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Ucnionb3oBano passiozkenne COOCTBEHHOIO YHUCIIA U SKCTpalioisnus Pudapiacona s
VIIYUINEHUs! AlllPOKCUMAIIUU TIEPBOTO COOCTBEHHOI'O YHCJIA B CIIEKTPAJbHON IpobjeMe.
K Tomy xe BbIBeieHHOE pa3/ioyKeHne COOCTBEHHOIO YNC/Ia HE 3ABUCUT OT TPUAHTYJISIIAN.
DTO MO3BOJISET H0KA3aTh 3DPEKTUBHOCTD IKCTPAIOJIAINU Pudapicona st IpOU3BOJIb-
HOI TpUAHTYJIAIAN.

Introduction

It is well known that the extrapolation method, which was established by Richardson in
1926, is an efficient procedure for improving an accuracy of a solution for many problems in
numerical analysis. The effectiveness of this technique relies heavily on the existence of an
asymptotic expansion for the error. The application of this approach in the finite difference
method can be found in the book of Marchuk and Shaidurov [1|. This technique has been
well demonstrated in the framework of the finite element method [2-8, 9].

An application of the extrapolation method to the eigenvalue problem was first proposed
by Q. Lin and T. Li [3], and was analyzed in [2-5, 7].

Usually in the finite element method, we first need to get an error expansion for a solution
approximation such as [4, 5, 8|

un(2) = ur(z) = cr(w)h™ + O(hM+) (1)
or for an eigenvalue approximation [2, 3, 10]

A — A = co(u)h2 + O(RF22), (2)
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where ¢q, ¢y are independent of h, ; > 0 and d5 > 0. Then, we can use the extrapolation
method.

Our final goal is to get higher order convergence. In this paper, we directly analyze the
effectiveness of the eigenvalue extrapolation for the general mesh.

For simplicity, we consider the following eigenvalue problem

—Au = Au in , (3)
u = 0 on 09, (4)
/qua:dy = 1, (5)

Q

where () is a convex polygonal domain in R?. The equations (3)—(5) can be written in a weak
formulation:

to seek (\,u) € R x H}(Q) such that (u,u) =1 and
a(u,v) = Muyv) Vo € HY(Q), (0

where H} () = {vjv € HY(Q), v|sq = 0},

a(u,v) = Q/VUVU, (7)

(u,v) = / . (8)

Q

Note that eigenvalues satisfy the following properties:

0<)\1<)\2§/\3§"', lim A\, = oo.

k—o0

Let T}, be a consistent triangulation of the domain €2 which satisfies the following quasi-
uniform condition:
do > 0 such that h./p. < o, Ve €T},

and
Iy > 0, such that max{h/h., e € T}} <=,

where h, is the diameter of e; p,. is the maximum diameter of the inscribed circle in e; and
h = max{h.,e € Tp}.
The linear finite element space V}, on T}, is defined as follows:

Vi={ve H(Q),v|l. € P, VYeecT,}n Hy(Q),

where P, = span{1l,z,y}. If u € H*(Q), then the interpolation u; on e € T}, is defined by
equalities

uI(pl) = u(pl)a 1= 1a 2737

where p; are three vertices of the element e.
The corresponding discrete finite element equation is:
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to seek (An,upn) € R x Vj, such that (up,up) =1 and
a(up,v) = M (up,v) Yo € V. 9)
We also need to define the finite element projection Rju as
a(Rpu,v) = a(u,v) Yov € Vj,. (10)
It is known about the convergence rate that [11-13|
[An = AL+ Jlun — ullo + | Rou — ullo < ch?, (11)

where || - ||o denotes the L?-norm.

Other notations for Sobolev spaces and the corresponding norms (including those with a
fractional order) are standard and can be found in many sources like [14].

The rest of the paper is organized in the following way. In section 2 we give some useful
preliminary lemmas. An eigenvalue expansion is obtained in section 3. Section 4 is devoted
to eigenvalue extrapolation and analysis of its effectiveness. Two numerical examples are
given to illustrate the validity of our analysis.

1. Some useful notations and preliminary lemmas

We first need to define some notations and give some geometric identities for an arbitrary
element e. Let e have vertices p; = (z;,7;) (1 < ¢ < 3) oriented counterclockwise. Let
s; (1 <4 < 3) denote the edges of the element e; n; (1 < i < 3) are the unit outward normal
vectors; t; = (cosb;,sin6;) (1 < i < 3) are the unit tangent vectors with the counterclockwise
orientation, and 6; are its corresponding angles with the x-axis; h; (1 <14 < 3) are the edge
lengths; H; (1 < i < 3) are the perpendicular heights (see Fig. 1). We also need to define
the following constants of the element e:

li=hi/h, i=1,2,3 «a=|e|/h’

We also use the periodic relation for the subscripts: i + 3 = i. Let 9; = 0/0t;.
Now we give some lemmas. Similar constructions can been found in some papers (see [2]
and references in it), but are poorly known in Russian literature.

Fig. 1. The main features of an element e
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Lemma 1.
. 2|e]
i 1y == )
1 hiliiq
. 2|e]
n; g = - ’
1 hiliia
n; = 2| J‘rl (0 -mip)t; —ti4q], ©=1,2,3
e

Proof. First, we have
1
§hiHi = lel, (hiti) -np1 = Hiy,

then

2|el
B T

So, we obtain (12). Similarly we can obtain (13).

27

Since t; and t;;; are two linearly independent vectors, we have two constants (3; and

Bi+1 such that
n; = Git; + Big1tiy

Using the equality t;1 - n;.; = 0 and (12), we have

it i = th . i —= .
n; n =pj ;1 hihios
So,
hihiia
51 - 2|6| n; n;i;.
Similarly, using the equality t;-n; = 0 and (13), we have 3;,1 = —h;h;11/2|e|. This completes
the proof.
Using (14), we can get the following differential property.

Lemma 2.

ov lllz 1

8nz~ = 2—;—[(11Z . ni+1)8iv — E)Hlv].

Proof. From (14) we have the equality

(% lzlz
on, =Vov-n, = WHVU (0 )t — b)) =
Lil;
= 2;1 [(n; - 1341)05v — O3 410].

We also need the following integration formula.

Lemma 3. Assume that v € C'(€), then we have

hi+1/vds—hi / vds = h1272|hg /@-Jrgvda:dy.
e

Si Si+1

(16)
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Proof. With the Green formula, we have

/ai+2vdxdy = /Uti+2 -nds,

de

where Oe is the boundary of the element e. Using the equality t;15-n;,0 = 0, (12), and (13),
we have

/8¢+2’Udl‘dy = /Uti+2 . nids + / Uti+2 . ni+1ds =

S; Si+1
2hit1 el 2h;le| /
ds — ds.
T A T
S; Si+1
Multiplying this by hihahs/2|e|, we obtain (16). |

2. Eigenvalue expansion

In this section, we give the eigenvalue error expansion which is independent of a triangulation.
We use the linear finite elements to approximate the eigenvalue problem. Then we have
the following eigenvalue error transform formula [2, 10]:

M= A = Mu—up,up) — alu—ur, Ryu) + O(hY). (17)

So, in order to get the eigenvalue error expansion, we just need to compute the terms
(u—ur,up) and a(u — uy, Ryu).

First, we need the following one-dimensional interpolation expansion which is derived by
combining the Bramble-Hilbert Lemma with scaling argument [2].

Lemma 4. Let u; be the linear interpolant of u on e and s; be an edge of the element e.
Assume that u € H*(s;). Then we have

2
/ (u — up)ds = —% / D2uds + O(hY)|ulus,. (18)

Si i

Proof. Let § = [0, 1] be the reference edge and define the affine transformation F' from s; to $.
Define the functions u(z) = u(x), 4;(2) = ur(zx).
Consider the following linear functional on s

1

B(u) = /(ﬁ — uy)ds + 2 /8§ﬁd§.

By the Sobolev embedding theorem, we know that the functional B is bounded:
|B(@)] < Cffif]as.

A direct computation shows that

B(a) =0 Vi e Py(s).
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Then the Bramble-Hilbert lemma gives
| B(@)] < Clit]ss.

With the inverse map of F', we obtain (18). O
Now, let’s consider the interpolation error expansion of a(u — uy, Ryu).
Theorem 1. Let uy be the piecewise linear interpolant of w. If u € H*5(Q), we have the
following expansion:
h? h? 3
alu —ur,v) = ——W(u v, Ty) + 12K(u v, Th) + O(R)||u)|as||v]1, (19)

where

WD) = 30 3 E ) (g, ) — (02u)(pisr))

€Ty, i=1
liyo 2
-y Z 2 (0, yuv) (pis2) — (2.u0) (Pisa)). (20)
eeTh =1
K 3 H—l nz nz+1 3 l4
(u,v,Ty) = Z Zl O uvds — Z Z 020; 1 uvds +
ecTy, i=1 ecT) 1=1 Sit1

L1151
+ Z Zl?’ 123 / Oi4202u0; 1vdady. (21)

ecT) 1=1 >
Proof. We need the following inequality for the finite element space V), and e € T}:
|val1.0e < b2 ||ug |1 (22)

and the trace inequality

|l ullo.0e < ch_l/QHqu/g,e, for u € Hl/z(e). (23)

With the Green formula we have for v € V}, that
a(u —uy,v) Z/Vu—uIVvdxdy—ZZ/u—ul—ds.
ecTy e ecTy i=1

From Lemma 4, we can obtain

syl

a(u — uz,v) /02 (n; - ny41)0v — O1v) +

eETh 1= 1

+O () |ullasvll- (24)

From Lemma 3, we get

/ﬁfu@-ﬂvds = ir1vds + L ZHZ /awa u0;1vdzdy.

51+l
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N

Fig. 2. The patch w; and the local numbers of P; in each e € w;

Substituting it into (24), we obtain that

a(u—up,v) = Z Zl3 & “Z i1) / OPudsvds +

eETh =1

bivs 02, yud;vds +
5y Z a

eETh =1

Lilsl
Z Zﬁ 125 / By 4207ud; 4 vdxdy +

eETh =1

+O()lullasvlls-

e

With the integration by parts on edge s;, we obtain (19). O

Let N}, denote the set of vertices of the triangulation T}, and w;-‘ denote the patch around
the node P; (see Fig. 2). From (20) and the assumption that the local number of P; in each
triangle e € W} is i (see Fig. 2), we have

U v Th Z Zl3 2+1 nl Ilerl) ((8121“;)(13“_2) — (afuv)(pz+1)> _

ecT) i=1
_ l+2 ) . 82 ' .
Z Z +2UU (sz) ( i+2uv)(pz+1) =
eeTy i=1
i nl n; liya(nip1 -1y
- Z Z<13 = H)(azuv)(p“r?) l?+1 2l JQF; +2)(a+1uv)(Pi+2)> -
ecTy 1=1
2( o,
- Z( 2 (52 u0) (prsa) — (0P un) (o)) =
eGTh =1

iv2(iy1 -1y 5 li(mjpo -1y
B SN R AL RO

ecTy i=1
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-3 Z(Ql—iaafu(pi) - lz“amu(pl))v(m) =

= Z [Z(lg’+1l1+2(nz+l n1+2)83+1 (P)) — lf’+2wa+gu( ))]U(Pj)—

2a
PjeN, eEw?

=Y [ (e, - Loz ey o)) )

P;eNy eEw;-L

Let N; = (cos?6;,2sin6; cosf;,sin? 6;). Assume Tj, has N nodes and let’s define the
matrices Mes(T},) € RV*3 and d, € RV*? as follows

: livo(Mit1 - 1, li(n; o -1y

. 200 200
eEw.
l4
B Z (—N _ z+1Nl+1> (26)
€EW
d,(j.2) = (02u(P;), ,0,u(P;), B2u(P;) ) (27)

where Mes(T},)(j,:) and d,(j,:) denote the j-th row of the corresponding matrix.
Corollary 1. For W(u,v,T}), we have

W (w0, Ta)l = | Y Mes(Ta)(j,:) - dulj, Jo(P))] < (28)
PJ'ENh
< Ch™'[Mes(T)|rllullssllv]o. (29)
where the matriz Mes(T},) is defined by (26) and || - ||r denotes the Frobenius matriz

norm.
Proof. From (25) and (26), we can easily obtain (28). And with the following relations
_ 1
chollo < (Y v(P;)?)2 < ChH[ollo, (30)
PjGNh

we can obtain (29). O
Now, let’s expand the term (u — uy, up). With this aim, we need the following result [2].

Lemma 5. Assume that é is the reference triangle (see Fig. 3), 4 € H3(é), and iy is the
linear interpolant of u on é. Then we have the following expansion:

1
/ (4 — dp)odidy = 12, (030 + D2t — aau)udgcdwﬁ / 0210, 0dzdy —
L[ oraosodidy — — aadd+L O2u00didy +
180 uvxy 180 uozvaray 360 fuyvxy

180/8au8v+8v)dxdy—|—0|u|3e||v||0€VvGPl( ). (31)
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>

(0, 0) (1, 0)

Fig. 3. The reference element é

Proof. The proof is similar to that of Lemma 4. We just need to define the following bilinear
functional on the reference element é:

1
B(u,0) = / (4 — Q) odady + 5 / (030 + 05t — 0:050) 0dddf —

é

360 /8 wozvdrdy +

1
/8 woyvdady + —— 130 /Qgﬂﬁiﬁdiﬁdg — /8 woyvdrdy —

180 360

180/88u@v+3v)d:pdy Vo € Py(é).

By the Sobolev embedding theorem and the inverse inequality [14], we get the following:
|B(a,0)] < Clliflsellvlloe Vo € Pi(e).

Direct verification shows that

So, we obtain (31) and complete the proof. O

Theorem 2. Assume that u € H3*(Q)). Let uy be the piecewise linear interplant of u on €,
then we have

h2
/(u —uy)vdrdy = —EM(u,v,Th) + O(hS)Hquﬂle Yo € Vj, (32)
Q
where
M (u,v, Ty) = Z /( P02 u+ 07w Ll 10410 u)vdady (33)

ecTy, e

Vi € {1,2,3} in every element e.
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Proof. First, we define an affine mapping F: é — e by
(z,y) = (himati—1, —hip1tivr) - (2,9) + p; Vi € {1,2,3}.

So, we have

85;& = hi_lai_lu, Ggﬁ = —h,-+18i+1u
and
8%71 = h?_laf_lu, 8500@12 = —hi_lhi+18i_10i+1u, 8512 = hfﬂﬁfﬂu.
From Lemma 5 and the mapping F, we obtain (32). O

So, from (17), Theorems 1 and 2, we give the following eigenvalue error expansion:

Ah? n2 B2 ,
Ap— A= —ﬁM(u, up, Th) + EW(U, Ryu,T)) — EK(U, Ryu, Tp) + O(h?). (34)

3. Eigenvalue extrapolation

In this section, we give the eigenvalue extrapolation scheme and analyze its effectiveness.
In order to use the extrapolation method, we need to refine the mesh T} in the regular
way. Each element e € T} is subdivided into 4 congruent triangles by connecting the
midpoints of its edges (see Fig. 4). Thus we get the finer mesh T}, s.
For the relation between T}, and T}, /2, we have the following lemma.

Lemma 6. If T}, is obtained from T by the reqular refinement, we have

[Mes(Th)|lr = [[Mes(Th2)|r, (35)

[Mes(Th)||lr < Ch™ (36)
Proof. For any new node P; produced by refining T), in the regular way, from (26), we
have

Mes(T}/2)(7,:) = (0,0,0).

And for the old nodes of T}, the corresponding rows don’t change. Thus, we can obtain (35),
(36) can be directly obtained from the quasi-uniform condition of T),. O

Let us solve the problem (9) twice, on the meshes T} and Tj/,. Then we have the
following eigenvalue extrapolation formula.

Fig. 4. The elements of T} /5 in an element e € T},
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Theorem 3. Assume that u € H**(Q). Let A\, and Anj2 be the eigenvalue approximations
of the problem (9) on the meshes T}, and Ty )o, respectively. Then we have the following
extrapolation equality:

4\pj2 — A

5 = A+ O(h)|[Mes(T}) | . (37)

Proof. From Theorem 1, (34) and the relation between T}, and T}z, we can know in e € T,
the interior edge integration for the elements of T}/, will cancel. And with Theorem 2, we
have

Ah? h?

4()\h/2 — )\) — ()\h — )\) = _ﬁM(uauh/Q — Up, Th) + EW(U, Rh/gu — Rhu, Th) +
h2
—l—EK(u, Ry ou — Ryu, Tp,) + O(h%). (38)

From (11), we have the following error estimates

hllun = unsoll + llun —unpllo < ch?, (39)
h||Rpu — Ryjoulli + ||Rou — Rppoulle < ch® (40)
Then, we have
|M(U,Uh/2 - U’h?Th)| < Ch27 (41)
|K (u, Rpjou — Ryu, Ty)| < ch. (42)

And from Theorem 1, we have

\W (u, Rpjou — Rpu, T)| C’h_l||u||3_5||Mes(Th)||F||Rh/2u — Rpullp <

Ch|[Mes(Ty)|| | ull3s. (43)

So, we can obtain the result (37). O

So from (35), (36), and Theorem 3, we can know that the eigenvalue extrapolation can
achieve the O(h®) convergence rate if we refine the mesh in the regular way starting with
any initial mesh T},. Especially, we have the following corollary.

Corollary 2. Assume that v € H*?(Q), Ty is produced by refining the triangulation
T}, in the regular way and hg = O(1). Let A\, and Apjo be the eigenvalue approzimations
of the problem (9) on the meshes T}, and Ty/o, respectively. Then we have the following
extrapolation equality:

ANpjg — A
—ﬂ%—ﬁ=A+om% (44)
Proof. (44) can be obtained easily from (35)—(37). O

4. Numerical results

In this section we give some numerical results for the eigenvalue extrapolation. Let us take
the domain Q = [0,1] x [0, 1].
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The initial mesh is generated by using the Delaunay triangulation algorithm without any
optimization.
In order to illustrate the convergence rate, we define the notations:

AXp 0 — A
Azxtra _ h/2 h ’

3

err, = [\ — Al

extra __ \extra
erry "t = N — A,

log(erry, /erry/2)
Rh - )
log(2)
log(errextra/errextra)
R(;,thra — h h/2
log(2)

We know that R{*"® indicates the convergence rate for the eigenvalue extrapolation method.
Here, we give two numerical results for the first eigenvalue A = 272. The first example

is for the coarse mesh T /g (Fig. 5) and the second one is for the fine mesh T /o0 (Fig. 6).
Example 1:

T able 1. The results for the initial mesh T g

Mesh Th Th 2 Th 4
[Mes(T,)||r || 17.227 | 17.227 | 17.227
A 20.062 | 19.821 |  19.760
Agxira /o ]19.741 [ 19.739
erry, 0.322 | 0.082 0.021
err{Xira / 0.002 | 2.310-10~*
Ry, / 1.973 1.988
Rgxtra / / 3.154
1
09 J
0.8 7
0.7 4
0.6 7
0.5
0.4+ 8
0.3 4
0.2 7
0.1r d
00 0‘.1 0.‘2 0.‘3 014 0.5 0.‘6 0.‘7 018 O‘.Q 1

Fig. 5. The initial mesh T g
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Example 2:

T able 2. The results for the initial mesh T /9

Mesh Th Th 2 Th/4
[Mes(T)||r || 40.267 |  40.267 40.267
A 19.790 | 19.752 19.743
AgxiTa / 19.740 19.739
erry, 0.051 0.013 0.003
err§Xira /| 4.270-107* | 4.560 - 107°
Ry, / 1.964 1.985
Rgxtra / / 3.227

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 6. The initial mesh T} /59

In both cases, one can see in Tabl. 1, 2 that R;, demonstrates the usual second order of

convergence, whereas R{™? indeed confirms the third (and somewhat more) order like in
Theorem 3.

Concluding Remarks

The matrix Mes(T),) can be used to measure the superconvergence of the triangulation
Ty [4].

The method and the result can be extended to a more general case and as a by-product, we

can use the approximations of higher accuracy to form a class of a posteriori error estimators
[15, 16| for the eigenvalue approximations.
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