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В этой статье мы исследовали нестационарное течение крови, рассматривая ее
несжимаемой ньютоновской проводящей жидкостью в прямом сегменте эластич-
ной артерии под воздействием однородного поперечного магнитного поля. Про-
блема решалась численно в приближении модели локального течения. Были ис-
следованы эффекты синусоидального изменения формы стенки и пульсирующего
градиента давления. Для анализа течения использовалась неявная схема. Реоло-
гические параметры крови, доступные из научной литературы, были использо-
ваны для моделирования различных участков кровеносной системы. Графически
представлено влияние эффектов движения стенок и магнитного поля на профиль
скорости и натяжение стенок сосудов, а также на расход крови от времени. Бы-
ло показано, что скорость движения крови и натяжение стенок уменьшаются с
усилением магнитного поля. Исследование представляет интерес для врачей, по-
скольку влияние внешнего магнитного поля может контролировать течение крови.
Результаты могут быть полезны для лечения болезней артерий типа артериальной
гипертензии.

Introduction

Recently, the study of blood flow through arteries has gained serious attention of researchers,
physiologists and clinical persons because blood and blood vessels are substantial health risk
factors and can substantially contribute to morbidity and mortality. Blood flow in the human
circulatory system depends upon the pumping action of the heart which in turn produces a
pressure gradient throughout the system. The rheological properties of blood and the motion
of the arterial wall play an important role in the physiology of the cardiovascular system.

It is well known that at high shear-rates blood behaves like a Newtonian fluid during flows
through large blood vessels (cf. Misra et al. [2] and Copley [3]). But in particular situations
blood may behave as a non-Newtonian fluid, even in large arteries, as reported in [4 – 6].
It is also worthwhile to mention here that although blood is non-Newtonian suspension of
cells in plasma, MacDonald [7] remarked that for vessels of radius greater than 0.025 cm,
blood may be considered as a homogeneous Newtonian fluid. Several studies [8 – 10] of
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physiological fluid dynamics through stenosed arteries have been carried out to evaluate
the flow pattern and the shear stress at the walls under steady and pulsatile conditions by
considering blood as a Newtonian fluid. Pontrelli [11] studied the steady axisymmetric flow
of blood in a constricted rigid tube. Dutta et al. [1] investigated numerically the oscillatory
and pulsatile flows of Newtonian fluids in straight elastic tubes with the assumptions of
Ling and Atabek’s [12] local flow model. They presented a theoretical assesment of the local
flow model and the range of validity of the assumption. Again Dutta et al. [13] investigated
the possible effects of non-Newtonian behaviour of blood on flow through an elastic artery.
Rodkiewicz et al. [14] studied the behaviour of blood flow in arteries under steady and
pulsatile conditions using both the Newtonian and non-Newtonian model as suggested by
Walburn and Schneck [15]. Shyy and Sun [16] gave the numerical solution of a steady viscous
flow in fixed-wall vessels for a variety of non-uniformities on the channel wall.

Since blood consists of a suspension of red blood cells containing hemoglobin which
contains iron oxide, it is quite apparent that blood is electrically conducting and exhibits
magnetohydrodynamic flow characteristics. It may, however, be pointed out that proteins
like hemoglobin are extremely complex molecules which are sensitive to seemingly minor
changes in pH and composition of blood. For example, the deoxy-configuration of hemoglobin
is the state in which oxygen binds the heme group; a slight decrease in pH (for instance from
7.4 to 7.2) reduces the affinity of oxygen for hemoglobin (the Bohr effect) with various
consequences for the absorption from and release of oxygen to living cells and tissues. Many
authors [17 – 19] have investigated the flow of blood through arteries in the presence of
magnetic field under different conditions. In fact the Lorentz force arising out of the flow
across the magnetic lines of force acts on the constituent particles of blood and alters
the hemodynamic indicators of blood flow. The potential use of such MHD principles in
prevention and rational therapy of arterial hypertension was explored by Vardanyan [20],
who showed that for steady flow of blood in an artery of circular cross-section, a uniform
transverse magnetic field alters the flow rate of blood. Recently Misra et al. [21, 22] investigated
the steady MHD flow of a viscous fluid in a slowly varying channel in the presence of a
uniform magnetic field.

In the present study we investigated the influence of magnetic field on blood flow through
an artery, the wall of which is elastic. The study pertains to a situation where a magnetic
filed is applied in a direction transverse to the direction of flow. Such a field has a more
pronounced effect on the flow than that in the case of an axial magnetic field. Of specific
interest is to determine the velocity profile, the variation of wall shear stress and the flow rate
with time at different radial phase angles and unsteadiness parameters. The hemodynamic
effects for various blood vessels having different diameters, like aorta, femoral artery, carotid
artery and coronary artery.

1. Formulation of the Problem and the Theoretical

Analysis

Let us consider the flow of blood in a straight circular cylindrical section of an artery,
by treating blood as a viscous homogeneous incompressible fluid. We use cylindrical polar
coordinates (r∗, θ∗, z∗), with z∗ as the central axis of the artery. Due to symmetry, the flow
variation is independent of θ∗. Denoting by u∗, v∗ the velocity components of blood along
the axial and radial directions respectively, the equations of motion governing the flow of
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blood in the presence of a transverse magnetic field may then be put in the form
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while the equation of continuity is
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in which ν is the kinematic viscosity and ρ the density of blood, p∗ the fluid pressure, σ

the electrical conductivity and B0 the applied magnetic field. The induced magnetic field
produced by the motion of the blood in the presence of the external magnetic field is assumed
negligible.

We consider axisymmetry of flow, and simplify the equations of motion by using the
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the equations (4) and (3) can be written as
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is the Reynolds number and M = B0R0
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ρν
the Magnetic parameter

(Hartman number).
In order to specify our problem, it is necessary to prescribe the local tube wall motion

R(t∗) and the pulsatile pressure gradient
∂p

∂z
(t∗), which determines the nature of the flow.

We take

R(t∗) = R[1 + kr sin(ωt∗ + φ)] (8)

and

−
∂p

∂z
(t∗) = K + kp cos(ωt∗) (9)
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where R is the mean radius of the artery, K the mean pressure gradient, kr, kp are amplitude
parameters and φ the phase angle along with the frequency ω.

The boundary conditions for the present problem are assumed as

∂u
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= 0, v = 0 at r = 0, (10)
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at r = R(t, z). (11)

The problem is difficult to solve due to the moving boundary condition (11).
Let us use the coordinate transformation
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The local flow model [1] does not require axial boundary condition because it takes care
of the following assumption due to Ling and Atabek [12]:
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where f(z, t) is an unknown function which can be determined from the radial velocity
boundary condition (11). Neglecting the natural taper of an artery, which is in general small
(cf. Milnor [23]) the transformed governing equation (6) reads

∂u

∂t
= −

∂p

∂z
+

1

ReR2

(

∂2u

∂ξ2
+

1

ξ

∂u

∂ξ

)

+

(

ξ

R

∂R

∂t
−

v

R

)

∂u

∂ξ
+

u

R

(

∂v

∂ξ
+

v

ξ

)

−
M2

Re
u. (14)

Let us write the derivative
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of the artery, whose experimental values are available in [24]. Also using the transformation
(12), the equation (7) becomes
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Also the boundary conditions are transformed to
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= 0, v = 0 at ξ = 0, (17)
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∂R

∂t
at ξ = 1. (18)



EFFECT OF MAGNETIC FIELD ON BLOOD FLOW THROUGH AN ARTERY... 7

In terms of the non-dimensional variables defined in (5), the equation (8) and (9) can be
rewritten as
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√
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is the unsteadiness parameter (Womersley number).

After having determined the velocity components of blood in different arteries, we can
obtain the volumetric flow rate Q and the wall shear stress τw from the relations
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2. Numerical Method

The transformed governing equations (14) and (16) subject to the boundary conditions (17)
and (18) are solved numerically using the finite difference implicit Crank-Nicolson scheme.
The central differences are employed to discritize the derivatives along the ξ-direction and
forward differences are used along the t-direction. The index for time appears as superscript
and the index for space direction as in the subscript to locate the grid points. n denotes time
instant t and (n+1) time instant (t+δt). The following discritization is used in equation (14)
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with ξi = iδξ, i = 0, 1, 2, 3, . . . m and tn = nδt, n = 0, 1, 2, 3, . . .
For each time step, the system of linear equations (27) is expressed as a tri-diagonal

system of equations which are then solved by using Thomas algorithm to compute the axial
velocity. Using the axial velocity, the radial velocity can be computed explicitly from the
equation
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The cardiac cycle T is divided into 100 equal time steps, by taking δt = 0.01 and the
normalized inner radius ξ is divided into 40 equal spaces, with δξ = 0.025. All numerical
integrations are carried out using Simpson’s three-eighths rule. The sinusoidal flow simulations
are started from rest(zero velocity).

3. Results and Discussion

The objective of the present work has been to investigate the behaviour of blood flow through
elastic arteries in the presence of an external magnetic field under the action of pulsatile
pressure gradient, when the arterial wall motion is sinusoidal. With the end in view, in
order to illustrate the applicability of the theoretical analysis, a numerical approach has
been developed and computational work has been carried out by using experimental data
for different physiological parameters available in the existing literatures [1, 7, 23–27]. In the
numerical scheme, the step sizes in the ξ- and t-directions have been taken to be δξ = 0.025
and δt = 0.01 respectively. It has been seen that further reduction in the values of δξ

and δt does not bring about any change in the computed values before 4th or 5th decimal
places. Necessary numerical data for computation, like the mean radius of various arteries,
mean pressure gradient and the amplitude of the pressure are presented in Table 1. In the
sinusoidal flow simulations, kr has been set at 0.05 which corresponds to 5 percent radius
variation over a cardiac cycle, this is a typical value for arteries [7].

The pressure amplitude kp has been taken to be 20 % of mean pressure gradient K. We
have considered the values of the unsteady parameter α = 3, 4, 6, 12, the magnetic parameter

M = 0, 2, 4, 6, the radius phase angle φ = 0,
π

4
,
2π

3
, π and µ = 0.035P . In physiological flow

simulation M = 0 corresponds to normal flow of blood, in the absence of any magnetic field.
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Таблица 1. Necessary numerical data for computation

Blood vessels Radius (R), cm K, dyne/cm3 kp, dyne/cm3

Aorta 1.0 7.3 1.46

Femoral artery 0.5 32.0 6.4

Carotid artery 0.4 50.0 10.0

Coronary artery 0.15 698.65 139.73

Таблица 2. Comparison of axial velocity profiles in coronary artery

ξ = r/R Present results Results of Chaturani et al.(1990)

0.0 98.53 98.12

0.2 95.01 95.10

0.4 83.69 84.11

0.6 63.95 64.84

0.8 36.01 36.93

In the absence of any magnetic field, Table 2 gives a comparison between the velocity
profile in coronary artery and that reported by Chaturani et al. [25] who considered blood
as a Casson fluid. Figure 1 gives a comparison of the results of the present study without
magnetic field effect with those presented by Chakravarty et al. [28] who also treated blood
as a Newtonian fluid.

Basing upon the computational results, qualitative and quantitative variation of axial
velocity profiles in various parts of the circulatory system, with different parameters is
presented in Figs. 2–8. Figs. 2–4 illustrate the extent to which the magnetic field intensity
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Fig. 1. Comparison of velocity profile in a
coronary artery with: α = 4, φ = 0, Re =

90, t = 0.25, K = 50 dyne/cm3, M = 0 (in
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Fig. 2. Velocity profile in an aorta for different
M with: α = 4, φ = 0, Re = 15, t = 0.75, K =

7.3 dyne/cm3
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0.75, K = 698.65 dyne/cm3

can affect blood flow through different arteries (aorta, femoral artery, and coronary artery),
by using experimental data presented in Table 1. It is of interest to note from these figures
while in the case of large arteries the magnetic field intensity brings about greater changes
in the axial velocity of blood, the changes are relatively small in the case of arteries of
smaller dimensions. In each case, blood velocity decreases with the increase in magnetic field
strength. These figures further show that for any given magnetic field strength the velocity
is maximum along the central line of the artery and it gradually decreases along the radial
direction and reduces to zero at the wall of the artery. One may further observe that in
the case of aorta and femoral arteries, when the magnetic field strength is increased from
zero to 2, the velocity drop in the central region is much greater than that in the case of
coronary arteries. The scenario in the case of coronary arteries is, however, quite different.
The magnitude of velocity drop with the increase in magnetic strength is found to increase
for these arteries.

Figure 5 gives the variation of blood velocity with phase angle. The computational results
indicate that velocity change in the case of aorta, is negligibly small. When φ increases from

0 to
π

2
, the velocity increases. But for

π

2
< φ < π, the velocity decreases gradually with a

slow rate with the increase in φ.

Plots for the velocity profile computed by using the respective experimental data for the
pressure gradient given in Table 1, presented in Fig. 6 for the four different types of arteries
studied here show that velocity is least for aorta and largest for coronary arteries. Figure 7
indicates that for a given pressure gradient, velocity in the aorta is the greatest and that
in a coronary artery is the least. This implies, in order that at a specific radial distance
the velocity in coronary artery is the same as that in aorta, a much larger mean pressure
gradient will be necessary.

Figure 8 shows that up to a certain value of the unsteadiness parameter α, the central
line velocity in an elastic artery maintains a constant value, beyond which it is of oscillatory



EFFECT OF MAGNETIC FIELD ON BLOOD FLOW THROUGH AN ARTERY... 11

 0

 5

 10

 15

 20

 25

 30

 35

 0  0.2  0.4  0.6  0.8  1

u

ξ

φ=0,  π/4,  2π/3,  π

φ=0,  π/4,  2π/3,  π

Femoral Artery

Carotid Artery

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  0.2  0.4  0.6  0.8  1

u

Aorta
Femoral Artery
Carotid Artery
Coronary Artery

ξ

Fig. 5. Axial velocity profiles in femoral and
carotid arteries for different phase angle with:
α = 3, M = 4, Re = 15, t = 1.25

Fig. 6. Axial velocity profile in different arteries
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character. The time variation of the radial motion of the arterial wall in four different types of
arteries is shown in Fig. 9, where computation has been carried out by taking the respective
experimental data for the pressure gradient. It is seen that the radial velocity of the wall
becomes negative in the systolic phase, while it is positive during diastole. Thus there occurs
back flow near the arterial wall, causing separation in the flow field. This indicates that
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φ = 0, Re = 20, t = 1.25
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Fig. 12. Variation of wall shear stress with time
in a carotid artery under different phase angle
with: α = 3, M = 4, Re = 20

the radial wall motion should affect the radial velocity more significantly than the axial
velocity. It is also revealed that radial velocity of the arterial wall vanishes twice in each of
the two cardiac cycles. Figure 10 depicts the variation of radial velocity of the arterial wall
at t = 1.25. One can observe that the radial velocity decreases with the increase in magnetic
field strength.
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Figures 11–13 present the variation of wall shear stress with time in cycle for different
types of arteries, different values of the magnetic parameter and different radius phase angles.
It is seen from Fig. 12 that the wall shear stress reduces with the increase in the value of the
magnetic parameter M . Figure 11 shows that for a given pressure gradient, the shear stress
is maximum in aorta and minimum in coronary arteries. In all the cases under consideration
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Fig. 14. Variation of the volumetric flow rate
with time in an aorta for different M , when
α = 3, φ = 0, Re = 20
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the wall shear stress is found to oscillate with time. Such a behaviour is believed to owe its
origin to the pulsatile pressure gradient produced by the heart.

Variation of flow rate Q with time in cycle, for an aorta with different values of the
magnetic parameter M is shown in Fig. 14. It can be observed from this figure that the flow
rate diminishes as M increases. For a fixed value of the magnetic parameter, the variation
of flow rate with time in cycle for different phase angles is depicted in Fig. 15. It reveals that
the volumetric flow rate for elastic arteries may increase or reduce considerably depending
upon the radius phase angle, although the wall shear stress is not significantly affected by a
change in the radius phase angle (cf. Fig. 13), as discussed earlier. Figure 16 gives the flow
variation with time for aorta, femoral artery and carotid artery for given radius phase angle
and magnetic parameter. This figure establishes the fact that the volumetric flow rate of
blood increases with increase in the radius of arteries. It may also be observed that the flow
rate of blood varies periodically with time.

Concluding Remarks

In the present theoretical study, an attempt has been made to examine various aspects of
blood flow in different segments of the circulatory system in a situation where the system has
been subjected to an external magnetic field. The elastic response of the arteries of various
sizes has also been duly accounted for.

The governing equations are transformed by using radial coordinate transformation and
using the considerations for local flow model. The detailed illustration of flow characteristics
has been made numerically to perform some graphical presentation of the computed results.
The study shows that the instantaneous flow characteristics are significantly affected by the
magnetic parameter and unsteadiness parameter as well as by the radius phase angle. It
reveals further that a magnetic field bears the potential to reduce the flow of blood through
arteries, wall shear stress and the volumetric flow rate.

On the basis of the results presented here, it can be concluded that the flow of blood and
pressure can be controlled sufficiently by the application of an external magnetic field. It is
also possible to bring down these quantities to any desirable level by increasing/diminution
of the magnetic field strength. Thus this investigation throws sufficient light towards the
therapeutic use of the application of external magnetic field in the clinical treatment of
hemodynamic diseases, like hypertension.
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