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.ru�àññìîòðåí ïàðàëëåëüíûé àëãîðèòì ïðÿìîãî ñòàòèñòè÷åñêîãî ìîäåëèðîâàíèÿäëÿ ðåøåíèÿ íåëèíåéíîãî óðàâíåíèÿ êîàãóëÿöèè â ïðîñòðàíñòâåííî íåîäíîðîäíîìñëó÷àå. Èññëåäîâàíà ïðîáëåìà ìèíèìèçàöèè âû÷èñëèòåëüíûõ çàòðàò àëãîðèòìà.�àññìîòðåíà ðåàëèçàöèÿ ïàðàëëåëüíîãî àëãîðèòìà â èí�ðàñòðóêòóðå GRID.

1. Coagulation equation

We consider a Cauchy problem for a system of spatially inhomogeneous nonlinear equations
of coagulation (the system is also referred to as coagulation equation) [5]:

∂c1

∂t
+ div(vc1) = −c1

∞∑

j=1

K(1, j)cj,

∂ci

∂t
+ div(vci) =

1

2

i−1∑

j=1

K(i − j, j)ci−jcj − ci

∞∑

j=1

K(i, j)cj , i ≥ 2, (1)

ci(0, x) = c0
i (x).

Here ci = ci(t, x), i = 1, 2, . . . , is concentration of i-mers at time t and point x, v = v(x) is a
spatially inhomogeneous velocity field, K(i, j) is a coagulation kernel, c0

i (x) is a concentration
of i-mers at t = 0. We consider the equation inside time-spatial domain Ω × (0, T ], where
Ω ⊂ R3, T < ∞.

We evaluate the following functionals of the equation solution:

ϕi(t) =

∫

G

ci(t, x)dx, G ⊆ Ω. (2)

Also we consider the same space integrals of spectrum moments.
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2. Monte Carlo algorithm (single processor case)

To solve coagulation equation (1) we simulate sample values of test particles ensemble

ξ = ξ(T ) = {p1, p2, . . . , pN},

where N = N(T ). The pair pk = (lk, xk) is called a test particle. Here lk ≥ 1 is a size of
the particle (integer value), xk ∈ R3 is a position of the particle. Denote by N0 an initial
number of test particles at t = 0.

Note that a velocity variable is not included to the phase state of the test particle (cf.
with the opposite case in [2]). The reason is that the velocity field is defined for the particle
system a-priori (see (1)).

Lets us split the spatial domain Ω into sufficiently small non-overlapping subdomains
Ω1, Ω2, . . . , ΩS (they will be referred to as interaction subdomains). Denote by ρs a
volume of s-th interaction subdomain. To define Monte Carlo algorithm let us consider so
called “regularized” coagulation kernel [2, 3]:

Kρ(p1, p2) =
S∑

s=1

ρ−1
s hs(x1)hs(x2)K(l1, l2), (3)

where hs(x) is an indicator function of the domain Ωs.
Assume that there exists a majorant for the coagulation kernel:

K(l1, l2) ≤ K̂ < ∞.

Then the majorant for the “regularized” kernel (3) is defined as follows:

K̂ρ(p1, p2) = K̂ρ−1
min, (4)

where ρmin = minkρk.
Let us split the interval [0, T ] into subintervals of length △t. According to the majorant

frequency algorithm [2, 3] a sample value ξ = ξ(T ) is simulated as follows:
1. Simulating the initial distribution of particles according to the probability density

f(i, x) = c0
i (x). Thus we have initial state of the particles ensemble ξ(0) = {p1, p2, . . . , pN0

}.
Set t = 0, tc = 0.

2. Simulating a random value τ — a time between subsequent coagulation events. The
value τ is exponentially distributed with the parameter

ν̂ =
1

2N0

∑

i6=j

K̂ρ(pi, pj). (5)

Set tc = tc + τ . If tc > △t the algorithm switches to the stage 6.
3. Choosing a pair of coagulating particles (pi, pj) with the probability (0.5N(N − 1))−1.
4. Simulating a real or fictitious coagulation event for the chosen pair. A probability of

fictitious event Pf(pi, pj) is given as follows:

Pf(pi, pj) = 1,

provided both the particles belong to different interaction subdomains;

Pf(pi, pj) = 1 −
K(li, lj)ρmin

K̂ρs

,
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provided both the particles belong to the same interaction subdomain Ωs. When the real
coagulation event occurs, the chosen pair of particles merges into one particle and the phase
state of the ensemble changes as follows:

(pi, pj) = ((li, xi), (lj, xj)) → p′i = (li + lj, xi), N = N − 1.

When the fictitious coagulation event occurs, the phase state of the ensemble doesn’t change.
5. Switching to the stage 2.
6. Simulating the spatial transport of all particles according to Euler method with the

step size △t:
x′

i = xi + △tv(xi).

Set tc = 0, t = t + △t.
7. If t ≤ T the algorithm switches to the stage 2.
Then the functional ϕ can be estimated according to the formula

ϕ ≈ Eξζ ≈
1

L

L∑

i=1

ζi,

where ζi = ζ(ξi), the notation Eξ stands for the expectation with respect to distribution of ξ.
Denote by εdet a deterministic error of the estimator ζ (i. e. the error of estimating ϕ

with Eξζ). Denote by εstat a statistical error of the estimator ζ (i. e. the error of estimating

Eξζ with 1/L
L∑

i=1

ζi). It is known that εstat = γ
√

Dζ/L, γ = const.

3. Monte Carlo algorithm (multiprocessor case)

We consider a case when the number of particles N is so large that a simulation of a sample
ξ must be carried out only on M processors of parallel computer:

ξ = {ξ(1), ξ(2), . . . , ξ(M)}.

To make parallel decomposition of the single processor algorithm, the computational
domain Ω ⊂ R3 is splitted into M non-overlapping subdomains Ω̂1, Ω̂2, . . . , Ω̂M , the particles
being sorted out into subdomains. These subdomains will be referred to as processors’
subdomains. Denote by nm a number of particles in m-th subdomain. Each subdomain
will be treated by a single processor.

Let us write the majorant frequency in the following way: ν̂ =

M∑

m=1

ν̂m, where

ν̂m =
1

2N0

∑

i6=j

K̂ρ(pi, pj), (6)

the summation being taken over the particles belonging to Ω̂m [2, 3]. Then a parallel simu-
lation may be carried out as follows:

1. Each processor simulates initial condition independent of other processors (see stage 1):

ξ(m)(0) = {p
(m)
1 , p

(m)
2 , . . . , p(m)

nm
}, m = 1, 2, . . . , M.
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2. On m-th processor over the step size △t all coagulation events (real and fictitious)
are simulated independent of other processors (see stages 2–5). In simulation instead of the
parameter ν̂ in (5) we use parameter ν̂m from (6) and instead of N we use nm. At the end
of immediate interval △t we get

ξ(m)(i△t) = {p
(m)
1 , p

(m)
2 , . . . , p(m)

nm
}, nm = nm(i△t), m = 1, 2, . . . , M, i = 1, 2, . . . , T/△t.

3. At the end of △t all processors exchange particles according to Euler method (see
stage 6). Thus we get the updated ensembles ξ(m)(i△t), m = 1, 2, . . . , M . Then the parallel
algorithm switches to the stage 2.

Requirements for parallel random number streams being very strong, it is necessary to use
well tested generator. It is recommended to use the generator introduced and tested in [4].

3.1. Optimal choice of parallel algorithm’s parameters

While increasing the number of processors M it is reasonable to change other parameters of
the algorithm in order to get better accuracy of computations. But it is necessary to change
algorithm’s parameters in an optimal way otherwise the computational cost may grow.

Note that
ξ = ξ(p, N0,△t, ρ, M, {Ω̂m}

M
m=1),

where ρ is a typical volume of interaction subdomains, {Ω̂m}
M
m=1 is a set of processors’

subdomains and p is a set of parameters corresponding to the coagulation equation (1)
and the functional (2). Note that we neglect a dependence of ξ on interaction subdomains
{Ωs}

S
s=1. It is possible to do it under some restrictions on the form of interaction subdomains.

An expectation of a computer time for Monte Carlo algorithm equals to t1L, where t1 is
an expectation of a computer time to simulate one sample. It follows from an equality of a
deterministic error εdet and a stochastic error εstat that

L ∼ ε−2
detDζ,

where Dζ is a variance of the estimator. Therefore a computational cost of the algorithm
is in direct proportion to the value

C(ζ) = t1ε
−2
detDζ.

Note that εdet and εstat don’t depend on M and {Ω̂m}
M
m=1:

εdet = εdet(p, N0,△t, ρ), εstat = εstat(p, N0,△t, ρ, L).

Let us call the following function a relative efficiency of the parallel decomposition:

Φ =
C(ζ)|M=1

C(ζ)|M>1
=

t1|M=1

t1|M>1
.

Here while simulating the values of p, N0,△t, ρ are the same for M = 1 and M > 1.
We assume a hypothesis that the variance of the estimator has the following dependence

upon the parameters of the algorithm:

Dζ = D(p, N0,△t, ρ) ∼ N−1
0 D1(p),
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the variance nearly not depending on ρ and △t. It is possible to prove this hypothesis
rigorously but this proof lies beyond the framework of this paper.

Also we assume that the deterministic error has the following order of magnitude [2, 3]:

εdet = e(p, N0,△t, ρ) ∼ E1(p)N−1
0 + E2(p)△t + E3(p)ρ.

It follows from the last formula that

△t ∼ N−1
0 , ρ ∼ N−1

0 . (7)

Therefore
Dζ ∼ N−1

0 , εdet ∼ N−1
0 , L ∼ ε−2

detDζ ∼ N0.

Let us investigate how the function t1 depends on its parameters. It is evident that

t1 = t1(p, N0,△t, ρ, M, {Ω̂m}
M
m=1).

It is clear that
t1 = E(t(i) + t(c) + t(e)),

where t(i) corresponds to the simulation of the initial state of particles ensemble, t(c) corre-
sponds to the independent sequential simulation of coagulation events on different proces-
sors, t(e) corresponds to the exchange of particles between processors. Let us derive orders
of magnitude of the values t(i), t(c), t(e).

The parallel algorithm is synchronized at i = 1, 2, . . . , T/△t, namely, before data ex-
change stage and after having finished it. Therefore

t(c) =

T/△t∑

i=1

t
(c)
i , t

(c)
i = max

m=1,...,M
t
(c)
i,m,

t(e) =

T/△t∑

i=1

t
(e)
i , t

(e)
i = max

m=1,...,M
t
(e)
i,m,

where t
(c)
i,m is a computer time corresponding to sequential simulation of coagulation events

on m-th processor over i-th time interval △t, t
(e)
i,m is a computer time corresponding to the

data exchange. It is clear that in an optimal case the following relationships for each sample
must hold:

t
(c)
i,1 ≈ t

(c)
i,2 ≈ . . . t

(c)
i,M , (8)

t
(e)
i,1 ≈ t

(e)
i,2 ≈ . . . t

(e)
i,M (9)

at each step i = 1, 2, . . . , T/△t.

In what follows we describe some requirements for {Ω̂m}
M
m=1 to approximate relationships

(8), (9). According to [2, 3] the value of t
(c)
i,m has the following order of magnitude:

t
(c)
i,m ∼ pm△tnm, (10)

where the constant pm corresponds to the performance of the computer. Therefore if {Ω̂m}
M
m=1

are chosen such that

n1(0) ≈ n2(0) ≈ . . . ≈ nM (0), (11)

n1(i△t) ≈ n2(i△t) ≈ . . . ≈ nM (i△t), i = 1, 2, . . . , T/△t
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then the relationship (8) holds. Therefore a computational load of the parallel algorithm is
quite well balanced provided Et(e) ≈ Et(c).

We consider a case when (11) holds automatically. It means that the coagulation equation
has specific properties and the parameters of the parallel algorithm are being chosen in a
specific way.

While simulating the initial condition, each processor makes the same amount of compu-
tational work. Namely, m-th processor uses the same random numbers as other processors
use getting test particles in turn and choosing particles belonging to Ω̂m. Therefore

Et(i) = CiN0. (12)

It follows from (11) that

max
m=1,...,M

t
(c)
i,m ≈ t

(c)
i,m∗ , i = 1, 2, . . . , T/△t

for some processor number m∗. A computational time it takes to simulate the fictitious

coagulation events equals to
N0

M2

Cf

ρ
△t, where Cf = const. For the real coagulation events

a computational time equals to
N0

M
Cr△t, where Cr = const. Therefore

t
(c)
i,m∗ ≈

N0

M

( Cf

Mρ
+ Cr

)
△t, Et(c) ∼

N0

M

( Cf

Mρ
+ Cr

)
. (13)

A dependence of t
(e)
i,m on the parameters N0,△t, M, {Ω̂m}

M
m=1 is obviously quite compli-

cated. Also it is necessary to take into account a technology of processing the requests to
send and receive data by a network software. Assume that the following relationship holds:

t
(e)
i ≤ CeN0M

r△t, r ≥ 0, i = 1, 2, . . . , T/△t,

where Ce = const. Considering the upper bound as the worst case of data exchange contri-
bution we have

Et(e) ∼ CeN0M
r. (14)

Let us specify the dependence of N0 upon M in the following way:

N0 = N ′
0M

d, 0 ≤ d ≤ 1. (15)

If we change the variables N0, ρ for M taking into account (7) and (15) then for the case
M > 1 we get the following relationship:

t1|M>1 ∼ CiN0 +
N0

M
(

Cf

Mρ
+ Cr) + CeN0M

r ∼ CiM
d + CfM

2(d−1) + CrM
d−1 + CeM

d+r.

Similarly, for the case M = 1 we get the following relationship:

t1|M=1 ∼ CiN0 + N0(
Cf

ρ
+ Cr) ∼ (Ci + Cr)M

d + CfM
2d.

Therefore for the case M > 1 the computational cost has the following order of magnitude:

C(ζ) ∼ M2d+r . (16)
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The relative efficiency of parallel decomposition has the following order of magnitude as
M → ∞:

• if Ce = 0 then Φ ∼ Md → ∞;

• if Ce > 0, d < r then Φ ∼ Md−r → 0;

• if Ce > 0, d = r then Φ ∼ const;

• if Ce > 0, d > r then Φ ∼ Md−r → ∞.

In conclusion let us note that the foregoing results were obtained for the case when he
numbers of particles nm, m = 1, 2, . . . , M were almost equal during simulation according
to (11). But we hope that in the case when the distribution of particle ensemble among
processors is quite close to (11) one a behavior of relative efficiency and computational cost
will be close to the above-mentioned relationships. Surely, the most complicated cases have
to be investigated later on.

3.2. Implementation of parallel Monte Carlo algorithm on GRID
infrastructure

In what follows we give some practical advices on the implementation of the DSMC algorithm
on GRID infrastructure. We assume that computers forming GRID infrastructure have
different performances. Also, underlying network is thought to be MPLS one, so we can
order necessary network bandwidth. It is clear taht in the case of GRID implementation the
computational cost of the data exchange is greater than the computational cost of sequential
computations: Et(c) ≪ Et(e).

Here a main question is choosing the necessary network bandwidth. It is evident that in
practice the number of processors M can not be increased infinitely. So it is not clear when
the relative efficiency starts showing the asymptotic behavior (as described hereinbefore).
Therefore a question arises which is a minimal network bandwidth under which

t1|M=1 = t1|M=M ′, (17)

where M ′ is a number of available processors.
To determine minimal network bandwidth we make preliminary computations with M =

M ′ and necessary values of ρ,△t and {Ω̂m}
M
m=1. Actually the values of L and N0 may be

quite small. At the end we have the estimates for the values t(i), t(c), t(e). Actually instead of
t(e) it is reasonable to evaluate b(e) — an amount of data transferred between processors (in
bytes). If necessary we can scale the values of t(i), t(c), b(e) to the necessary value of N0. It
easy to do it because the values of t(i), t(c), b(e) are in direct proportion to N0. Having all this
information we can simulate a behavior of the network using special network simulator [1].
Such simulation enables to evaluate minimal network bandwidth to satisfy the condition (17).

The author thanks S.V. Rogazinskii for a helpful discussion of the paper.
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