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For large Reynolds numbers analytical expressions are derived for the velocity com-
ponents and the pressure in the boundary layer between two oscillating parallel planes.
The linearization of the boundary layer equations leads to a coupled system of three
parabolic differential equations with time-dependent or homogeneous boundary condi-
tions. The solutions are derived using computer algebra software on a personal com-
puter. The vortical character of the flow pattern — shown in experiments — resembles
the famous Görtler vortices in the boundary layer along a curved wall. A criterion for
vortex identification for this type of motion is at least fulfilled for half the period of
the oscillating planes.
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Introduction

The following investigation is based on a computer-algebraic analysis of the time-dependent
boundary layer equations, describing the oscillating flow in a fluid layer between two parallel
plates induced by the torsional motion of the boundaries. The analytical solution of the
linearized boundary layer equations results from the solution of three parabolic differential
equations describing the initial-boundary value problems for the velocity components. The
solution which defines the velocity components can be split into three terms, describing the
transient, oscillating and stationary flow in radial and axial direction. The stationary flow
is responsible for the mass transport in the boundary layer. Experiments show a formation
of streamwise vortices in the boundary layer. Once the cylinder is set into oscillation, in the
vicinity of the axis of rotation — close to top and bottom boundary — vortices are created,
which propagate radially outward. This phenomenon resembles the well known Görtler
vortices along concave walls. In the present case, the curved streamlines in the stagnation
region play the role of a concave rigid wall, which causes Görtler vortices along the curved
boundary. In the present case the vortex character of the flow can be analysed using the
symmetric and skew symmetric part of the vector gradient of the Navier — Stokes equations.
It can be shown that a local pressure minimum exists due to vortical motion [1] . In Fig. 1
the vortical structure in the vicinity of the axis of an oscillating flat cylinder results from
the self organisation of the fluid under the torsional motion around the axis. The initially
separated radial vortices interact while being pulled outward radially under the action of
the steady radial flow enforced by the centrifugal force. This leads at last to a pattern of
entangling interacting vortices.
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Fig. 1. Streamwise vortices in an oscillating boundary layer

1. Basic equations and boundary conditions

In a cylindrical coordinate system (r, ϕ, z), the Navier — Stokes equations in the following
form describe the cylindrical flow of a fluid with circumferential symmetry character. This
means that the functions u, v, w, p and all their partial derivatives with respect to ϕ are not
depending on the independent variable ϕ.
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u, v, w are the velocity components in r-, ϕ- and z-direction, p is the pressure and ν is the
kinematic viscosity of the fluid. In addition, the continuity equation reads like

1

r

∂(ru)

∂r
+
∂w

∂z
= 0. (4)

We assume that the motion of the two parallel planes, oscillating with the frequency n
around the common axis, is limited to small angular amplitudes ω � 1, that the following
estimation holds:

Ω(t) = ω sinnt� 1.

The circumferential velocity component of boundary points in the planes z = 0 and z = d,
is therefore prescribed by the function

v(r, 0, t) = v(r, d, t) = rΩ0 cosnt, Ω0 := ωn,

where d is the vertical distance of the parallel plates. This boundary condition prescribes a
harmonic oscillation of the two planes parallel to each other with the frequency n and the
velocity amplitude rΩ0 around the z-axis.

For the radial and axial velocity components u(r, z, t) and w(z, t) we get homogeneous
boundary conditions at z = 0 and z = d :

u(r, 0, t) = u(r, d, t) = 0,

w(0, t) = w(d, t) = 0.
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2. Nondimensional equations

The variables u(r, z, t), v(r, z, t), w(z, t) and p(z, r, t) are transformed into dimensionless form
introducing the distance d of the two planes as length scale for the coordinates z and r and
the frequency n for the time t.

y :=
z

d
, r :=

r

d
, t := nt.

The nondimensional velocity components and the pressure are defined as follows:

u :=
u(r, z, t)

Ω0d
, v :=

v(r, z, t)

Ω0d
, w :=

w(z, t)

Ω0d
, p :=

p(r, z, t)

%Ω2
0d

2
.

Introducing the parameter

ω :=
Ω0

n
,

which represents the ratio of the amplitude of the angular velocity and the frequency of
oscillation of the planes, into the dimensionless system of differential equations leads to the
following system of equations:
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The dimensionless boundary conditions are

u(r, 0, t) = u(r, 1, t) = 0,

v(r, 0, t) = v(r, 1, t) = r cos t,

w(0, t) = w(1, t) = 0.

3. The ansatz functions

Introducing the ansatz functions [2] , [3] , F (y, t), g(y), and P (y, t), the velocity components
u, v, w and p are defined in the following way:

u(r, y, t) = rω Fy(y, t),

v(r, y, t) = rg(y, t),

w(y, t) = −2ω F (y, t),

p(r, y, t) = P (y, t) +
1

2
r
2
K(t) .

This choice of ansatz functions is similar to the analytical approach of the flow near a rotating
disk which was analysed the first time by Th. v. Kármán.
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The functions u, v depend linearly on r. w is independent of r according to the fact,
that the boundary layer thickness δ of the flow around the stagnation point at the plate is
constant, not depending on the radius r. p contains the socalled centrifugal term, modified
by the factor K(t), which takes into account the time dependent influence of the centrifugal
force. Introducing the ansatz functions into the system (5)–(8) — omitting the bar on the
dimensionless quantities and denoting the dimensionless time by τ, we arrive at the following
system of partial differential equations for the fluid under consideration with the Reynolds
number

R :=
nd2

ν
> 0, (9)

Fyτ + ω2
[
F 2
y − 2FFyy

]
− g2 = −K (τ) +

1

R
Fyyy, (10)

gτ + 2ω2 [Fyg − Fgy] =
1

R
gyy, (11)

Fτ − 2ω2FFy =
1

2
Py +

1

R
Fyy. (12)

The boundary conditions for the ansatz functions are

F (0, τ) = F (1, τ) = 0,

Fy(0, τ) = Fy(1, τ) = 0,

g(0, τ) = g(1, τ) = cos τ .

The ansatz functions fulfill the continuity equation identically. In addition to these boundary
conditions the functions have to show the following symmetry and antisymmetry character,
respectively:

Fy(y, τ) = Fy(1− y, τ),

F (y, τ) = −F (1− y, τ),

g(y, τ) = g(1− y, τ),

P (y, τ) = P (1− y, τ).

4. The boundary layer approximation

Based on the assumption that Ω0 is of order 0.1 s−1 = 5.7◦ s−1, we assume

ω2 � 1, (13)

which can be realised experimentally for a moderate n of about 50 s−1. As a consequence
of this assumption the differential equations are linearized and define the boundary layer
equations for the flow in the vicinity of a fast oscillating plane:

Fyτ =
1

R
Fyyy + g2 (y, τ)−K (τ) , (14)

gτ =
1

R
gyy, (15)

Fτ =
1

R
Fyy +

1

2
Py. (16)
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These equations can be solved analytically. In (14) we introduce a new function

Φ(y, τ) := Fy(y, τ) (17)

and get an inhomogeneous parabolic differential equation with homogeneous boundary con-
ditions of the form

Φτ =
1

R
Φyy + g2 (y, τ)−K(τ). (18)

The solution of this equation determines the radial component

u(r, y, τ) = rω Φ(y, τ).

Integrating equation (14) with respect to y, we get

Fτ =
1

R
Fyy +

∫
g2 (y, τ) dy − yK (τ) + C0(τ), (19)

the solution of this equation determines the axial velocity component

w(y, τ) = −2ωF (y, τ).

If we compare (16) with (19), the pressure function P (y, τ) can be found by a twofold
quadrature:

P (y, τ) = 2

y∫  η∫
g2 (ζ, τ) dζ

 dη − y2K(τ) + yC0(τ) + C1(τ). (20)

As only the pressure gradient is physically relevant, we can assume C1(τ) ≡ 0.
The three parabolic differential equations for the velocity components and the relation

for the pressure function are solved successively in the following order:

gτ =
1

R
gyy,

P (y, τ) = 2

y∫  η∫
g2 (ζ, τ) dζ

 dη − y2K (τ) + yC0(τ),

Φτ =
1

R
Φyy + g2 (y, τ)−K (τ) ,

Fτ =
1

R
Fyy +

∫
g2 (y, τ) dy − yK (τ) .

5. The circumferential velocity component

A solution of (15) which obeys the time dependent boundary conditions is defined by

g(y, τ) := G1 (y) cos τ −G2 (y) sin τ, (21)

G1 (y) : = eλy (γ11 cosλy − γ12 sinλy) + e−λy (γ21 cosλy + γ22 sinλy) ,

G2 (y) : = eλy (γ12 cosλy + γ11 sinλy) + e−λy (γ22 cosλy − γ21 sinλy) .
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Fig. 2.
v(r, y, τ)

rω
, τ = k

π

8
, k = 0, ..., 8

The coefficients γik, i, k = 1, 2 are summarized in Appendix I. As initial condition we define
g(y, 0) := G1(y).

Writing (21) in a slightly different form we get

g(y, τ) = eyλ (γ11 cos (yλ− τ)− γ12 (sin (yλ+ τ))) +

+e−yλ (γ21 cos (yλ+ τ) + γ22 sin (yλ− τ)) .

This can be interpreted as a superposition of two damped waves running from each of the
boundaries into the interior of the fluid layer with the phase velocity

vphase = ±1

λ
= ±

√
2

R
.

The circumferential velocity distribution in the fluid layer is therefore

v(r, y, τ) = r ω (G1 (y) cos τ −G2 (y) sin τ) . (22)

Figure 2 shows a sequence of velocity distributions in the fluid layer for nine time steps.
For a chosen Reynolds number of R = 500, the oscillating walls influence a fluid layer of
approximately 20 % of the total thickness of the fluid.

Taking into account the initial condition for g(y, τ), we have to add the transient part to
the solution (21). The transient solution of the homogeneous differential equation is given by

gtrh =
∞∑
n=1

Ane
−π

2n2

R
τ sinnπy.

The coefficients An are listed in the Appendix II. After a transient time of τ = 20 the
maximal amplitude of gtrh is approximately of order 10−4. Therefore, for further calculations
only the time periodic solution (22) will be used.

6. The pressure function

Performing the twofold quadrature in (20) results in the following solution

P (y, τ) = 2
(
Π1 (y) cos2 τ + Π2 (y) sin2 τ − Π3 (y) sin 2τ

)
− y2K (τ) + yC0(τ).
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The functions Π1,Π2,Π3 are listed explicitly in the Appendix III. From the symmetry char-
acter of P (y, τ) one derives the two expressions for K (τ) and C0 (τ)

K (τ) = (γ11γ21 − γ12γ22) cos 2τ, (23)

C0 (τ) = 2 (γ11γ22 + γ12γ21) sin 2τ. (24)

Finally, the pressure function P (y, τ) is given by

P (y, τ) = 2
(
Π1 (y) cos2 τ + Π2 (y) sin2 τ − Π3 (y) sin 2τ

)
−

−y2 (γ11γ21 − γ12γ22) cos 2τ + 2y (γ11γ22 + γ12γ21) sin 2τ. (25)

7. The radial velocity component

Equation (18) is an inhomogeneous parabolic differential equation with homogeneous bound-
ary conditions and the initial condition Φ(y, 0) = 0. The solution of this initial-boundary
value problem is represented by an expansion with respect to the eigenfunctions sin (nπy) ,
n ∈ N, of the homogeneous equation. In a first step the inhomogeneity has to be developed
into a series of the eigenfunctions which leads to coefficients U(k), V (k),W (k), which are
listed in the Appendix IV.

g2 (y, τ)−K (τ) =

= 2
∞∑
k=0

(
U(k) cos2 τ + V (k) sin2 τ −W (k) sin 2τ

)
sin (2k + 1) πy+

+2 (γ11γ21 − γ12γ22)
∞∑
k=0

Rκ

4R2 + κ2
e−

κ
R
τ sin (π (2k + 1) y)−

−2 (γ11γ21 − γ12γ22)
∞∑
k=0

R
2R sin 2τ + κ cos 2τ

4R2 + κ2
sin (π (2k + 1) y) . (26)

As mentioned at the beginning, the solution of equation (18) can be split into three
separate parts which will be denoted by the abbreviations: tr for transient, os for oscillation,
and st for stationary flow. The indices i and h stand for inhomogeneous or homogeneous,
respectively.

The transient solution
1

rω
u(y, τ)tri =

= 2
∞∑
k=0


−RU(k) (2R2 + κ2)− 2V (k)R3 +W (k)Rκ2

κ (κ2 + 4R2)
+

+γ
Rκ (1− cos π (2k + 1))

(4R2 + κ2) (2k + 1) π

 e
−
κ

R
τ

sin (2k + 1) πy, (27)

γ : = γ11γ21 − γ12γ22,
κ : = π2 (2k + 1)2 .
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Fig. 3.
usti (r, y, τ)

rω
radial component

The oscillating solution
1

rω
u(y, τ)osi =

=
∞∑
k=0


R

κ2 + 4R2

 U(k)κ cos 2τ + 2R sin 2τ−
−V (k) (κ cos 2τ + 2R sin 2τ − κ)−
−2W (k)κ cos 2τ + 2R sin 2τ


−2γR

(2R sin 2τ + κ cos 2τ) (1− cosπ (2k + 1))

(4R2 + κ2) (2k + 1) π

 sin (2k + 1) πy. (28)

The stationary solution

u(y, τ)sti =
∞∑
k=0

R (U (k) + V (k))− 2

κ
sin(π (2k + 1) y). (29)

As (29) is a fast convergent series, it is sufficient to take into account only 20 terms. The
approximate solution

20∑
k=0

R(U (k) + V (k))− 2

κ
sin(π (2k + 1) y)

is shown in Fig. 3, where R = 500.
This velocity profile indicates the boundary layer character of the flow by a strong velocity

gradient close to the walls.
The stationary flow in radial direction is responsible for the formation of streamwise

vortices within the boundary layer. The transient part of the solution decays very fast, and
the oscillating behavior is not responsible for the radial material transport, which is observed
in the experiment. Therefore only the stationary term plays the major role in the analysis
of the vortex formation.

8. The axial velocity component

The component w(y, τ) can be calculated by solving the partial differential equation (19)

Fτ =
1

R
Fyy +

∫
g2 (y, τ) dy − yK (τ) + C0(τ)
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Fig. 4. −w
st
i (y, τ)

ω
axial component

with given functions K (τ) and C0(τ), defined by formulas (23), (24). The inhomogeneity∫
g2 (y, τ) dy − yK (τ) + C0(τ)

must be developed into a series with respect to the eigenfunctions sin (nπy) and contributes
to the solution as a driving term. The complete solution is a superposition of the three parts:

The transient solution

− 1

ω
wtri (y, τ) =

= 2
∞∑
k=1


Θ1R (2R2 + π4n4) + 2Θ2R

3 + 2Θ3R
2π2n2

π2 (2k)2
(
π4 (2k)4 + 4R2

) −

−
(
γπ2 (2k)2 + 8Γ2R

)
R cos 2kπ

4kπ
(
4R2 + π4 (2k)4

)
 e−

π2

R
(2k)2τ sin 2kπy. (30)

The oscillating solution

Γ2 := (γ11γ22 − γ12γ21) ,

− 1

ω
wosi (y, τ) = 2

∞∑
k=1


(Θ1 −Θ2)

R
(
π2 (2k)2 cos 2τ + 2R sin 2τ

)
2
(
π4 (2k)4 + 4R2

) +

+Θ3R
2R cos 2τ + π2 (2k)2 sin 2τ

4R2 + π4 (2k)4
+ Θ4

 sin 2kπy. (31)

The stationary solution

− 1

ω
wsti =

∞∑
k=1

(
R

Θ1 + Θ2

π2 (2k)2
+

2RK(τ)

π3 (2k)3
cos 2kπ

)
sin (2kπy) . (32)

The coefficients Θ1,Θ2,Θ3 are summarized in the Appendix V. For the Reynolds number
R = 500 the graph of the axial velocity component is given in Fig. 4.
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9. Vortex identification

From several existing criteria, how to define a vortex in the flow field, the one which was
stated by the authors Jeong and Hussain is the most convincing one and was used in the
present investigation. By a decomposition of the vector gradient of the Navier — Stokes
equations into a symmetric part S and a skew symmetric part A, the eigenvalues µ1, µ2, µ3

of the symmetric matrix

S2 + A2 =


ω2F 2

y − g2 0 −r (FyFyyω
2 + ggy)

2

0 ω2F 2
y − g2

rω (gFyy − Fygy)
2

−r (FyFyyω
2 + ggy)

2

rω (gFyy − Fygy)
2

4ω2F 2
y

 (33)

are calculated:

µ1 (y, τ) = −g
2

2
+

5ω2F 2
y

2
+

1

2

√√√√√√√
g2
(
g2 + r2g2y

)
+

+ω2

(
g2
(
r2F 2

yy + 6F 2
y

)
+

+r2F 2
y g

2
y

)
+

+ω4F 2
y

(
r2F 2

yy + 9F 2
y

) , (34)

µ2 (y, τ) = −g
2

2
+

5ω2F 2
y

2
− 1

2

√√√√√√√
g2
(
g2 + r2g2y

)
+

+ω2

(
g2
(
r2F 2

yy + 6F 2
y

)
+

+r2F 2
y g

2
y

)
+

+ω4F 2
y

(
r2F 2

yy + 9F 2
y

) , (35)

µ3 (y, τ) = ω2F 2
y − g2. (36)

According to ω2 � 1 we can neglect all terms of order ω2 and higher. Therefore we get

µ1 (y, τ) ≈ −1

2
g2 +

1

2
g
√
g2 + r2g2y > 0, (37)

µ2 (y, τ) ≈ −1

2
g2 − 1

2
g
√
g2 + r2g2y < 0, (38)

µ3 (y, τ) ≈ −g2 < 0, 0 ≤ τ ≤ π/2. (39)

Summing up the three eigenvalues we find

3∑
i=1

µi (y, τ) < 0

which fulfills together with (37)–(39) the criterion for the existence of vortical structures in
the flow field. The strong velocity gradient in the shear layer close to the oscillating plates
is the region where vortices can be created and grow.
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Appendix I

λ :=

√
R

2
,

γ11 : =
m0

(
e−2λ − cos 2λ

)
+ 2m1 sinhλ cosλ

2 (cosh 2λ− cos 2λ)
,

γ12 : =
m0 cosλ sinλ−m1 coshλ sinλ

cosh 2λ− cos 2λ
,

γ21 : =
m0

(
e2λ − cos 2λ

)
− 2m1 sinhλ cosλ

4
(
sinh2 λ+ sin2 λ

) ,

γ22 : =
m1 coshλ sinλ−m0 cosλ sinλ

2
(
sinh2 λ+ sin2 λ

) ,

m0 = 1 and m1 = 1 : co-oscillation,

m0 = 1 and m1 = −1 : counter-oscillation.

Appendix II

An = 2


γ11

πn

R2 + π4n4

(
π2n2 − eλ (R sinλ+ π2n2 cosλ) cosπn

)
+

+γ12
πn

R2 + π4n4

(
R + eλ (π2n2 sinλ−R cosλ) cosπn

)
+

+γ21
πn

R2 + π4n4

(
π2n2 + e−λ (R sinλ− π2n2 cosλ) cosπn

)
+

+γ22
πn

R2 + π4n4

(
R− e−λ (π2n2 sinλ+R cosλ) cosπn

)

 .

Appendix III

Π1(y) : =

γ211Ψ1 + γ212Ψ2 − γ11γ12Ψ3 + γ221Ψ4 + γ222Ψ5 + γ21γ22Ψ6+
+2γ11γ21Ψ7 + (γ11γ22 − γ12γ21) Ψ8 − 2γ12γ22Ψ9+

+
1

2
y2 (γ11γ21 − γ12γ22) ,

Π2(y) : =

γ212Ψ1 + γ211Ψ2 + γ12γ11Ψ3 + γ222Ψ4 + γ221Ψ5 − γ22γ21Ψ6+
+2γ12γ22Ψ7 + (γ11γ22 − γ12γ21) Ψ8 − 2γ11γ21Ψ9−

−1

2
y2 (γ11γ21 − γ12γ22) ,

Π3(y) : =
1

2
(γ211 − γ212) Ψ3 +

1

2
(γ222 − γ221) Ψ6 + γ11γ12Ψ10+

+γ21γ22Ψ11 + (γ11γ22 + γ12γ21) y,
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Ψ1 :=
e
√
2Ry
(

2 + sin
√

2Ry
)

8R
, Ψ2 :=

e
√
2Ry
(

2− sin
√

2Ry
)

8R
, Ψ3 := −e

√
2Ry cos

√
2Ry

4R
,

Ψ4 :=
e−
√
2Ry
(

2− sin
√

2Ry
)

8R
, Ψ5 :=

e−
√
2Ry
(

2 + sin
√

2Ry
)

8R
, Ψ6 :=

e−
√
2Ry cos

√
2Ry

4R
,

Ψ7 := −cos
√

2Ry

4R
, Ψ8 := −sin

√
2Ry

2R
, Ψ9 :=

cos
√

2Ry

4R
,

Ψ10 :=
e
√
2Ry sin

√
2Ry

4R
, Ψ11 := −e

−
√
2Ry sin

√
2Ry

4R
.

Appendix IV

U (k) : =


γ211q1 (k) + γ212q2 (k)− γ11γ12q3 (k) +

+γ221q4 (k) + γ222q5 (k) + γ21γ22q6 (k) +
+2γ11γ21q7 (k) + (γ11γ22 − γ12γ21) q8 (k)−

−2γ12γ22q9 (k)

 ,

V (k) : =


γ212q1 (k) + γ211q2 (k) + γ12γ11q3 (k) +

+γ222q4 (k) + γ221q5 (k)− γ22γ21q6 (k) +
+2γ12γ22q7 (k) + (γ11γ22 − γ12γ21) q8 (k)−

−2γ11γ21q9 (k)

 ,

W (k) : =


γ11γ12q10 (k) +

1

2
(γ211 − γ212) q3 (k) +

+ (γ11γ22 + γ221) q7 (k) +
1

2
γ22 (γ21 − γ12) q8 (k) +

+ (γ12γ21 + γ22γ11) q9 (k) + γ21γ22q11 (k) +

+
1

2
(γ222 − γ221) q6 (k)

 ,

κ := π2 (2k + 1)2 ,

q1 (k) = (2k + 1)π

2 (8R2 + κR + κ2)− e
√
2R


κ2
(

cos
√

2R + 1
)

+

+2Rκ
(

cos
√

2R + 2 sin
√

2R
)

+

+8R2
(

2 + sin
√

2R
)


2 (32R3 + κ (16R2 + 2κR + κ2))

,

q2 (k) = (2k + 1)π

2R (8R− κ)− e
√
2R


κ2
(

cos
√

2R− 1
)

+

+2Rκ
(

2 sin
√

2R + cos
√

2R
)

+

+8R2
(

sin
√

2R− 2
)


2 (32R3 + κ (16R2 + 2κR + κ2))

,
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q3 (k) = π(2k + 1)
e
√
2R
(

8R cos
√

2R− κ sin
√

2R
)

cosπ(2k + 1)− 4R

16R2 + κ2
,

q4 (k) = (2k + 1)π

e−
√
2R


κ2
(

1 + cos
√

2R
)

+

+8R2
(

2− sin
√

2R
)
−

−2Rκ
(

2 sin
√

2R− cos
√

2R
)
+ 2 (8R2 +Rκ+ κ2)

2
(
32R3 + 16R2κ+ 2Rκ2 + π6 (2k + 1)6

) ,

q5 (k) = (2k + 1)π

e−
√
2R

κ2 (1− cos
√

2R
)

+ 8R2
(

2 + sin
√

2R
)

+

+2Rκ
(

2 sin
√

2R− cos
√

2R
) + 2R (8R− κ)

2
(
32R3 + 16R2κ+ 2Rκ2 + π6 (2k + 1)6

) ,

q6 (k) = 2π(2k + 1)
e−
√
2R
(
κ sin

√
2R + 4R cos

√
2R
)

+ 2R

16R2 + κ2
,

q7 (k) =
−
(

2R + κ
(

cos
√

2R + 1
))
− 2 (R− κ)

2π(2k + 1) (κ− 2R)
,

q8 (k) = −

(√
2R
(

1−
√

2R
)

+ 2π(2k + 1)
)

sin
√

2R

4R− 2κ
,

q9 (k) = −
4R + κ

(
cos
√

2R− 1
)

2π(2k + 1) (κ− 2R)
,

q10 (k) = (2k + 1)π
κ
(

1 + e
√
2R cos

√
2R
)

+ 4Re
√
2R sin

√
2R

16R2 + κ2
,

q11 (k) = (2k + 1)π
κ
(

1 + e−
√
2R cos

√
2R
)
− 4Re−

√
2R sin

√
2R

(16R2 + κ2)
.

Appendix V

Θ1 = γ211T1 + γ212T2 − γ11γ12T3 + γ221T4 + γ222T5 + γ21γ22T6+

+2γ11γ21T7 + (γ11γ22 − γ12γ21)T8 − 2γ12γ22T9,

Θ2 = γ12
2T1 + γ211T2 + γ12γ11T3 + γ222T4 + γ221T5 − γ22γ21T6+

+2γ12γ22T7 + (γ11γ22 − γ12γ21)T8 − 2γ11γ21T9,

Θ3 =
1

2
(γ211 − γ212)T3 +

1

2
(γ222 − γ221)T6 + γ11γ12T10 + γ21γ22T11 + γ11γ22 + γ12γ21,

Θ4 =

(
2R
(
Rγ sin 2τ − C0(τ)π2 (2k)2

)
+R

(
π2 (2k)2K(τ) + 8Γ2R cos 2τ

))
cos 2kπ

4kπ
(
4R2 + π4 (2k)4

) ,
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T1 =
2M3 +M1 +M2

4
√

2R
, T2 =

2M3 −M1 −M2

4
√

2R
, T3 =

M2 −M1

2
√

2R
,

T4 =
M5 −M4 − 2M9

4
√

2R
, T5 =

M4 −M5 − 2M9

4
√

2R
, T6 = −M4 +M5

2
√

2R
,

T7 =
1

2
M6 +

1

2
√

2R
M7, T8 = − M8√

2R
, T9 = − M7

2
√

2R
+

1

2
M6,

T10 =
M1 +M2

2
√

2R
, T11 =

M5 −M4

2
√

2R
,

M1 = −kπ
π2k2

(
e
√
2R cos

√
2R− 1

)
+Re

√
2R sin

√
2R

2 (R2 + π4k4)
,

M2 = −kπ
R
(

1− e
√
2R cos

√
2R
)

+ π2k2e
√
2R sin

√
2R

2 (R2 + π4k4)
,

M3 =
e
√
2R
(√

2R sin 2kπ − 2kπ
)

+ 2kπ

4π2k2 + 2R
,

M4 =
π2k2

(
1− 16π3k3e−

√
2R cos

√
2R
)

+Re−
√
2R sin

√
2R

4 (R2 + π4k4)
,

M5 = −kπ
π2k2e−

√
2R sin

√
2R +R

(
e−
√
2R cos

√
2R− 1

)
2 (R2 + π4k4)

,

M6 = − 1

2kπ
, M7 =

kπ sin
√

2R

R− 2π2k2
, M8 =

kπ
(

cos
√

2R− 1
)

R− 2π2k2
, M9 =

kπ
(

1− e−
√
2R
)

R + 2π2k2
.
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