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Nowadays, when formal fundamentals of program verification are well studied, re-
searchers concentrate their efforts on domain-specific methods for various classes of
programs. However, it seems that the field of scientific and engineering applications
still lacks attention. We would like to contribute to filling this gap through the devel-
opment of the Cloud Parallel Programming System (CPPS). The goal of this project is
to create a parallel programming system for Sisal programs. Deductive verification of
Sisal programs is one the of important subgoals. Since the Cloud Sisal language is built
on the basis of loop expressions, their axiomatic semantics is the basis of Hoare’s logic
for the Sisal language. The Cloud Sisal loop expressions, array construction expressions
and array element replacement expressions enable efficiently executable computational
or engineering mathematics programs. Thus, we believe that our axiomatic semantics
for these types of expressions may present an interesting result.
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Introduction

The parallel programming environment is the main goal of the CPPS project [1]. The Cloud
Sisal [2] serves as its input language.

From the very beginning of the CPPS project we consider deductive verification as the
main checking approach [3]. The first version of verification module actually analyses an
intermediate C representation, thus using the C-lightVer system [4] as a plugin. Apart from
unnecessary complication such scheme depends on maintenance of C code generation [5] and
maintenance of C-lightVer itself [6]. Now we develop a direct Cloud Sisal program verification
module.

Such development consists of several steps. First, we define a representative subset of
the Sisal together with its axiomatic semantics. This type of semantics is a set of axioms
and proof rules for the language constructions [7]. During the consequent development steps
we can add new constructions as well as corresponding axioms and rules. This process will
culminate in axiomatic semantics for the whole Cloud Sisal. We call Cloud-Sisal-kernel the
current subset of Cloud Sisal possessing axiomatic semantics.
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To define axiomatic semantics of Cloud-Sisal-kernel we apply the weakest precondition
approach [8] accompanied by specifications written in ACL2 (A Computational Logic for
Applicative Common Lisp) [9]. Some wp-subformulas come out from translation of Cloud
Sisal expressions into ACL2. An appropriate translator was introduced into CPPS. It is
defined recursively while translation of constants and variables serves as a recursion base.

The implicit parallelism in Cloud Sisal is supported by means of array element replace-
ment expressions, array construction expressions as well as the loop expressions [10]. The
headers of the loop expressions introduce triplets for the loop variables. In effect, they are
ranges of values assigned to variables when a loop executes. Moreover, the loop execution
produces sequence of values of reducible expression on each iteration. The value of the whole
loop expression results from application of special reductions to this sequence. Such loop
expressions allow us to implement effectively the linear algebra operations for example.

As a formal basis for the weakest preconditions of loop expressions and array element
replacement expressions we adopt another interesting approach — the symbolic method of
verification of definite iterations [11]. It introduces a special replacement operation (function
𝑟𝑒𝑝) symbolically representing application of a loop. The main advantage of 𝑟𝑒𝑝 is that it
makes loop invariants unnecessary [12]. Traditionally these invariants are problematic feature
of axiomatic semantics.

In this paper we represent axiomatic semantics of the expressions forms discussed above.
Let us note that natural operational semantics for Sisal was already developed quite

ago [13]. Such semantics is appropriate as a formal language definitions, but serves poorly for
verification. A good example of Hoare’s logic for a functional language can be found in [14].
However, the 𝐹 * program verification considered there is based on using loop invariants.
Let us consider the loop translation into recursive functions. The paper [15] describes a
quite promising approach to loop modelling inside theorem prover. On other hand, their
loops do not contain reducible expressions whereas Cloud Sisal does. Another interesting
solution of the invariant problem is based on lemma-functions [16]. It has been implemented
in verification system AstraVer [17]. This method uses a special form of specifications which
may be considered as a disadvantage in comparison with our approach.

1. The loop and array expressions as a base of the Cloud Sisal

Unlike the majority of functional languages, the Cloud Sisal is based rather on loops than
recursion [10]. Of course, recursion is still supported, but CPPS is based on effective imple-
mentation of array manipulations and the loop expressions. Their form is the main reason
of using loop expressions, since it provides convenient ways of vectorization. Here we briefly
overview them.

Triplet is a structure of the form [lower boundary .. upper boundary .. step]. It defines
arithmetical progression of elements between given boundaries with fixed step.

Range is a structure based on Cartesian product of triplets:

𝑣𝑎𝑟1 in 𝑡𝑟𝑖𝑝𝑙𝑒𝑡1 cross 𝑣𝑎𝑟2 in 𝑡𝑟𝑖𝑝𝑙𝑒𝑡2 cross . . . 𝑣𝑎𝑟𝑛−1 in 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑛−1 cross 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑛,

where 𝑣𝑎𝑟1, 𝑣𝑎𝑟2, . . . , 𝑣𝑎𝑟𝑛−1, 𝑣𝑎𝑟𝑛 are variables and 𝑡𝑟𝑖𝑝𝑙𝑒𝑡1, 𝑡𝑟𝑖𝑝𝑙𝑒𝑡2, . . . , 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑛−1, 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑛
are triplets.

The array element replacement expression looks like:

𝑠𝑜𝑢𝑟𝑐𝑒 𝑎𝑟𝑟𝑎𝑦[𝑣𝑎𝑟1 in 𝑡𝑟𝑖𝑝𝑙𝑒𝑡1 cross 𝑣𝑎𝑟2 in 𝑡𝑟𝑖𝑝𝑙𝑒𝑡2 cross . . .
𝑣𝑎𝑟𝑛−1 in 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑛−1 cross 𝑣𝑎𝑟𝑛 in 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑛 := 𝑒𝑥𝑝𝑟]
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where 𝑠𝑜𝑢𝑟𝑐𝑒 𝑎𝑟𝑟𝑎𝑦 is the original array name, 𝑣𝑎𝑟1, . . . , 𝑣𝑎𝑟𝑛 are variables, 𝑡𝑟𝑖𝑝𝑙𝑒𝑡1, . . . ,
𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑛 are triplets, 𝑒𝑥𝑝𝑟 is the replacing expression (possibly depending on 𝑣1..𝑛). The
Cartesian product of triplets forms the range. Internally, this range is a set of array index
tuples with lexical order. This array element replacement expression changes the original
array so that each element indexed by range is replaced by the value of 𝑒𝑥𝑝𝑟.

The array construction expression is defined as follows:

array[0 .. ℎ𝑖𝑔ℎ𝑡1, 0 .. ℎ𝑖𝑔ℎ𝑡2, . . . , 0 .. ℎ𝑖𝑔ℎ𝑡𝑛−1, 0 .. ℎ𝑖𝑔ℎ𝑡𝑛] of
[𝑣𝑎𝑟1 in 𝑡𝑟𝑖𝑝𝑙𝑒𝑡1 cross 𝑣𝑎𝑟2 in 𝑡𝑟𝑖𝑝𝑙𝑒𝑡2 cross . . .

𝑣𝑎𝑟𝑛−1 in 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑛−1 cross 𝑣𝑎𝑟𝑛 in 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑛 := 𝑒𝑥𝑝𝑟1; else := 𝑒𝑥𝑝𝑟2],

where 𝑣𝑎𝑟1, . . . , 𝑣𝑎𝑟𝑛 are variables, 𝑡𝑟𝑖𝑝𝑙𝑒𝑡1, . . . , 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑛 are triplets, 𝑒𝑥𝑝𝑟1 is a replacing
expression which may depend on these variables, whereas default expression 𝑒𝑥𝑝𝑟2 does not
depend on them.

Conceptually such expression creates 𝑛-dimensional array with dimensions corresponding
to ℎ𝑖𝑔ℎ𝑡1, . . . , ℎ𝑖𝑔ℎ𝑡𝑛. If the index of an array element belongs to the Cartesian product
of triplets, then the element value is initialized by 𝑒𝑥𝑝𝑟1. Otherwise, its value is defined by
𝑒𝑥𝑝𝑟2.

Consider the loop expression controlled by a range:

for 𝑣𝑎𝑟1 in 𝑡𝑟𝑖𝑝𝑙𝑒𝑡1 cross 𝑣𝑎𝑟2 in 𝑡𝑟𝑖𝑝𝑙𝑒𝑡2 cross . . .
𝑣𝑎𝑟𝑛−1 in 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑛−1 cross 𝑣𝑎𝑟𝑛 in 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑛 do

returns 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑒𝑥𝑝𝑟 end for

where 𝑣𝑎𝑟𝑖 and 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑗 are variables and triplets correspondingly, 𝑒𝑥𝑝𝑟 is a reducible expres-
sion which can depend on these variables, 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 is a reduction. This loop iterates over
Cartesian product of triplets. The value of the loop after certain iteration is the value of
reduction applied to the value of 𝑒𝑥𝑝𝑟 on this iteration and to the loop value after previous
iteration. Such loop form effectively implements associative and commutative operations
over tuples and matrices.

The set of useful reductions includes:
� array of 𝑒𝑥𝑝𝑟 takes a reducible sequence of values of 𝑒𝑥𝑝𝑟 during loop iterations and

forms the array;
� value of 𝑒𝑥𝑝𝑟 returns the last value of a reducible sequence of values of 𝑒𝑥𝑝𝑟;
� sum of 𝑒𝑥𝑝𝑟 calculates the sum of a reducible sequence of values of 𝑒𝑥𝑝𝑟;
� product of 𝑒𝑥𝑝𝑟 calculates the product;
� as the name suggests, greatest of 𝑒𝑥𝑝𝑟 returns the biggest value in a sequence;
� while least of 𝑒𝑥𝑝𝑟 returns the lowest one.

2. Symbolic method of verification of definite iterations

We adapt the method which was described in [11]. It allows us to eliminate the loop invariants
when iterations over altered data structures are considered.

First, we define a general notion of structures of finite length. Let 𝑚𝑒𝑚𝑏(𝑆) denote the
multiset of elements of a structure 𝑆 and |𝑚𝑒𝑚𝑏(𝑆)| is its power. For structure 𝑆 we define
the following operators:

� 𝑒𝑚𝑝𝑡𝑦(𝑆) = 𝑡𝑟𝑢𝑒 iff |𝑚𝑒𝑚𝑏(𝑆)| = 0.
� 𝑐ℎ𝑜𝑜(𝑆) returns an arbitrary element of 𝑚𝑒𝑚𝑏(𝑆), if ¬𝑒𝑚𝑝𝑡𝑦(𝑆).
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� 𝑟𝑒𝑠𝑡(𝑆) = 𝑆 ′, where 𝑆 ′ is a structure of the type of 𝑆 and 𝑚𝑒𝑚𝑏(𝑆 ′) = 𝑚𝑒𝑚𝑏(𝑆) ∖
{𝑐ℎ𝑜𝑜(𝑆)}, if ¬𝑒𝑚𝑝𝑡𝑦(𝑆).

Obviously sets, tuples, lists, strings, arrays, files and trees are typical examples of such
data structures [6].

Finally, we define a loop statement of the form

for 𝑥 in 𝑆 do 𝑣 := 𝑏𝑜𝑑𝑦(𝑣, 𝑥) end

where 𝑆 is a data structure, 𝑥 is a variable of type “element of 𝑆”, 𝑣 is a tuple of the loop
variables excluding 𝑥, 𝑏𝑜𝑑𝑦 represents some calculation which does not change 𝑥 itself and also
such calculation is finite for every 𝑥 ∈ 𝑚𝑒𝑚𝑏(𝑆). This requirement of termination results in
some restrictions on that vague “some calculation”. Namely, the loop body can only contain
assignments, conditional statements (possibly nested) and loop break statements. We call
such loop for a definite iteration.

The operational semantics of definite iterations is based on recursive definition. Let 𝑣0
denote the initial values of variables from 𝑣. In order to express the work of a definite
iteration we introduce the replacement operation 𝑟𝑒𝑝(𝑣, 𝑆, 𝑏𝑜𝑑𝑦) such that

� if 𝑒𝑚𝑝𝑡𝑦(𝑆), then 𝑟𝑒𝑝(𝑣0, 𝑆, 𝑏𝑜𝑑𝑦) = 𝑣0,
� if ¬𝑒𝑚𝑝𝑡𝑦(𝑆), then 𝑟𝑒𝑝(𝑣0, 𝑆, 𝑏𝑜𝑑𝑦) = 𝑏𝑜𝑑𝑦(𝑟𝑒𝑝(𝑣0, 𝑟𝑒𝑠𝑡(𝑆), 𝑏𝑜𝑑𝑦), 𝑐ℎ𝑜𝑜(𝑆)).
It still may be unclear what is the meaning of such non-deterministic (note operation

𝑐ℎ𝑜𝑜) expression of loops over data structures. The detailed discussion can be found in [11].
It is enough to say that definite iterations relieve us from the loop invariants which are
traditionally considered as a great obstacle.

3. Modelling the Cloud Sisal constructs in ACL2

The input language of ACL2 [9] is an applicative and strictly functional dialect of Common
Lisp. Since Cloud Sisal is also functional, we could translate every expression from Cloud
Sisal to semantically equivalent composition of ACL2 instructions. Let us take a tour over
some of them.

It is quite natural to model Cloud Sisal by lists, this moment does not need detailed
explanations. However, let us note two operations over indexed sequences we will use often
in the following sections. If 𝑖 is an index and 𝑙 is a list, then (𝑛𝑡ℎ 𝑖 𝑙) returns the value of
the 𝑖-th element in 𝑙. If 𝑒𝑥𝑝𝑟 is an expression in ACL2, then (𝑢𝑝𝑑𝑎𝑡𝑒-𝑛𝑡ℎ 𝑖 𝑒𝑥𝑝𝑟 𝑙) is a new
list coinciding with 𝑙 everywhere except 𝑖-th element which is equal to 𝑒𝑥𝑝𝑟. And, of course,
multidimensional arrays are modelled by nested lists.

To define new types we use special constructs provided by ACL2 library 𝑓𝑡𝑦. If 𝑒 is a
new type, we generate corresponding constructor (macro 𝑚𝑎𝑘𝑒-𝑒). Let 𝑝 be a field of the
structure 𝑟 of type 𝑒. Construction 𝑚𝑎𝑘𝑒 simply enumerates field names and expressions.
The field name is preceded by colon and succeeded by expression. Obviously, the fields of a
structure created by 𝑚𝑎𝑘𝑒 are initialized by values of corresponding expressions. If 𝑝 is the
singular field in a structure of type 𝑒, then (𝑚𝑎𝑘𝑒-𝑒 :𝑝 𝑒𝑥𝑝𝑟) is a new structure 𝑟 of type 𝑒
and 𝑟.𝑝 = 𝑒𝑥𝑝𝑟.

The macro 𝑏* is appropriate to model instruction composition. In fact, it extends the
ACL2 macro 𝑙𝑒𝑡* which is convenient to define a nested 𝑙𝑒𝑡. Consider the common form of
𝑙𝑒𝑡*:

(𝑙𝑒𝑡* ((𝑣𝑎𝑟1 𝑡𝑒𝑟𝑚1) ... (𝑣𝑎𝑟𝑛 𝑡𝑒𝑟𝑚𝑛)) 𝑏𝑜𝑑𝑦),
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where 𝑣𝑎𝑟𝑖 are variables (not necessarily distinct), 𝑏𝑜𝑑𝑦 and 𝑡𝑒𝑟𝑚𝑗 are ACL2 expressions.
This form is equivalent to the following:

(𝑙𝑒𝑡 ((𝑣𝑎𝑟1 𝑡𝑒𝑟𝑚1)) . . . (𝑙𝑒𝑡 ((𝑣𝑎𝑟𝑛 𝑡𝑒𝑟𝑚𝑛)) 𝑏𝑜𝑑𝑦) ...).

Thus, association of variables 𝑣𝑎𝑙𝑖 with the values of corresponding expressions 𝑡𝑒𝑟𝑚𝑖 is
carried out consequently. The value of expressions becomes the value of the whole construc-
tion. Every pair (𝑣𝑎𝑟𝑖 𝑡𝑒𝑟𝑚𝑖) is called binding and every 𝑣𝑎𝑟𝑖 is called a local variable of
𝑙𝑒𝑡*.

Generally, construction 𝑏* takes the form:

(𝑏* ⟨𝑙𝑖𝑠𝑡-𝑜𝑓 -𝑏𝑖𝑛𝑑𝑖𝑛𝑔𝑠⟩.⟨𝑙𝑖𝑠𝑡-𝑜𝑓 -𝑟𝑒𝑠𝑢𝑙𝑡-𝑓𝑜𝑟𝑚𝑠⟩)

where ⟨𝑙𝑖𝑠𝑡-𝑜𝑓 -𝑟𝑒𝑠𝑢𝑙𝑡-𝑓𝑜𝑟𝑚𝑠⟩ is a list of ACL2 expressions. The value of 𝑏* is defined by
the value of the last expression in ⟨𝑙𝑖𝑠𝑡-𝑜𝑓 -𝑟𝑒𝑠𝑢𝑙𝑡-𝑓𝑜𝑟𝑚𝑠⟩. By analogy with 𝑙𝑒𝑡* the 𝑏𝑖𝑛𝑑𝑖𝑛𝑔
operations are executed consequently. In general case construction 𝑏𝑖𝑛𝑑𝑖𝑛𝑔 is of the form

(⟨𝑏𝑖𝑛𝑑𝑒𝑟-𝑓𝑜𝑟𝑚⟩ [⟨𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛⟩])

where ⟨𝑏𝑖𝑛𝑑𝑒𝑟-𝑓𝑜𝑟𝑚⟩ is a construction 𝑏*-𝑏𝑖𝑛𝑑𝑒𝑟 and ⟨𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛⟩ is an ACL2 expression.
Since 𝑏* extends 𝑙𝑒𝑡*, then association of a variable with an expression value is a special case
of 𝑏𝑖𝑛𝑑𝑖𝑛𝑔. In this case the variable is local in 𝑏*.

So, a variable is one of possible forms of construction ⟨𝑏𝑖𝑛𝑑𝑒𝑟-𝑓𝑜𝑟𝑚⟩. Another possible
form looks like (𝑤ℎ𝑒𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛), where 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is a Boolean expression in ACL2. Let the
block 𝑏* contain a binding ((𝑤ℎ𝑒𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛). Whenever 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is true, all
successive binding operations are rejected and the value of 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 becomes value of 𝑏*.

We define ACL2 function 𝑡𝑟𝑖𝑝𝑙𝑒𝑡 to model Cloud Sisal triplets. It takes lower boundary
𝑙𝑜𝑤, upper boundary ℎ𝑖𝑔ℎ𝑡 and the step 𝑠𝑡𝑒𝑝 as arguments and returns the list of values of
arithmetical progression defined by triplet. If 𝑙𝑜𝑤 = ℎ𝑖𝑔ℎ𝑡 then 𝑡𝑟𝑖𝑝𝑙𝑒𝑡 returns one-element
list (𝑙𝑜𝑤). Being applied to an empty triplet, the function 𝑡𝑟𝑖𝑝𝑙𝑒𝑡 returns the empty list 𝑛𝑖𝑙.

We also define ACL2 functions 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 and 𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 to model Sisal ranges
and Cartesian products of triplets. Let us note that Sisal range generated by a singular
triplet is modelled by application of function 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 to this triplet. The idea is to split a
set into single-element subsets. So 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 takes a list as an argument and returns the list
of one-element lists.

When several triplets generate a range we use function 𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡. It takes two
lists as arguments. The returning value is the list of pairs where the first elements in pairs are
from the first list and the second elements are from the second list. The order is as follows:
we take the first element of the first list and couple it with all elements of the second list;
then the second element of the first list is united with all elements of the second list; and so
on. Thus, the function 𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 forms the list of tuples of triplet values in lexical
order.

To model the array element replacement we generate function 𝑢𝑝𝑑𝑎𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑑 (𝑖𝑑 is
unique identifier). As the original Cloud Sisal expression does, this function creates a new
array so that elements indexed by a range are replaced by the value of expression depending
on indices. The body of 𝑢𝑝𝑑𝑎𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑑 is produced when we translate the replacing
expression itself into ACL2. Let us note that this expression may contain variables from
the current scope or the context variables. In other words, it may depend on variables of
enclosing expressions 𝑙𝑒𝑡 or on values of the function arguments. It means we have to use
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the context variables inside 𝑢𝑝𝑑𝑎𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑑 body. By the way, ACL2 does not support
lambda-functions of closures. So we need to use additional function arguments to address
the context variables.

The structure type 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 𝑖𝑑 is generated to model the context. The fields of
this structure correspond to the context variables. To simplify construction of objects of
type 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 𝑖𝑑 we generate definitions of functions 𝑐𝑟𝑒𝑎𝑡𝑒 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 𝑖𝑑. A more
detailed discussion of the context definition in ACL2 can be found in [6].

The array construction expression is modelled in ACL2 in two steps: first, we create
an array with default element values; then this array is being processed by array element
replacement with indices from Cartesian product of triplets.

We defined the ACL2 function 𝑐𝑟𝑒𝑎𝑡𝑒 𝑎𝑟𝑟𝑎𝑦 to construct that initial array. The first
argument of 𝑐𝑟𝑒𝑎𝑡𝑒 𝑎𝑟𝑟𝑎𝑦 is the length, the second one is initializing value (one and the same
for all elements). Function returns the list of the given length with all elements initialized
by the given value. Multiple applications of 𝑐𝑟𝑒𝑎𝑡𝑒 𝑎𝑟𝑟𝑎𝑦 can build up a multidimensional
array.

After the initial (multidimensional) array is produced by 𝑐𝑟𝑒𝑎𝑡𝑒 𝑎𝑟𝑟𝑎𝑦 we generate the
function 𝑢𝑝𝑑𝑎𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟 to replace elements whose indices are given by Carte-
sian product of triplets. This function goes through elements of Cartesian product, evaluates
the dependent replacement expression and use it to update elements of initial array.

Since we define axiomatic semantics of the loop expressions by means of symbolic re-
placement, we introduce ACL2 functions 𝑟𝑒𝑝 𝑖𝑑, where 𝑖𝑑 is unique identifier. Let us note
that in our case iteration goes over the list of tuples from Cartesian product of triplets. We
use the standard Lisp functions 𝑐𝑎𝑟 and 𝑐𝑑𝑟 as functions 𝑐ℎ𝑜𝑜 and 𝑟𝑒𝑠𝑡 correspondingly. The
body of 𝑟𝑒𝑝 𝑖𝑑 is produced when we translate the loop expression into ACL2. The context
problem for loop expressions and array constructors is resolved in the same manner as we
did for array element replacements.

4. Translating reductions into ACL2

Let us consider the function 𝑟𝑒𝑑𝑢𝑐𝑡2𝑎𝑐𝑙2 implementing translation of Cloud Sisal reductions
into ACL2. The arguments are as follows: reduction name, reducible expression on the
current iteration (𝑒𝑥𝑝𝑟1) and the loop value just after previous iteration (𝑒𝑥𝑝𝑟2). This
function returns ACL2 string modelling reduction application to 𝑒𝑥𝑝𝑟1 and 𝑒𝑥𝑝𝑟2.

We also use auxiliary function 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑖𝑡 which takes reduction name and returns
the default reduction value. Together these two functions generate body of the replacement
operation 𝑟𝑒𝑝.

Let us define 𝑟𝑒𝑑𝑢𝑐𝑡2𝑎𝑐𝑙2 and 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑖𝑡 for all reduction forms:
� If 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 is array of, then

𝑟𝑒𝑑𝑢𝑐𝑡2𝑎𝑐𝑙2(array of, 𝑒𝑥𝑝𝑟1, 𝑒𝑥𝑝𝑟2) = (𝑐𝑜𝑛𝑠 𝑒𝑥𝑝𝑟1 𝑒𝑥𝑝𝑟2),
𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑖𝑡(array of) = 𝑛𝑖𝑙.

We model Cloud Sisal arrays via ACL2 lists. Since the default value of a reduction is
empty list, then initial value of 𝑒𝑥𝑝𝑟2 is also empty list. The successive application of
𝑐𝑜𝑛𝑠 to reducible sequence adds new elements to the head of the list.

� If 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 is value of, then

𝑟𝑒𝑑𝑢𝑐𝑡2𝑎𝑐𝑙2(value of, 𝑒𝑥𝑝𝑟1, 𝑒𝑥𝑝𝑟2) = 𝑒𝑥𝑝𝑟1.
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This reduction returns the first argument, so such modelling always results in the last
value of reducible sequence.
The default value of such reduction depends on type of 𝑒𝑥𝑝𝑟1. It guarantees that for
all cases (the default value case corresponds to recursion base) function 𝑟𝑒𝑝 returns
values of the same type.

� If 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 is sum of 𝑒𝑥𝑝𝑟, then

𝑟𝑒𝑑𝑢𝑐𝑡2𝑎𝑐𝑙2(sum of, 𝑒𝑥𝑝𝑟1, 𝑒𝑥𝑝𝑟2) = (+ 𝑒𝑥𝑝𝑟1 𝑒𝑥𝑝𝑟2),
𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑖𝑡(sum of) = 0.

The default value of reduction is 0, so zero is also initial value of 𝑒𝑥𝑝𝑟2.
� If 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 is product of 𝑒𝑥𝑝𝑟, then

𝑟𝑒𝑑𝑢𝑐𝑡2𝑎𝑐𝑙2(productof, 𝑒𝑥𝑝𝑟1, 𝑒𝑥𝑝𝑟2) = (* 𝑒𝑥𝑝𝑟1 𝑒𝑥𝑝𝑟2),
𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑖𝑡(product of) = 1.

The idea is analogous to reduction sum of.
� If 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 is greatest of 𝑒𝑥𝑝𝑟, then

𝑟𝑒𝑑𝑢𝑐𝑡2𝑎𝑐𝑙2(greatest of, 𝑒𝑥𝑝𝑟1, 𝑒𝑥𝑝𝑟2) = (𝑚𝑎𝑥 𝑒𝑥𝑝𝑟1 𝑒𝑥𝑝𝑟2).

The default value of this reduction depends on the lowest integer of specific bit repre-
sentation. The compiler of CPPS defines such value.

� If 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 is least of 𝑒𝑥𝑝𝑟, then

𝑟𝑒𝑑𝑢𝑐𝑡2𝑎𝑐𝑙2(least of, 𝑒𝑥𝑝𝑟1, 𝑒𝑥𝑝𝑟2) = (𝑚𝑖𝑛 𝑒𝑥𝑝𝑟1 𝑒𝑥𝑝𝑟2).

5. Translating Cloud Sisal expressions into ACL2

We implement the recursive function 𝑠𝑖𝑠𝑎𝑙2𝑎𝑐𝑙2 to translate Cloud Sisal expressions into
ACL2.

We start with auxiliary function 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠. It takes a Cloud Sisal expressions and
returns the set of variable names that occur in expression. Its implementation uses some
data provided by compiler of CPPS system. Another auxiliary function 𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟
lexically orders this name set transforming it into the tuple. The function 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑙𝑒𝑛𝑔𝑡ℎ
evaluates the length of the name tuple. Finally, the function 𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑠𝑡𝑟𝑖𝑛𝑔 produces the
string representation of the name tuple in the form of variable names separated by commas,
thus serving as a part of ACL2 code generator.

It should be noted that the syntax of a singular triplet is equal to the syntax of the range
based on a singular triplet. So we also defined function 𝑟𝑎𝑛𝑔𝑒2𝑎𝑐𝑙2 to translate Cloud Sisal
ranges into ACL2.

Here we describe definition of translator 𝑠𝑖𝑠𝑎𝑙2𝑎𝑐𝑙2 for several classes of Cloud-Sisal-
kernel expressions.

5.1. Literals and variables

Here we consider several base forms.
If 𝑏𝑎𝑠𝑒 𝑒𝑥𝑝𝑟 is either 𝑓𝑎𝑙𝑠𝑒 or 𝑡𝑟𝑢𝑒 then
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𝑠𝑖𝑠𝑎𝑙2𝑎𝑐𝑙2(𝑏𝑎𝑠𝑒 𝑒𝑥𝑝𝑟) = 𝑏𝑜𝑜𝑙𝑒𝑎𝑛

where 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 is 𝑛𝑖𝑙 or 𝑡 correspondingly.
If 𝑏𝑎𝑠𝑒 𝑒𝑥𝑝𝑟 is a decimal integer or a variable then

𝑠𝑖𝑠𝑎𝑙2𝑎𝑐𝑙2(𝑏𝑎𝑠𝑒 𝑒𝑥𝑝𝑟) = 𝑏𝑎𝑠𝑒 𝑒𝑥𝑝𝑟.

5.2. Conditional expression

If 𝑖𝑓 𝑒𝑥𝑝𝑟 ≡ if 𝑐𝑜𝑛𝑑 then 𝑝 𝑏𝑟𝑎𝑛𝑐ℎ else 𝑛 𝑏𝑟𝑎𝑛𝑐ℎ end if then

𝑠𝑖𝑠𝑎𝑙2𝑎𝑐𝑙2(𝑖𝑓 𝑒𝑥𝑝𝑟) = (𝑖𝑓 𝑠𝑖𝑠𝑎𝑙2𝑎𝑐𝑙2(𝑐𝑜𝑛𝑑) 𝑠𝑖𝑠𝑎𝑙2𝑎𝑐𝑙2(𝑝 𝑏𝑟𝑎𝑛𝑐ℎ) 𝑠𝑖𝑠𝑎𝑙2𝑎𝑐𝑙2(𝑛 𝑏𝑟𝑎𝑛𝑐ℎ)).

5.3. Binary operations

If 𝑏𝑖𝑛𝑎𝑟𝑦 𝑒𝑥𝑝𝑟 ≡ 𝑎𝑟𝑔1 𝑓 𝑎𝑟𝑔2 and 𝑓 ∈ {+,−, *, /, <,>,<=, >=,=,&, |,̂ }, then

𝑠𝑖𝑠𝑎𝑙2𝑎𝑐𝑙2(𝑏𝑖𝑛𝑎𝑟𝑦 𝑒𝑥𝑝𝑟) = (𝑓 ′ 𝑠𝑖𝑠𝑎𝑙 𝑡𝑜 𝑎𝑐𝑙2(𝑎𝑟𝑔1) 𝑠𝑖𝑠𝑎𝑙 𝑡𝑜 𝑎𝑐𝑙2(𝑎𝑟𝑔2))

where 𝑓 ′ is a string from {+,−, *, 𝑓 𝑙𝑜𝑜𝑟,<,>,<=, >=, 𝑒𝑞𝑢𝑎𝑙, 𝑎𝑛𝑑, 𝑜𝑟, 𝑥𝑜𝑟} depending on
original 𝑓 .

5.4. Array element access

If 𝑖𝑛𝑑𝑒𝑥 𝑒𝑥𝑝𝑟 ≡ 𝑎[𝑖𝑛𝑑𝑒𝑥1, 𝑖𝑛𝑑𝑒𝑥2, . . . , 𝑖𝑛𝑑𝑒𝑥𝑛], where 𝑎 is an 𝑛-dimensional array, 𝑖𝑛𝑑𝑒𝑥1, . . . ,
𝑖𝑛𝑑𝑒𝑥𝑛 are Cloud Sisal expressions, then

𝑠𝑖𝑠𝑎𝑙2𝑎𝑐𝑙2(𝑖𝑛𝑑𝑒𝑥 𝑒𝑥𝑝𝑟) =
(𝑛𝑡ℎ 𝑠𝑖𝑠𝑎𝑙2𝑎𝑐𝑙2(𝑖𝑛𝑑𝑒𝑥𝑛) (𝑛𝑡ℎ 𝑠𝑖𝑠𝑎𝑙2𝑎𝑐𝑙2(𝑖𝑛𝑑𝑒𝑥𝑛−1)

. . .
(𝑛𝑡ℎ 𝑠𝑖𝑠𝑎𝑙2𝑎𝑐𝑙2(𝑖𝑛𝑑𝑒𝑥2) (𝑛𝑡ℎ 𝑠𝑖𝑠𝑎𝑙2𝑎𝑐𝑙2(𝑖𝑛𝑑𝑒𝑥1) 𝑎) . . . )).

5.5. Triplets

If 𝑡𝑟𝑖𝑝𝑙𝑒𝑡 𝑒𝑥𝑝𝑟 is a triplet of the form [𝑙𝑜𝑤 .. ℎ𝑖𝑔ℎ𝑡 .. 𝑠𝑡𝑒𝑝], then

𝑠𝑖𝑠𝑎𝑙2𝑎𝑐𝑙2(𝑡𝑟𝑖𝑝𝑙𝑒𝑡 𝑒𝑥𝑝𝑟) = (𝑡𝑟𝑖𝑝𝑙𝑒𝑡 𝑠𝑖𝑠𝑎𝑙2𝑎𝑐𝑙2(𝑙𝑜𝑤) 𝑠𝑖𝑠𝑎𝑙2𝑎𝑐𝑙2(ℎ𝑖𝑔ℎ𝑡) 𝑠𝑖𝑠𝑎𝑙2𝑎𝑐𝑙2(𝑠𝑡𝑒𝑝)).

5.6. Ranges

If 𝑟𝑎𝑛𝑔𝑒 𝑒𝑥𝑝𝑟 = 𝑡𝑟𝑖𝑝𝑙𝑒𝑡1 cross 𝑡𝑟𝑖𝑝𝑙𝑒𝑡2 cross . . . cross 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑛, then definition is by
induction.

If 𝑛 = 1 then

𝑟𝑎𝑛𝑔𝑒2𝑎𝑐𝑙2(𝑟𝑎𝑛𝑔𝑒 𝑒𝑥𝑝𝑟) = (𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑠𝑖𝑠𝑎𝑙2𝑎𝑐𝑙2(𝑡𝑟𝑖𝑝𝑙𝑒𝑡1))

If 𝑛 > 1 then

𝑟𝑎𝑛𝑔𝑒2𝑎𝑐𝑙2(𝑟𝑎𝑛𝑔𝑒 𝑒𝑥𝑝𝑟) =
(𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑠𝑖𝑠𝑎𝑙2𝑎𝑐𝑙2(𝑡𝑟𝑖𝑝𝑙𝑒𝑡1)

(𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑠𝑖𝑠𝑎𝑙2𝑎𝑐𝑙2(𝑡𝑟𝑖𝑝𝑙𝑒𝑡2)
. . .

(𝑐𝑎𝑟𝑡𝑒𝑠𝑖𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑠𝑖𝑠𝑎𝑙2𝑎𝑐𝑙2(𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑛−1) 𝑠𝑖𝑠𝑎𝑙2𝑎𝑐𝑙2(𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑛)) . . . )).
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5.7. An algorithm to generate definition of the structure containing the context
variables

Let 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 stand for a set of the context variable names. The algorithm takes it as a
parameter and performs two actions. First, it creates a structure of type 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 𝑖𝑑
with fields corresponding to variables. Second, it defines function 𝑐𝑟𝑒𝑎𝑡𝑒 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 𝑖𝑑,
which creates an object of type 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 𝑖𝑑 with corresponding field values.

The generated code of 𝑐𝑟𝑒𝑎𝑡𝑒 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 𝑖𝑑 looks like:

(𝑑𝑒𝑓𝑢𝑛 𝑐𝑟𝑒𝑎𝑡𝑒 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 𝑖𝑑
(𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)1
𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)2
. . .
𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡))−1

𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)))
(𝑚𝑎𝑘𝑒-𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 𝑖𝑑

:𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)1
𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)1

:𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)2
𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)2

. . .
:𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡))−1

𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡))−1

:𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡))

𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)))).

By definition the function body is an application of macro 𝑚𝑎𝑘𝑒-𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 𝑖𝑑. As
you can see, the context variable names turn into field names.

5.8. Function rep generation algorithm

Parameters of this algorithm are as follows: 1) 𝑣𝑎𝑟1, . . . , 𝑣𝑎𝑟𝑛 are variables over a range;
2) 𝑒𝑥𝑝𝑟 is an expression which may depend on these variables; 3) 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 is the sort of
applied reduction. We define the set 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 as

𝑐𝑜𝑛𝑡𝑒𝑥𝑡 = 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑒𝑥𝑝𝑟) ∖ {𝑣𝑎𝑟1, . . . , 𝑣𝑎𝑟𝑛}.

This subtraction provides the set of context variables without variables over range.
The generated code of function 𝑟𝑒𝑝 𝑖𝑑 looks like

(𝑑𝑒𝑓𝑢𝑛 𝑟𝑒𝑝 𝑖𝑑 (𝑟𝑎𝑛𝑔𝑒 𝑡𝑢𝑝𝑙𝑒𝑠 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡)
(𝑏 * ((𝑤ℎ𝑒𝑛 (𝑒𝑛𝑑𝑝 𝑟𝑎𝑛𝑔𝑒 𝑡𝑢𝑝𝑙𝑒𝑠)) 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑖𝑡(𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛))

(𝑡𝑢𝑝𝑙𝑒 (𝑐𝑎𝑟 𝑟𝑎𝑛𝑔𝑒 𝑡𝑢𝑝𝑙𝑒𝑠))
(𝑣𝑎𝑟1 (𝑐𝑎𝑟 𝑡𝑢𝑝𝑙𝑒))
(𝑣𝑎𝑟2 (𝑐𝑎𝑟 (𝑐𝑑𝑟 𝑡𝑢𝑝𝑙𝑒)))
. . .
(𝑣𝑎𝑟𝑛−1 (𝑐𝑎𝑟 (𝑐𝑑𝑟 . . . (𝑐𝑑𝑟 𝑡𝑢𝑝𝑙𝑒) . . . )))
(𝑣𝑎𝑟𝑛 (𝑐𝑎𝑟 (𝑐𝑑𝑟 (𝑐𝑑𝑟 . . . (𝑐𝑑𝑟 𝑡𝑢𝑝𝑙𝑒) . . . ))))
(𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)1
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𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡.𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)1)
(𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)2

𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡.𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)2)
. . .
(𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡))−1

𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡.𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡))−1)
(𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡))

𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡.𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡))))
𝑟𝑒𝑑𝑢𝑐𝑡2𝑎𝑐𝑙2(𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛,

𝑠𝑖𝑠𝑎𝑙2𝑎𝑐𝑙2(𝑒𝑥𝑝𝑟),
(𝑟𝑒𝑝 𝑖𝑑 (𝑐𝑑𝑟 𝑟𝑎𝑛𝑔𝑒 𝑡𝑢𝑝𝑙𝑒𝑠))))).

The binding of variable names 𝑣𝑎𝑟1, . . . , 𝑣𝑎𝑟𝑛 within block 𝑏* allows us to use the outcome
of translation of 𝑒𝑥𝑝𝑟 into Cloud Sisal without variable renaming. Moreover, the block 𝑏*
binds the context variables to the fields of an object containing the context itself. Here, such
an object denoted as 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 is created when the function 𝑐𝑟𝑒𝑎𝑡𝑒 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 𝑖𝑑 is
applied to the context variables.

If the list of index tuples of the array 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 𝑡𝑢𝑝𝑙𝑒𝑠 is empty, then function 𝑟𝑒𝑝 𝑖𝑑
results in the default reduction value obtained by application of 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑖𝑡 to reduction
name. Otherwise, 𝑟𝑒𝑝 𝑖𝑑 iterates over the range tuple list using recursive calls, and for every
range tuple it returns application of reduction modelling function to 𝑒𝑥𝑝𝑟 and to recursive
call which corresponds to reduction value after previous iterations. The name of reduction
modelling function results from application of 𝑟𝑒𝑑𝑢𝑐𝑡2𝑎𝑐𝑙2 to reduction name.

5.9. Array element replacement definition

Parameters of this algorithm are the same as in subsection 5.8 except for reduction. The
𝑐𝑜𝑛𝑡𝑒𝑥𝑡 is also defined by analogy. The modelling function is

(𝑑𝑒𝑓𝑢𝑛 𝑢𝑝𝑑𝑎𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑑 (𝑖𝑛𝑑𝑖𝑐𝑒𝑠 𝑡𝑢𝑝𝑙𝑒𝑠 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 𝑠𝑜𝑢𝑟𝑐𝑒 𝑎𝑟𝑟𝑎𝑦)
(𝑏 * ((𝑤ℎ𝑒𝑛 (𝑒𝑛𝑑𝑝 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 𝑡𝑢𝑝𝑙𝑒𝑠)) 𝑠𝑜𝑢𝑟𝑐𝑒 𝑎𝑟𝑟𝑎𝑦)

(𝑖𝑛𝑑𝑖𝑐𝑒𝑠 (𝑐𝑎𝑟 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 𝑡𝑢𝑝𝑙𝑒𝑠))
(𝑣𝑎𝑟1 (𝑐𝑎𝑟 𝑖𝑛𝑑𝑖𝑐𝑒𝑠))
(𝑣𝑎𝑟2 (𝑐𝑎𝑟 (𝑐𝑑𝑟 𝑖𝑛𝑑𝑖𝑐𝑒𝑠)))
. . .
(𝑣𝑎𝑟𝑛−1 (𝑐𝑎𝑟 (𝑐𝑑𝑟 . . . (𝑐𝑑𝑟 𝑖𝑛𝑑𝑖𝑐𝑒𝑠) . . . )))
(𝑣𝑎𝑟𝑛 (𝑐𝑎𝑟 (𝑐𝑑𝑟 (𝑐𝑑𝑟 . . . (𝑐𝑑𝑟 𝑖𝑛𝑑𝑖𝑐𝑒𝑠) . . . ))))

(𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)1
𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡.𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)1)

(𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)2
𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡.𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)2)

. . .
(𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡))−1

𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡.𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡))−1)
(𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡))

𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡.𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(𝑐𝑜𝑛𝑡𝑒𝑥𝑡))))
(𝑢𝑝𝑑𝑎𝑡𝑒-𝑛𝑡ℎ 𝑣𝑎𝑟1
(𝑢𝑝𝑑𝑎𝑡𝑒-𝑛𝑡ℎ 𝑣𝑎𝑟2
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. . .
(𝑢𝑝𝑑𝑎𝑡𝑒-𝑛𝑡ℎ 𝑣𝑎𝑟𝑛−1

(𝑢𝑝𝑑𝑎𝑡𝑒-𝑛𝑡ℎ 𝑣𝑎𝑟𝑛 𝑠𝑖𝑠𝑎𝑙2𝑎𝑐𝑙2(𝑒𝑥𝑝𝑟)
(𝑛𝑡ℎ 𝑣𝑎𝑟𝑛−1

. . .
(𝑛𝑡ℎ 𝑣𝑎𝑟2
(𝑛𝑡ℎ 𝑣𝑎𝑟1

(𝑢𝑝𝑑𝑎𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑑 (𝑐𝑑𝑟 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 𝑡𝑢𝑝𝑙𝑒𝑠) 𝑠𝑜𝑢𝑟𝑐𝑒 𝑎𝑟𝑟𝑎𝑦))) . . .)))).

There is a certain similarity to definition of 𝑟𝑒𝑝 𝑖𝑑. Since we model multidimensional arrays
by ACL2 lists, some overhead is inevitable. It takes form of composed functions of list
element access (𝑛𝑡ℎ) and array update 𝑢𝑝𝑑𝑎𝑡𝑒-𝑛𝑡ℎ.

5.10. The loop expression

Let 𝑙𝑜𝑜𝑝 𝑒𝑥𝑝𝑟 stands for expression of the form

for 𝑣𝑎𝑟1 in 𝑡𝑟𝑖𝑝𝑙𝑒𝑡1 cross 𝑣𝑎𝑟2 in 𝑡𝑟𝑖𝑝𝑙𝑒𝑡2 cross . . .
𝑣𝑎𝑟𝑛−1 in 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑛−1 cross 𝑣𝑎𝑟𝑛 in 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑛 do

returns 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑒𝑥𝑝𝑟 end for

where 𝑣𝑎𝑟1, . . . , 𝑣𝑎𝑟𝑛 are variables, 𝑡𝑟𝑖𝑝𝑙𝑒𝑡1, . . . , 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑛 are triplets, 𝑒𝑥𝑝𝑟 is an expression
which may depend on those variables and 𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 is a reduction. In this case

𝑠𝑖𝑠𝑎𝑙2𝑎𝑐𝑙2(𝑙𝑜𝑜𝑝 𝑒𝑥𝑝𝑟) =
(𝑟𝑒𝑝 𝑖𝑑

(𝑟𝑒𝑣𝑒𝑟𝑠𝑒 𝑟𝑎𝑛𝑔𝑒2𝑎𝑐𝑙2(𝑡𝑟𝑖𝑝𝑙𝑒𝑡1 𝑐𝑟𝑜𝑠𝑠 𝑡𝑟𝑖𝑝𝑙𝑒𝑡2 𝑐𝑟𝑜𝑠𝑠 . . . 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑛−1 𝑐𝑟𝑜𝑠𝑠 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑛))
(𝑐𝑟𝑒𝑎𝑡𝑒 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 𝑖𝑑

𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑠𝑡𝑟𝑖𝑛𝑔(
𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(

𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑒𝑥𝑝𝑟) ∖ {𝑣𝑎𝑟1, 𝑣𝑎𝑟2, . . . 𝑣𝑎𝑟𝑛−1, 𝑣𝑎𝑟𝑛})))),

where 𝑖𝑑 is unique identifier. The function 𝑟𝑒𝑝 𝑖𝑑 is governed by order in the list of Cartesian
product of triplets. The function 𝑟𝑒𝑣𝑒𝑟𝑠𝑒 is used to guarantee that the order of reductions
is correct. The set subtraction operation removes the variables over range. The string repre-
sentations of variables become arguments of 𝑐𝑟𝑒𝑎𝑡𝑒 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 𝑖𝑑. The algorithm which
generates definition of 𝑐𝑟𝑒𝑎𝑡𝑒 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 𝑖𝑑 has been already described in Section 5.7.

5.11. The array element replacement expression

Let 𝑎𝑟𝑟𝑎𝑦 𝑟𝑒𝑝 𝑒𝑥𝑝𝑟 be an array element replacement expression of the form

𝑠𝑜𝑢𝑟𝑐𝑒 𝑎𝑟𝑟𝑎𝑦[𝑣𝑎𝑟1 in 𝑡𝑟𝑖𝑝𝑙𝑒𝑡1 cross 𝑣𝑎𝑟2 in 𝑡𝑟𝑖𝑝𝑙𝑒𝑡2 cross . . .
𝑣𝑎𝑟𝑛−1 in 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑛−1 cross 𝑣𝑎𝑟𝑛 in 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑛 := 𝑒𝑥𝑝𝑟],

defined in Section 1. Then

𝑠𝑖𝑠𝑎𝑙2𝑎𝑐𝑙2(𝑎𝑟𝑟𝑎𝑦 𝑟𝑒𝑝 𝑒𝑥𝑝𝑟) =
(𝑢𝑝𝑑𝑎𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑑

(𝑟𝑒𝑣𝑒𝑟𝑠𝑒 𝑟𝑎𝑛𝑔𝑒2𝑎𝑐𝑙2(𝑡𝑟𝑖𝑝𝑙𝑒𝑡1 𝑐𝑟𝑜𝑠𝑠 𝑡𝑟𝑖𝑝𝑙𝑒𝑡2 𝑐𝑟𝑜𝑠𝑠 . . . 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑛−1 𝑐𝑟𝑜𝑠𝑠 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑛))
(𝑐𝑟𝑒𝑎𝑡𝑒 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 𝑖𝑑
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𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑠𝑡𝑟𝑖𝑛𝑔(
𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(

𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑒𝑥𝑝𝑟) ∖ {𝑣𝑎𝑟1, 𝑣𝑎𝑟2, . . . 𝑣𝑎𝑟𝑛−1, 𝑣𝑎𝑟𝑛})))
𝑠𝑜𝑢𝑟𝑐𝑒 𝑎𝑟𝑟𝑎𝑦),

where 𝑖𝑑 is unique identifier. The arguments of 𝑢𝑝𝑑𝑎𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑑 are similar to those in
Section 5.10.

5.12. Array construction expression

Let 𝑎𝑟𝑟𝑎𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑒𝑥𝑝𝑟 be an expression of the form

array[0 .. ℎ𝑖𝑔ℎ𝑡1, 0 .. ℎ𝑖𝑔ℎ𝑡2, . . . , 0 .. ℎ𝑖𝑔ℎ𝑡𝑛−1, 0 .. ℎ𝑖𝑔ℎ𝑡𝑛] of
[𝑣𝑎𝑟1 in 𝑡𝑟𝑖𝑝𝑙𝑒𝑡1 cross 𝑣𝑎𝑟2 in 𝑡𝑟𝑖𝑝𝑙𝑒𝑡2 cross . . .

𝑣𝑎𝑟𝑛−1 in 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑛−1 cross 𝑣𝑎𝑟𝑛 in 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑛 := 𝑒𝑥𝑝𝑟1; else := 𝑒𝑥𝑝𝑟2],

where 𝑣𝑎𝑟1, . . . , 𝑣𝑎𝑟𝑛 are variables, 𝑡𝑟𝑖𝑝𝑙𝑒𝑡1, . . . , 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑛 are triplets, 𝑒𝑥𝑝𝑟1 is a replacing
expression possibly depending on these variables, whereas 𝑒𝑥𝑝𝑟2 is a default expression which
does not depend on them. In this case

𝑠𝑖𝑠𝑎𝑙 𝑡𝑜 𝑎𝑐𝑙2(𝑎𝑟𝑟𝑎𝑦 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 𝑒𝑥𝑝𝑟) =
(𝑢𝑝𝑑𝑎𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑑

(𝑟𝑒𝑣𝑒𝑟𝑠𝑒 𝑟𝑎𝑛𝑔𝑒2𝑎𝑐𝑙2(𝑡𝑟𝑖𝑝𝑙𝑒𝑡1 𝑐𝑟𝑜𝑠𝑠 𝑡𝑟𝑖𝑝𝑙𝑒𝑡2 𝑐𝑟𝑜𝑠𝑠 . . . 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑛−1 𝑐𝑟𝑜𝑠𝑠 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑛))
(𝑐𝑟𝑒𝑎𝑡𝑒 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 𝑖𝑑

𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑠𝑡𝑟𝑖𝑛𝑔(
𝑐𝑜𝑛𝑡𝑒𝑥𝑡2𝑣𝑒𝑐𝑡𝑜𝑟(

𝑐𝑜𝑛𝑡𝑒𝑥𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠(𝑒𝑥𝑝𝑟1) ∖ {𝑣𝑎𝑟1, 𝑣𝑎𝑟2, . . . 𝑣𝑎𝑟𝑛−1, 𝑣𝑎𝑟𝑛})))
(𝑐𝑟𝑒𝑎𝑡𝑒 𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑠𝑎𝑙2𝑎𝑐𝑙2(ℎ𝑖𝑔ℎ𝑡1)

(𝑐𝑟𝑒𝑎𝑡𝑒 𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑠𝑎𝑙2𝑎𝑐𝑙2(ℎ𝑖𝑔ℎ𝑡2)
. . .

(𝑐𝑟𝑒𝑎𝑡𝑒 𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑠𝑎𝑙2𝑎𝑐𝑙2(ℎ𝑖𝑔ℎ𝑡𝑛−1)
(𝑐𝑟𝑒𝑎𝑡𝑒 𝑎𝑟𝑟𝑎𝑦 𝑠𝑖𝑠𝑎𝑙2𝑎𝑐𝑙2(ℎ𝑖𝑔ℎ𝑡𝑛) 𝑠𝑖𝑠𝑎𝑙2𝑎𝑐𝑙2(𝑒𝑥𝑝𝑟2))) . . . ))),

where 𝑖𝑑 is a unique identifier. The arguments of 𝑢𝑝𝑑𝑎𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑑 resemble those of the
function 𝑟𝑒𝑝 𝑖𝑑 from Section 5.10.

6. Axiomatic semantics of Cloud-Sisal-kernel

We base our semantic research on Hoare’s logic [7] with classical notions of Hoare triple
{𝑃} 𝑆 {𝑄} and of partial correctness of a program 𝑆 w. r. t. its precondition 𝑃 and post-
condition 𝑄 [8].

The axiomatic semantics may differ depending on the derivation order. The Cloud Sisal
itself and chosen symbolic method propose that backward strategy is more appropriate.
Thus, the weakest precondition calculus is used. Let us note that for a given pair of program
𝑆 and postcondition 𝑄 the weakest precondition 𝑤𝑝(𝑆,𝑄) has two properties

� the triple {𝑤𝑝(𝑆,𝑄)} 𝑆 {𝑄} is true;
� for any formula 𝑃 the truth of the triple {𝑃} 𝑆 {𝑄} implies 𝑃 → 𝑤𝑝(𝑆,𝑄).



Towards verification of scientific and engineering programs. The CPPS project 103

So, the verification is based on the fact that {𝑃} 𝑆 {𝑄} is true iff 𝑃 → 𝑤𝑝(𝑆, 𝑄) is true.
To make wp-calculus of the loop expressions practical we need a small trick. Namely,

we fix the term 𝑟𝑒𝑠𝑢𝑙𝑡 in our specification language. It will correspond to the values of
computable expressions.

With such fixed term axiomatic semantics for the loop expressions is straightforward.
Let 𝑅(𝑦 ← 𝑒𝑥𝑝) denote substitution of 𝑒𝑥𝑝 for all free occurrences of variable 𝑦 in 𝑅. Then

𝑤𝑝(𝑙𝑜𝑜𝑝 𝑒𝑥𝑝𝑟 𝑄) = 𝑄(𝑟𝑒𝑠𝑢𝑙𝑡← 𝑠𝑖𝑠𝑎𝑙2𝑎𝑐𝑙2(𝑙𝑜𝑜𝑝 𝑒𝑥𝑝𝑟)).

The weakest precondition for other expressions of Cloud-Sisal-kernel is defined analogously.

7. Study case

As an illustration consider the matrix elements summation program:

function sum_matrix_elements (a: array of (array of integer),

n, m: integer returns integer)

for i in 0..n-1..1 cross j in 0..m-1..1 do

returns sum of a[i, j] end for end function

It takes an integer matrix 𝑎 with 𝑛 rows and 𝑚 columns.
We use the following ACL2 formula as a precondition:

(and (integerp n) (integerp m) (< 0 n) (< 0 m) (integer-matrixp n m a))

Predicate 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑝 checks whether its argument is an integer. Predicate 𝑖𝑛𝑡𝑒𝑔𝑒𝑟-𝑚𝑎𝑡𝑟𝑖𝑥𝑝
does analogous checks for matrices. In ACL2 an integer matrix is implemented by a list of
𝑛 lists, each of them is an integer list of length 𝑚. Formally, this predicate is defined by a
set of domain specific lemmas.

Postcondition is quite short:

(= result (sum-matrix n m a))

Here, 𝑠𝑢𝑚-𝑚𝑎𝑡𝑟𝑖𝑥 is another function defined in ACL2 by lemmas.
When we translate loop expression under discussion into ACL2, it is modelled by appli-

cation of function 𝑟𝑒𝑝 1:

(rep_1 (reverse (cartesian_product (triplet 0 (- n 1) 1) (triplet 0 (- m 1) 1)))

(create_environment_1 a))

and the definitions of 𝑟𝑒𝑝 1 and 𝑐𝑟𝑒𝑎𝑡𝑒 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 1 are also generated automatically:

(defun create_environment_1(a)

(make-environment_1 :a a))

(defun rep_1(range_tuples environment)

(b* ((when (endp range_tuples) 0)

(tuple (car range_tuples))

(i (car tuple))

(j (car (cdr tuple)))

(a environment.a))

(+ (nth i (nth j a)) (rep_1 (cdr range_tuples) environment))))



104 D.A. Kondratyev, A.V. Promsky

Let us note that if we omit the array range variables then context variable set of expression
𝑎[𝑖, 𝑗] consists of 𝑎 itself. Also function 𝑟𝑒𝑝 1 corresponds to actual evaluation of the loop.
Thus it defines an operational semantics.

To derive the weakest precondition for 𝑠𝑢𝑚-𝑚𝑎𝑡𝑟𝑖𝑥-𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 and its postcondition every
occurrence of the term 𝑟𝑒𝑠𝑢𝑙𝑡 in the postcondition is replaced by translation outcome. This
process leads to the following:

(= (rep_1 (reverse (cartesian_product (triplet 0 (- n 1) 1) (triplet 0 (- m 1) 1)))

(create_environment_1 a))

(sum-matrix n m a))

Hence, the function 𝑠𝑢𝑚-𝑚𝑎𝑡𝑟𝑖𝑥-𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 is partially correct w.r.t. its annotations when
the following formula is true:

(implies

(and (integerp n) (integerp m) (< 0 n) (< 0 m) (integer-matrixp n m a))

(= (rep_1 (reverse (cartesian_product (triplet 0 (- n 1) 1) (triplet 0 (- m 1) 1)))

(create_environment_1 a))

(sum-matrix n m a)))

The antecedent of this implication is precondition of sum-matrix-elements. The weakest
precondition for sum-matrix-elements and its postcondition form the consequent of this
implication. ACL2 successfully proved it by induction on 𝑛 and 𝑚. During the proof we
also use lemmas about functions 𝑖𝑛𝑡𝑒𝑔𝑒𝑟-𝑚𝑎𝑡𝑟𝑖𝑥𝑝 and 𝑠𝑢𝑚-𝑚𝑎𝑡𝑟𝑖𝑥. Thus, function 𝑠𝑢𝑚-
𝑚𝑎𝑡𝑟𝑖𝑥-𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 corresponds to its specifications.

Conclusion

Here we discussed the current situation in CPPS project. We have considered axiomatic
semantics of Cloud-Sisal-kernel. Our semantics is based on translation from Cloud Sisal
into ACL2. As a result we construct axioms and rules for several forms of expressions of
Cloud Sisal. Such expressions enable efficiently executable computational or engineering
mathematics programs [10]. Since they are the core of Cloud Sisal, the subset Cloud-Sisal-
kernel is quite representative.

An interesting side effect also occurs. Since functions 𝑟𝑒𝑝 and 𝑢𝑝𝑑𝑎𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑑 in
fact define evaluation of corresponding expressions, we simultaneously devised operational
semantics.

As for the future work, we may mention one limitation of Cloud-Sisal-kernel. At the
moment we do not support the 𝑤ℎ𝑖𝑙𝑒 section of loop expressions. This construction allows
us to terminate a loop when certain condition is satisfied. Obviously, axioms and rules for
general loop expressions will be an important step towards full coverage of Cloud Sisal.

Acknowledgements. This work was carried out with a grant from the Russian Science
Foundation (project 18-11-00118).
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Аннотация

В настоящее время, когда теоретические основы верификации программ хорошо изучены,
исследователи концентрируют свои усилия на предметно-ориентированных методах для раз-
личных классов программ. Инструменты, которые они выбирают, варьируются от проверки
моделей для сетевых протоколов до исчислений указателей для фрагментов ядра операцион-
ной системы. Однако, похоже, что области научных и инженерных программ все еще уделя-
ется недостаточно внимания. Мы хотели бы внести свой вклад в заполнение этого пробела с
помощью разработки системы CPPS. Целью этого проекта является создание системы парал-
лельного программирования для Sisal-программ. Дедуктивная верификация Sisal-программ
является одной из важных подцелей. Так как язык Cloud-Sisal построен на основе цикли-
ческих выражений, их аксиоматическая семантика является базой логики Хоара для языка
Sisal. Циклические выражения языка Cloud-Sisal, выражения конструирования массивов и
выражения замещения элементов массивов позволяют реализовать эффективно исполняемые
программы вычислительной или инженерной математики. Таким образом, мы полагаем, что
наша аксиоматическая семантика для этих типов выражений может представлять интересный
результат. Природа таких программ позволяет достичь не только эффективного исполнения,
но и упростить верификацию. Действительно, программы вычислительной математики часто
основаны на итерациях над структурами данных. Символический метод верификации финит-
ных итераций является в этой ситуации очень полезным, так как он элиминирует те проблем-
ные инварианты цикла, которые всегда мешают формальной верификации. Все предыдущие
исследования этого метода были теоретическими, CPPS представляет собой первую попытку
использования его на практике.

Ключевые слова: Cloud-Sisal, дедуктивная верификация, Cloud-Sisal-kernel, C-lightVer, об-
лачная система параллельного программирования, ACL2, инвариант цикла.
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