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This article addresses construction of the finite volume scheme of the third-order
accuracy using approximation of flows by some known function. The problem is solved
by means of procedures of the multidimensional numerical integration.
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1. Finite volume methods

The aim of this work is to obtain the solution of the conservation laws whose PDE formula-
tion is

qt + f(q)x = 0. (1)

The methods that actually give the mentioned solution are finite volume methods. The
building element of the structure of these methods is grid cell or grid volume (see Figure 1).
The i-th grid cell is the basic element of the subdivision of the spatial domain and it is
noted as:

Ci =
(

xi− 1

2

, xi+ 1

2

)

.

Our task is to approximate the average value over the i-th interval at time tn:

Qn
i ≈ 1

∆x

x
i+1

2
∫

x
i− 1

2

q(tn, x)dx ≡ 1

∆x

∫

Ci

q(tn, x)dx, (2)

where ∆x = xi+ 1

2

− xi− 1

2

is the length of the cell [1]. By integrating the integral form of the
conservation law and dividing by ∆x afterwords, we update the cell average of q in one step
time:

Qn+1

i = Qn
i −

1

∆x





tn+1
∫

tn

f
(

q
(

t, xi+ 1

2

))

dt−
tn+1
∫

tn

f
(

q
(

t, xi− 1

2

))

dt



 . (3)

The next task is to construct approximations for the integrals (fluxes) from (3)

F n
i− 1

2

≈ 1

∆t

tn+1
∫

tn

f
(

q
(

t, xn
i− 1

2

))

dt. (4)
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The formulation above is an approximation to the average flux at the edge x = xi− 1

2

.
The flux at the point x = xi+ 1

2

can be obtained respectively. Although we cannot know the

exact value of Qn
i (since q(xi− 1

2

, t) varies with the time along each edge of the cell), we can
at least suppose how the numerical method should look like:

Qn+1

i = Qn
i −

∆t

∆x

(

F n
i+ 1

2

− F n
i− 1

2

)

.

The methods of this form are so-called 3-point stencil, meaning that the value Qn+1

i

depends on three values: Qn
i−1, Q

n
i , Q

n
i+1 at the previous time level.

These kind of methods have the conservation property as next: let L = {C1, C2, . . . , CJ}
be a set of cells. Then,

∆x

J
∑

i=1

Qn+1

i = ∆x

J
∑

i=1

JQn
i −∆t

(

F n
J+ 1

2

− F n
J− 1

2

)

.

As we can see, every value of the flux function cancels out except at the extreme edges. In
other words, over the entire domain we have exact conversation.

2. Local double logarithmic reconstruction in 1D

In order to derive a truly third order formula, a starting point is probably finding a “suffi-
ciently” good approximation of the unknown function. Some recommendations were based
on development of piecewise polynomial reconstructions with higher degree polynomials such
as MUSCLE, PPM, ENO, WENO. Yet, the fact is that the polynomial of higher degree can
produce oscillations. Considering the nature of the solution of conservation law which are
sensitive to artificial oscillations, this can be interpreted as a disadvantage. So, polynomials
are not always good enough as model functions. There are several reconstruction techniques
based on the hyperbolas, such as LHR (Local Hyperbolic Reconstruction) and LHHR (Local
Harmonic Hyperbolic Reconstruction). Since hyperbolas are monotonic functions, the order
of a hyperbolic reconstruction will be reduced at the local extremes. In this case using some
sort of limiters is necessary. To avoid working with limiters and yet keeping the desired
order even at the points of discontinuity, Local Double Logarithmic Reconstruction was de-
veloped. Based on two logarithmic functions, this technique improves its forerunners LLR
(Local Logarithmic Reconstruction) and DLR (Double Logarithmic Reconstruction) in the
following properties:

— compared to LLR, the LDLR holds third order of accuracy at the local extremes as
well and it is also local variation bounded;

— LDLR upgrades DLR because it exists for all input data.
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2.1. Defining a LDLR Reconstruction Function

The aim is to achieve the full third order reconstruction scheme. The basic fact which
provides wanted order of accuracy is the next lemma:

Lemma. Let f, g ∈ C3[a, b], h = b− a, and

b
∫

a

f(x)dx =

b
∫

a

g(x)dx,

(f − g)′(a) = O(h2) = (f − g)′(b) then (f − g)(x) = O(h3) for all x ∈ [a, b].

We are looking for well defined piecewise smooth function which would exist in each cell.
This function is LOCAL, because it depends only on information from the central and nearest
neighbouring cells. This is so from the reason that the central difference approximation is
obtained right here. Therewith, it is composed of two logarithmic functions and it has a
DOUBLE LOGARITHMIC form.

Let xi = ih, where i is an integer and h is a positive number, be the considered
computational grid. Since we are dealing with a piecewise function defined in each cell
Ci = [xi− 1

2

, xi+ 1

2

], it is enough to analyse the cell C0 only. As described, the reconstructing
function in cell C0 has the following form:

r0(x) ≈ c1 + c2 log(x+ c3) + c4 log(x+ c5). (5)

Let

ϕ0(x) = −ch
a

log

[

x− x0 −
h

2

(

2

a
− 1

)]

− dh

b
log

[

x− x0 −
h

2

(

2

b
− 1

)]

(6)

be some function defined for x ∈ C0, where a, b, c, d are unknown parameters that have to
be found. Now, define our reconstruction function as:

r0(x) = v0 + ϕ0(x)−
1

h

∫

C0

ϕ0(ξ)dξ, (7)

where v0 =
1

h

∫

C0

r0(x)dx, is the cell average of unknown function in C0.

The reconstructing task is to determine parameters a, b, c, d according to some conditions
and properties of the low variation bounded condition (for more information see [2, 3]). After
deriving of needed parameters, we are able to write down a LDLR scheme. This scheme is
not given in the direct form namely because, the reconstruction function r0 is not used
directly. Instead, the lateral derivatives are much more suitable for direct computation:

r0

(

x0 ±
h

2

)

= v0 + chµ±(a) + dhµ±(b),

µ+(t) = − log
(1− t) + t

t2
,

µ−(t) =
(t− 1) log(1− t)− t

t2
. (8)
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The functions µ+ and µ− are related in the next way:

µ±

(

b =
a

a− 1

)

= (a− 1)µ±(a).

Knowing this relation the computation can be realized more easily.

3. Second order approximations to first derivatives

on quadrilateral cell

When the problem we are dealing with is posed on the irregular quadrilateral mesh then
we are actually dealing with quadrilateral cells. Each of these cells is unique has generally
different side lengths. In short, we are dealing with specific local geometry [4]. With the
given known components our problem can be posed as follows:

— function f ∈ C3(Ω), Ω ⊂ R;

— fCi
=

1

vol(Ci)

∫

Ci

f(x, y)dxdy, are given cell averages (i ∈ Z);

— the goal: find the second order accurate approximations to the lateral derivatives of
function f in a given point M ′ = (x′, y′).

The first step in realization of stated intention is to expand f in a certain point M =
(x, y) ∈ Ω, which lies in the neighbourhood of the known point M ′. By Taylor we get:

f(x, y) = f(M ′) + fx(M
′)(x− x′) + fy(M

′)(y − y′) +
1

2
fxx(M

′)(x− x′)2+

+fxy(M
′)(x− x′)(y − y′) +

1

2
fyy(M

′)(y − y′)2 +O(||M −M ′||3). (9)

After integrating the derived expression we are getting formulas for the averages:

fCi
= f(M ′) +

fx(M
′)

volCi

∫∫

Ci

(x− x′)dxdy +
fy(M

′)

volCi

∫∫

Ci

(y − y′)dxdy+

+
1

2

fxx(M
′)

volCi

∫∫

Ci

(x− x′)2dxdy +
fxy(M

′)

volCi

∫∫

Ci

(x− x′)(y − y′)dxdy+

+
1

2

fyy(M
′)

volCi

∫∫

Ci

(y − y′)2dxdy +O(∆3

i ), (10)

where ∆i = diam(Ci) = max
p,q∈Ci

‖p − q‖. Conventionally, we can rewrite the previous state-

ment as:

fCi
= f(M ′) +αifx(M

′) + βify(M
′) +

1

2
γifxx(M

′) + δifxy(M
′) +

1

2
εifyy(M

′) +O(∆3

i ), (11)

where

αi =
1

volCi

∫∫

Ci

(x− x′)dxdy βi =
1

volCi

∫∫

Ci

(y − y′)dxdy,
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γi =
1

volCi

∫∫

Ci

(x− x′)2dxdy δi =
1

volCi

∫∫

Ci

(x− x′)(y − y′)dxdy,

εi =
1

volCi

∫∫

Ci

(y − y′)2dxdy. (12)

The desired approximation of the gradient of f is described by next expression:

∑

j

κjfCj
= fx(M

′) +
∑

j

κjO(∆
3

j), (13)

where j=0, 5 is a local index. Therewith, the following conditions have to hold for κj, j=0, 5:

∑

j

κj = 0, constant terms
∑

j

αjκj = 1,
∑

j

βjκj = 0,

first order integral terms

∑

j

γjκj =
∑

j

δjκj =
∑

j

εjκj = 0, (14)

second order integral terms. These expressions form a linear system of six equations with
six unknown variables κj , j = 0, 5 which matrix equation is

A · κ = 12, (15)

where

A =

















1 1 1 1 1 1
α0 α1 α2 α3 α4 α5

β0 β1 β2 β3 β4 β5
γ0 γ1 γ2 γ3 γ4 γ5
δ0 δ1 δ2 δ3 δ4 δ5
ε0 ε1 ε2 ε3 ε4 ε5

















, 12 =

















0
1
0
0
0
0

















, κ =

















k0
k1
k2
k3
k4
k5

















. (16)

Analogously, the formula for the y-derivatives states:

∑

j

ρjfCi
= fy(M

′) +
∑

j

ρjO(∆
3

j), (17)

and the system which determines ρj coefficients is:

Aρ = 13 =
[

0 0 1 0 0 0
]

.

Let’ concentrate on the x-derivative only (the y-derivative, of course, can be obtained
analogously).

3.1. Deriving the Coefficients α, β, γ, δ and ε

As analysed previously, the solution of the system A · κ = 12 will give us κj . Afterwards we
are able to derive the approximation of fx from expression (13). But the question is how to
derive the elements of the matrix A from (16).
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If we observe the expressions (12) we can notice their dependence of the mesh and of the
relevant point M ′ = (x′, y′). How to derive the integrals (12) is actually the crucial question
in this work. By using the basic computations and the property of additivity we are able to
simplify these integrals. For example:

δi =
1

volCi

∫∫

Ci

(x− x′)(y − y′)dxdy =
1

volCi

∫∫

Ci

(xy − xy′ − x′y + x′y′)dxdy =

=
1

volCi





∫∫

Ci

xydxdy −
∫∫

Ci

xy′dxdy −
∫∫

Ci

x′ydxdy +

∫∫

Ci

x′y′dxdy



 .

So, the functions we are dealing with are constant, linear and quadratic functions (or the
product of two linear functions).

The first try in obtaining the coefficients α, β, γ and ε was TRIANGULATION in R2.
This triangulation formula works perfectly accurate with linear and constant functions. Un-
fortunately, when the integrand is quadratic function the triangulation formula does not give
satisfying results.

Another try was by multidimensional numerical integration [5]. The concept of this
integration is also settled on a triangular decomposition of a certain polygonal domain.
Actually, we are looking for two-dimensional composite quadratures. Briefly, the formula

I(f) =
|T |
3

3
∑

j=1

f(aTj ), (18)

where aTj , j = 1, 3 are the midpoints of the edges of a generic triangle T ∈ τh and |T | is
the area of T . Formula (18) absolutely satisfies our demands for desired degree of exactness
to 2 and it is suitable for the efficient computations of the integrals (12). In the forthcoming
part we will introduce complete deriving of the coefficient αj. Deriving of the coefficients
βj, γj, δj and εj will be written in shorter form.

Consider a certain quadrilateral cell C (for the sake of simplicity we omit the index j,
for a moment). As already mentioned that cell can be divided into two triangles: T1 and T2
(see Figure 2).

The vertices of the triangle T1 are: (x0, y0), (x1, y1), (x3, y3). Similary, the vertices of the
triangle T2 are (x1, y1), (x2, y2) and (x3, y3); also the midpoints are:

aT1

1 =

(

x0 + x1

2
,
y0 + y1

2

)

, aT1

2 =

(

x1 + x3

2
,
y1 + y3

2

)

, aT1

3 =

(

x0 + x3

2
,
y0 + y3

2

)

,

and

aT2

1 =

(

x1 + x2

2
,
y1 + y2

2

)

, aT2

2 =

(

x2 + x3

2
,
y2 + y3

2

)

,

aT2

3 =

(

x1 + x3

2
,
y1 + y3

2

)

= aT1

2 .

To derive the integral α we will do the integrations along the the border of the both triangles
T1 and T2. That is how α1 and α2 ( the integrals over the border of T1 and T2 respectively)
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will be obtained. Considering M ′(x′, y′) as a given point and M(x, y) as the unknown point
around M ′ in which we expand the function, we can start with calculations:

α1 =
1

volC1

I1(f) =
1

|T1|
|T1|
3

3
∑

j=1

f(aT1

j ) =

=
1

|T1|
|T1|
3

(x0 + x1 + x3 − 3x′) =
1

3
(x0 + x1 + x3)− x′,

α2 =
1

volC2

I2(f) =
1

|T2|
|T2|
3

3
∑

j=1

f(aT2

j ) =

=
1

|T2|
|T2|
3

(x1 + x2 + x3 − 3x′) =
1

3
(x1 + x2 + x3)− x′.

Finally:

α = α1 + α2 =
1

3
(x0 + x1 + x3)− x′ +

1

3
(x1 + x2 + x3)− x′ =

1

3
(x0 + 2x1 + x2 + 2x3)− 2x′.

The coefficients β, γ, δ and ε can be derived in a similar way. Before we write down all
expressions for the derived coefficients we must bring back the omited index j. In this way
the coefficients will be specified according to the relevant cell

αj =
1

3
(xj0 + 2xj1 + xj2 + 2xj3)− 2x′j , βj =

1

3
(yj0 + 2yj1 + yj2 + 2yj3)− 2y′j,

γj =
1

6
(x2j0 + 2x2j1 + x2j2 + 2x2j3 + xj0xj1 + xj1xj2 + 2xj1xj3 + xj0xj3 + xj2xj3)−

−2

3
x′j(xj0 + 2xj1 + xj2 + 2xj3) + 2x′2j ,

δj =
1

6
(xj0yj0 + 2xj1yj1 + xj2yj2 + 2xj3yj3) +

1

12
(xj0yj1 + xj1yj0 + 2xj1yj3 + 2xj3yj1+

+xj3yj0 + xj0yj3 + xj1yj2 + xj2yj1 + xj2yj3 + xj3yj2)−
y′j

3
(xj0 + 2xj1 + xj2 + 2xj3)−

−
x′j

3
(yj0 + 2yj1 + yj2 + 2yj3) + 2x′jy

′
j,

εj =
1

6
(y2j0 + 2y2j1 + y2j2 + 2y2j3 + yj0yj1 + yj1yj2 + 2yj1yj3 + yj0yj3 + yj2yj3)−

−2

3
y′j(yj0 + 2yj1 + yj2 + 2yj3) + 2y′2j .
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3.2. Conclusion

Now we are able to obtain the coefficients κj from the (14). However, in this general case it
is worthless to derive explicit formulas for κj. So, we present these variables as a functions
of derived coefficients αj , βj, γj, δj and εj or said in another way, as a functions of x′, y′

and xi, yi, i = 0, 3 and this clearly describes the local geometry dependence of the method.
In practice, these coefficients are computed and stored in each relevant cell before main
simulation

κ0 = ϕ0(αj, βj , γj, δj , εj) = ϕ0(ψ0(xi, yi, x
′, y′)),

κ1 = ϕ1(αj, βj , γj, δj , εj) = ϕ1(ψ1(xi, yi, x
′, y′)),

κ2 = ϕ2(αj, βj , γj, δj , εj) = ϕ2(ψ2(xi, yi, x
′, y′)),

κ3 = ϕ3(αj, βj , γj, δj , εj) = ϕ3(ψ3(xi, yi, x
′, y′)),

κ4 = ϕ4(αj, βj , γj, δj , εj) = ϕ4(ψ4(xi, yi, x
′, y′)),

κ5 = ϕ5(αj , βj, γj, δj, εj) = ϕ5(ψ5(xi, yi, x
′, y′)), i = 0, 3.

Finally, we can write the x-derivative of the function f at the pointM ′, fx(M
′) is completely

determined by following statement:

∑

j

κjfCj
= fx(M

′) +
∑

j

κjO(∆
3

j) ⇒

⇒ fx(M
′) =

5
∑

j=0

κj(fCj
− O(∆3

j)) =
5
∑

j=0

ϕ0 ◦ ψ0(fCj
−O(∆3

j)).

The corresponding formula for the y-derivative, fy(M
′) is:

fy(M
′) =

5
∑

j=0

ρj(fCj
− O(∆3

j)).

4. The finite volume higher order scheme on the quadrilateral cells

Knowing that the LDLR was defined as: (7), we can extend previous expression in two space
dimension on a non-uniform quadrilateral mesh. Then we get:

rij = Qij −
1

vol(Cij)

∫∫

Cij






ϕij(x, y)−

1

∆xij

∫

Cij

ϕij(ξ, θ)dξdθ −

− 1

∆yij

∫

Cij

ϕij(η, µ)dηdµ






dxdy + ϕij(x, y)−

− 1

∆xij

∫

Cij

ϕij(ξ, θ)dξdθ−
1

∆yij

∫

Cij

ϕij(η, µ)dηdµ, (19)

which presents LDLR in two space dimension.
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4.1. Flux Balancing and Applying Gaussian Quadrature

Let’s now evaluate the conservation law on each quadrilateral cell:

d

dt

∫∫

Cij

q(x, y, t)dxdy +

∫ ∫

∂Cij

f(q(x, y, t)) · ndS = 0. (20)

Our final task is to find a flux balance along the cell boundary which is needed for describing
the dynamics of cell average:

qij(t) =
1

vol(Cij)

∫∫

Cij

q(x, y, t)dxdy. (21)

The flux balance is described by next expression:

dqij(t)

dt
= − 1

vol(Cij)

∫ ∫

∂Cij

f(q(x, y, t)) · ndS. (22)

How can we compute the right hand side of (22)? One of the possibility is to evaluate the
integral in (22) by the fourth order Gauss quadrature formula. To obtain this approximation
we need to evaluate the LDL-reconstructed flux function over all four edges of the cell
boundary. The sum of the quadratures over all four edges gives the right hand side of
equation (22) and at the same time our third order finite volume scheme on a quadrilateral
mash. In Figure 3 the Gaussian nodal points are presented and marked as Akl, k, l = 0, 3,
k 6= l. For fourth order Gauss quadrature formula on each of the the four edges there are
two Gauss nodal points:

Akl =Mkl −
1√
12

((xl, yl)− (xk, yk)), Bkl =Mkl +
1√
12

((xl, yl)− (xk, yk)),

where Mkl is the midpoint of a relevant edge whose vertices are (xk, yk) and (xl, yl),

Mkl =
(xk, yk) + (xl, yl)

2
.

12 12 2 2 1 1

1
(( , ) ( , ))

12
A M x y x y= - -

12 12 2 2 1 1

1
(( , ) ( , ))

12
B M x y x y= + -

1 1 2 2
12

( , ) ( , )

2

x y x y
M

+
=

0 0( , )j jx y

1 1( , )j jx y

2 2( , )j jx y
3 3( , )j jx y

01A

03A

23A

01M 01B

03M

03B

23M
23B

Fig. 3



A truly third order finite volume scheme on the quadrilateral mesh 19

A third order flux-balance scheme is presented by the next formula:

− 1

vol(Cij)

∫ ∫

∂Cij

f(q(x, y, t)) · ndS =M01rij(A01) +M01rij(B01) +M12rij(A12)+

+M12rij(B12) + +M23rij(A23) +M23rij(B23) +M30rij(A30) +M30rij(B30) =

=

3
∑

k,l=0,k 6=l

Mkl[rij(Akl) + rij(Bkl)].

Finally, desired finite volume scheme, third order accurate, on the quadrilateral mesh is
achieved by integration of the previous expression.
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