We may have several indices with an
x-value equal to this z;; let b be the first such index, and let e be the last such index. Then,
Tp = Tht1 = - .- = Te-

Since the intervals «; ; and x,; have no common points, we cannot have x;_; = 1.
Thus, either b # [ — 1 or e # v+ 1. Without losing generality, we can assume that b # [ — 1.
Also, without losing generality, we can assume that the solution x; is increasing. Thus, we
have xp_1 < xp = Tpy1.

Let us now pick a small value € > 0 and replace x; with x, — e — while leaving all other
z-valued intact (Fig. 6).

Ty Tp41

Fig. 6
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This replacement changed the original value V' of the minimized function with a new
value V + AV, where

(:L’b — Tp—1 — €)p eP (l’b - xb—l)p
AV = oy T o
b—1 b b—1

By applying the first term of Taylor expansion to the first ratio in the expression for AV,
one can conclude that

xp — Tp_1 )Pt eP
AV — Pl p“) e+ 0() + —5.
Op 1 Op

We consider the case p > 1. Then, for sufficiently small ¢, the first term dominates, so the
difference AV is negative — which means that we can further decrease V.

This possibility contradicts to the fact that the tuple x; minimizes V. Thus, the solution
is indeed strictly monotonic. Proposition 2 is proven.

5. Let us now prove Proposition 3.

By definition of the transition zone, for each index ¢ from this zone, we have x;_; C x;,
hence ;1 € ;1 C «; and x;_1 € [z;,T;] — thence z; < x;_;. Similarly, from @, C «;,
we conclude that z,.1 <7;.

Due to strict monotonicity (Part 4 of this proof), we have z; 1 < x; < z,41. Thus,
z; < a1 < x; and z; < x; and similarly, z; < 7;.

Since the value x; is strictly inside the interval a;, the derivative of the minimized function
V is equal to 0. Differentiating V' relative to x; (and taking monotonicity into account), we

conclude that
p p—1_p __

pla; — xi)P ol — p(wigy — 2)P ol = 0.
When o; — o, we get x; — x;_1 = x;11 — x;. So, the difference z; — z;_; is indeed the same
for all ¢ within the transition zone. Thus, we get the desired linear dependence of x; on 1.
The proposition is proven.
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