Стоячие волны как решения полной системы уравнений Навье—Стокса в одномерном случае^{*}

В.Е. ЗАМЫСЛОВ

Уральский государственный университет путей сообщения, Екатеринбург, Россия e-mail: VZamislov@usurt.ru

Рассматривается полная система уравнений Навье — Стокса, решения которой описывают одномерные течения сжимаемого вязкого теплопроводного газа при постоянных значениях коэффициентов вязкости и теплопроводности. В качестве независимых термодинамических переменных выбраны давление и удельный объем, через которые система уравнений с частными производными записывается в нормальном виде относительно производных по времени. Решения выписанной системы строятся как бесконечные суммы гармоник по пространственной переменной с коэффициентами, зависящими от времени. Показано, что при условиях теплоизоляции и прилипания на границах отрезка пространственной переменной решения начально-краевой задачи представляют собой сумму стоячих волн с кратными частотами. Получена алгебраическая зависимость минимальной частоты в решении от частот гармоник, входящих в начальные условия. Предложено объяснение механизма взаимного влияния друг на друга гармоник с разными частотами.

Ключевые слова: стоячие волны, полная система уравнений Навье—Стокса, одномерные потоки.

1. Построение решений системы уравнений Навье-Стокса

1.1. Постановка начально-краевой задачи

Рассмотрим полную систему уравнений Навье — Стокса (ПСУНС) для идеального газа, записанную в нормальном виде через удельный объем $\delta = 1/\rho$, скорость u и давление p, в безразмерных переменных [1–3]:

$$\begin{cases} \delta_t = \delta u_x - u \delta_x, \\ u_t = -u u_x - \frac{1}{\gamma} \delta p_x + \mu_0 \delta u_{xx}, \\ p_t = -u p_x - \gamma p u_x + \varkappa_0 (\delta p)_{xx} + \mu_0 \gamma (\gamma - 1) u_x^2, \end{cases}$$
(1)

где t — время, x — пространственная переменная, μ_0 , \varkappa_0 — постоянные положительные коэффициенты вязкости и теплопроводности, $\gamma > 1$ — показатель политропы идеального газа, а уравнения состояния имеют следующий вид:

$$T = \delta p, \quad e = T.$$

Здесь Т — температура, е — внутренняя энергия идеального газа.

^{*}Исследование поддержано РФФИ (проект 11-01-00198).

Для системы (1) на отрезке $0 \le x \le \pi$ ставятся начальные

$$\delta(t,x)|_{t=0} = \delta^0(x), \quad u(t,x)|_{t=0} = u^0(x), \quad p(t,x)|_{t=0} = p^0(x)$$
(2)

и краевые

$$u|_{x=0,\,x=\pi} = 0, \quad T_x|_{x=0,\,x=\pi} = 0 \tag{3}$$

условия. Последние (3) обеспечивают условия прилипания и теплоизоляции в граничных точках $x = 0, x = \pi$.

В работах [4, 5] доказано, что при определённых условиях на начальные данные поставленная начально-краевая задача (1)–(3) для ПСУНС имеет единственное решение в L_2 , а при дополнительных предположениях — и в $C^{2+\alpha,1+\alpha/2}$ (по x, t). Её решение при $t \to +\infty$ описывает процесс стабилизации одномерного течения от начального неоднородного состояния (2) к состоянию однородного покоя.

В настоящей работе решение задачи (1)–(3) строится в виде формальных бесконечных сумм с неизвестными коэффициентами $\delta_{\ell}(t), u_{\ell}(t), p_{0}(t), p_{\ell}(t), \ell = 1, 2, ..., K = \infty$ [3]:

$$\delta(t,x) = 1 + \sum_{\ell=1}^{K} \delta_{\ell}(t) \cos \ell x, \quad u(t,x) = \sum_{\ell=1}^{K} u_{\ell}(t) \sin \ell x, \quad p(t,x) = 1 + \sum_{\ell=0}^{K} p_{\ell}(t) \cos \ell x.$$
(4)

Для представлений (4) при x = 0, $x = \pi$ автоматически выполняются условия прилипания и теплоизоляции (3). Начальные данные для системы (1) записываются в виде, аналогичном (4):

$$\delta(0,x) = 1 + \sum_{\ell=1}^{K} \delta_{\ell}^{o} \cos \ell x, \quad u(0,x) = \sum_{\ell=1}^{K} u_{\ell}^{o} \sin \ell x, \quad p(0,x) = 1 + \sum_{\ell=0}^{K} p_{\ell}^{o} \cos \ell x, \quad (5)$$

где $\delta_{\ell}^{o}, u_{\ell}^{o}, p_{0}^{o}, p_{\ell}^{o}, \ell = 1, 2, \dots$ заданные константы.

Чтобы найти уравнения для коэффициентов $\delta_{\ell}(t)$, $u_{\ell}(t)$, $p_{\ell}(t)$, выражения (4) подставляются в систему (1) и каждое из трёх полученных уравнений проецируется на свою систему базисных гармоник, а именно, умножается соответственно на $\cos \ell x$, $\sin \ell x$ и $\cos \ell x$ ($\ell = 1, 2, ...$) и интегрируется на отрезке $[0, \pi]$, а для коэффициента $p_0(t)$ в третьем уравнении добавляется случай $\ell = 0$.

В результате получим следующую бесконечную систему обыкновенных дифференциальных уравнений (СОДУ) для бесконечного числа искомых функций $\delta_{\ell}(t)$, $u_{\ell}(t)$, $p_0(t)$, $p_{\ell}(t)$ [3]:

$$\delta_{\ell}'(t) = \ell u_{\ell}(t) + \frac{2}{\pi} \sum_{k,m=1}^{K} \left(m a_{km\ell} + k b_{km\ell} \right) \delta_k(t) u_m(t), \tag{6}$$

$$u_{\ell}'(t) = -\frac{2}{\pi} \sum_{k,m=1}^{K} m b_{k\ell \, m} u_k(t) u_m(t) + \frac{1}{\gamma} \ell p_{\ell}(t) + \frac{2}{\gamma \pi} \sum_{k,m=1}^{K} m b_{m\ell \, k} \delta_k(t) p_m(t) - \mu_0 \ell^2 u_{\ell}(t) - \mu_0 \frac{2}{\pi} \sum_{k,m=1}^{K} m^2 b_{m\ell \, k} \delta_k(t) u_m(t),$$

$$(7)$$

$$p_0'(t) = \frac{1}{2}(1-\gamma)\sum_{k=1}^K k u_k(t) p_k(t) + \frac{1}{2}\mu_0 \gamma(\gamma-1)\sum_{k=1}^K k^2 u_k^2(t),$$
(8)

$$p_{\ell}'(t) = \frac{2}{\pi} \sum_{k,m=1}^{K} (mb_{km\ell} - \gamma ka_{km\ell}) u_k(t) p_m(t) - \gamma \ell [1 + p_0(t)] u_\ell(t) - \varkappa_0 \ell^2 \left\{ [1 + p_0(t)] \delta_\ell(t) + p_\ell(t) \right\} - \varkappa_0 \frac{2}{\pi} \sum_{k,m=1}^{K} \left[(m^2 + k^2) a_{km\ell} - 2kmb_{km\ell} \right] \delta_k(t) p_m(t) + \mu_0 \gamma (\gamma - 1) \frac{2}{\pi} \sum_{k,m=1}^{K} kma_{km\ell} u_k(t) u_m(t)$$

$$(9)$$

с начальными данными вида

$$\delta_{\ell}(t)|_{t=0} = \delta^{o}_{\ell}, \quad u_{\ell}(t)|_{t=0} = u^{o}_{\ell}, \quad p_{0}(t)|_{t=0} = p^{o}_{0}, \quad p_{\ell}(t)|_{t=0} = p^{o}_{\ell}. \tag{10}$$

Здесь $K = \infty$, индексы принимают целые значения $k, m, \ell = 1, 2, ...,$ а коэффициенты $a_{km\ell}, b_{km\ell}$ выражаются через интегралы [3]

$$a_{km\ell} = \int_{0}^{\pi} \cos kx \cos mx \cos \ell x dx, \quad b_{km\ell} = \int_{0}^{\pi} \sin kx \sin mx \cos \ell x dx.$$

В дальнейшем будем рассматривать приближённое решение системы (6)–(10), положив во всех суммах верхний предел K равным конечному числу, а число уравнений — соответственно числу неизвестных коэффициентов 3K + 1.

1.2. Свойства решений СОДУ

Теорема 1. Если в системе (6)–(10) для фиксированного ℓ_0 ($0 < \ell_0 \le K$) заданы начальные условия вида (10), отличные от нуля хотя бы для одного значения $\delta^o_{\ell_0}$, $u^o_{\ell_0}$, $p^o_{\ell_0}$, а остальные значения δ^o_{ℓ} , u^o_{ℓ} , p^o_{ℓ} , $\ell > 0$, равны нулю, то в решении системы среди функций $\delta_{\ell}(t)$, $u_{\ell}(t)$, $p_{\ell}(t)$, $\ell > 0$, отличными от тождественного нуля могут быть только функции с индексами ℓ , кратными ℓ_0 , т. е. $\ell = \ell_0$, $2\ell_0$, $3\ell_0$, ..., $\ell \le K$.

Теорема 2. Пусть индекс ℓ $(0 < \ell \leq K)$ принимает все значения из конечного множества $L = \{\ell_0, \ell_1, ..., \ell_m\}$. Если в начальных условиях системы (6)–(10) при каждом $\ell \in L$ хотя бы одно значение δ_{ℓ}^o , u_{ℓ}^o , p_{ℓ}^o отлично от нуля, а остальные значения δ_{ℓ}^o , u_{ℓ}^o , p_{ℓ}^o , $\ell \notin L$, $\ell > 0$, равны нулю, то в решении системы при положительных индексах ℓ отличными от тождественного нуля могут быть только функции $\delta_{\ell}(t)$, $u_{\ell}(t)$, $p_{\ell}(t)$ с индексом ℓ , кратным d, $m. e. \ell = d, 2d, 3d, ..., где <math>d = HO\mathcal{I}(\ell_0, \ell_1, ..., \ell_m)$ – наибольший общий делитель чисел $\ell_0, \ell_1, ..., \ell_m$.

Лемма 1. Для коэффициентов $a_{km\ell}$, $b_{km\ell}$ из уравнений (6)–(9) справедливы равенства

$$a_{km\ell} = \begin{cases} \frac{\pi}{4}, \ ecnu \ \ell = k + m, \ unu \ \ell = |k - m|, \\ 0 \quad e \ ocmanbhux \ cnyuaxx, \end{cases} \qquad b_{km\ell} = \begin{cases} \frac{\pi}{4}, \ ecnu \ \ell = |k - m|, \\ -\frac{\pi}{4}, \ ecnu \ \ell = k + m, \\ 0 \quad e \ ocmanbhux \ cnyuaxx. \end{cases}$$

Утверждение леммы 1 легко проверяется по формуле Ньютона – Лейбница.

Следствие. Коэффициенты $a_{km\ell}$, $b_{km\ell}$ не равны нулю, когда любой их индекс равен сумме или разности двух других индексов, и равны нулю, если это не выполняется.

Лемма 2. Пусть $C_{km\ell}$ — массив чисел со следующим свойством: эти числа отличны от нуля, когда любой из индексов k, m, ℓ равен сумме или разности двух других индексов, и равны нулю, если это не выполняется $(k, m, \ell = 1, 2, ..., K)$. Тогда для любых двух векторов

$$\mathbf{V} = (v_1, v_2, ..., v_K), \quad \mathbf{W} = (w_1, w_2, ..., w_K),$$

у которых отличны от нуля только компоненты с индексами, кратными d, т. е. с индексами $k = d, 2d, ..., k \leq K$, сумма

$$S_{\ell} = \sum_{k,m=1}^{K} C_{km\ell} \, v_k w_m$$

равна нулю, если l не делится на d.

Доказательство леммы 2. Предположим, что ℓ не делится на d, а сумма S_{ℓ} не равна нулю. Тогда в сумме S_{ℓ} есть слагаемые, отличные от нуля, которые имеют вид $C_{km\ell} v_k w_m$, где k, m кратны d, а индекс $\ell = k + m$ или $\ell = |k - m|$. Но тогда индекс ℓ также должен делиться на d, что противоречит предположению.

Следствие. Утверждение леммы 2 остаются справедливыми при любой перестановке индексов у коэффициентов $C_{km\ell}$, т. е. аналогичными свойствами будут обладать двойные суммы S_{ℓ} с коэффициентами вида $C_{k\ell m}$, $C_{m\ell k}$ и т. д.

Доказательство теоремы 1. Рассмотрим решение системы (6)–(10) с конечным числом уравнений. Пусть все решения этой системы, т.е. функции $\delta_{\ell}(t)$, $u_{\ell}(t)$, $p_0(t)$, $p_{\ell}(t)$, $\ell = 1, 2, ..., K$, определены на некотором временном отрезке $[0, t_*]$. Разобьём этот отрезок на N равных частей длины Δt и построим для каждой из названных функций ломаную Эйлера [6]. Покажем, что при любом N утверждение теоремы 1 выполняется для всех ломаных. Поскольку при $N \to +\infty$ приближённые решения стремятся к точному решению, то утверждение теоремы 1 будет доказано.

Предположим $p_{\ell_0}^o \neq 0$ для некоторого $\ell_0 \geq 1$, а остальные значения в начальных условиях равны нулю за исключением, возможно, p_0^o (случаи $\delta_{\ell_0}^o \neq 0$ и $u_{\ell_0}^o \neq 0$ проверяются аналогично). Будем строить ломаные Эйлера последовательно в моменты времени $t_0 = 0, t_1 = \Delta t, t_2 = 2\Delta t, ..., t_N = N\Delta t = t_*$. Значения ломаных в точках t_i обозначим как $\hat{\delta}_{\ell}(t_i), \hat{u}_{\ell}(t_i), \hat{p}_{\ell}(t_i)$.

При t = 0 начальные условия для ломаных следующие: $\hat{p}_{\ell_0}(0) = p_{\ell_0}^o \neq 0$, $\delta_{\ell_0}(0) = \delta_{\ell_0}^o = 0$, $\hat{u}_{\ell_0}(0) = u_{\ell_0}^o = 0$. Значения производных при t = 0 находим, вычисляя правые части уравнений системы (6)–(9):

$$p_{\ell_0}'(0) = -\varkappa_0 {\ell_0}^2 \hat{p}_{\ell_0}(0) \neq 0, \quad u_{\ell_0}'(0) = \frac{1}{\gamma} \hat{p}_{\ell_0}(0) \neq 0, \quad \delta_{\ell_0}'(0) = 0.$$

Следовательно, в момент $t = t_1$ по итерационным формулам метода ломаных Эйлера имеем

$$\hat{p}_{\ell_0}(t_1) = \hat{p}_{\ell_0}(0) + \Delta t p'_{\ell_0}(0) = \hat{p}_{\ell_0}(0) + \Delta t \left(-\varkappa_0 \ell_0^2 \hat{p}_{\ell_0}(0) \right) \neq 0,$$
$$\hat{u}_{\ell_0}(t_1) = \hat{u}_{\ell_0}(0) + \Delta t u'_{\ell_0}(0) = 0 + \Delta t \frac{1}{\gamma} \hat{p}_{\ell_0}(0) \neq 0,$$
$$\hat{\delta}_{\ell_0}(t_1) = 0.$$

Для заданных \varkappa_0, ℓ_0 выполнения первого из трёх данных неравенств можно добиться за счёт уменьшения Δt при увеличении N. При остальных $\ell \neq \ell_0, \ell > 0$, получим

$$\hat{p}_{\ell}(t_1) = 0, \quad \hat{u}_{\ell}(t_1) = 0, \quad \hat{\delta}_{\ell}(t_1) = 0.$$

При $t = t_1$ производная $\delta'_{\ell_0}(t)$ определяется из уравнения (6):

$$\delta_{\ell_0}'(t_1) = \ell_0 \hat{u}_{\ell_0}(t_1) + \frac{2}{\pi} \sum_{k,m=1}^K (m a_{km\ell_0} + k b_{km\ell_0}) \hat{\delta}_k(t_1) \hat{u}_m(t_1) = \ell_0 \hat{u}_{\ell_0}(t_1) \neq 0,$$

поэтому в момент t_2 к существующим ломаным $\hat{u}_{\ell_0}, \hat{p}_{\ell_0}$ добавится ненулевая ломаная δ_{ℓ_0} .

В дальнейшем построении при переходе к $t_3, t_4, ...$ могут появиться ненулевые ломаные $\hat{\delta}_{\ell}, \hat{u}_{\ell}, \hat{p}_{\ell}$ только с индексом ℓ , кратным ℓ_0 .

Докажем это по индукции.

При $t = t_1$ есть отличные от нуля ломаные $\hat{\delta}_{\ell_0}$, \hat{u}_{ℓ_0} , \hat{p}_{ℓ_0} , по крайней мере не все значения $\hat{\delta}_{\ell_0}(t_1)$, $\hat{u}_{\ell_0}(t_1)$, $\hat{p}_{\ell_0}(t_1)$ равны нулю. Пусть на момент t_i существуют ненулевые ломаные с индексами ℓ_0 , $2\ell_0$, ..., $n\ell_0$ или хотя бы не все значения $\hat{\delta}_{\ell_0}(t_i)$, $\hat{\delta}_{2\ell_0}(t_i)$, ..., $\hat{\delta}_{n\ell_0}(t_i)$, $\hat{u}_{\ell_0}(t_i)$, $\hat{u}_{2\ell_0}(t_i)$, ..., $\hat{u}_{n\ell_0}(t_i)$, $\hat{p}_{\ell_0}(t_i)$, $\hat{p}_{2\ell_0}(t_i)$, ..., $\hat{p}_{n\ell_0}(t_i)$ равны нулю. Тогда за счёт двойных сумм, входящих в правые части, в момент t_i могут появиться новые ненулевые производные с индексами, не входящими в диапазон ℓ_0 , $2\ell_0$, ..., $n\ell_0$. Действительно, двойные суммы в правой части уравнений (6)–(9) имеют вид

$$S_{\ell} = \sum_{k,m=1}^{K} C_{km\ell} \, v_k w_m,$$

где коэффициенты $C_{km\ell}$ получены из $a_{km\ell}$ и $b_{km\ell}$ в виде линейных комбинаций и, возможно, отличны от нуля при $\ell = k + m$, $\ell = |k - m|$ (лемма 1).

По предположению индукции в момент t_i множители v_k, w_m взяты у существующих ненулевых ломаных с индексами k, m из диапазона $\ell_0, ..., n\ell_0$, т.е. эти индексы кратны ℓ_0 . Поэтому отличными от нуля, возможно, будут суммы S_ℓ с индексом ℓ , равным k + m или |k - m|, так как в них могут находиться ненулевые слагаемые вида $C_{km,k+m}v_kw_m$, $C_{km,|k-m|}v_kw_m$. Иначе говоря, новые индексы ℓ появятся в диапазоне $\ell_0, 2\ell_0, ..., n\ell_0, (n + 1)\ell_0, (n + 2)\ell_0, ..., 2n\ell_0$, поскольку получаются в виде сумм и разностей чисел $\ell_0, 2\ell_0, ..., n\ell_0$.

Следовательно, при построении ломаных Эйлера в момент t_i появятся новые ненулевые производные $\delta'_{\ell}(t_i)$, $u'_{\ell}(t_i)$, $p'_{\ell}(t_i)$ и в момент t_{i+1} возникнут новые ломаные $\hat{\delta}_{\ell}$, \hat{u}_{ℓ} , \hat{p}_{ℓ} , отличные от тождественного нуля, с индексами в диапазоне ℓ_0 , $2\ell_0$, ..., $2n\ell_0$, т. е. кратными ℓ_0 .

Покажем, что ломаные с индексами ℓ , не кратными ℓ_0 , всегда тождественно равны нулю. На моменты t_0 и t_1 это очевидно по их построению. По индукции, если в момент t_i такие ломаные тождественно равны нулю, то значения $\hat{\delta}_{\ell}(t_i)$, $\hat{u}_{\ell}(t_i)$, $\hat{p}_{\ell}(t_i)$ равны нулю при ℓ , не кратном ℓ_0 . Производные $\delta'_{\ell}(t_i)$, $u'_{\ell}(t_i)$, $p'_{\ell}(t_i)$ в левой части системы (6)–(9) для этих индексов в момент t_i будут равны нулю, так как слагаемые в их правой части, не входящие в двойные суммы, пропорциональны значениям $\hat{\delta}_{\ell}(t_i)$, $\hat{u}_{\ell}(t_i)$, $\hat{p}_{\ell}(t_i)$ и поэтому равны нулю, а двойные суммы вида S_{ℓ} в правой части равны нулю, поскольку их индексы не кратны ℓ_0 (лемма 2).

Так как производные при t_i и значения ломаных в момент t_i равны нулю, то и значения этих ломаных в момент t_{i+1} также будут равны нулю.

Утверждение теоремы проверено для ломаных Эйлера при любом N, и поскольку при $N \to +\infty$ приближённые решения стремятся к точному решению, то утверждение теоремы 1 будет справедливо и для точного решения.

Доказательство теоремы 2. Пусть индекс ℓ принимает все значения из множества $L = \{\ell_0, \ell_1, ..., \ell_m\}$ и начальные условия (10) при каждом $\ell \in L$ хотя бы для одной неизвестной функции $\delta_{\ell}(t), u_{\ell}(t), p_{\ell}(t)$ отличны от нуля, а другие начальные условия за исключением, возможно, $p_0(0)$ равны нулю.

Доказательство теоремы проведём по индукции для индексов $\ell > 0$, используя, как и в теореме 1, ломаные Эйлера.

Рассмотрим решение системы (6)–(10) с конечным числом уравнений. Пусть все решения этой системы, т.е. функции $\delta_{\ell}(t)$, $u_{\ell}(t)$, $p_{0}(t)$, $p_{\ell}(t)$, $\ell = 1, 2, ..., K$, определены на некотором временном отрезке $[0, t_*]$. Разобьем этот отрезок на N равных частей длины Δt и построим для каждой из названных функций ломаную Эйлера. Будем строить ломаные Эйлера последовательно в моменты времени $t_0 = 0$, $t_1 = \Delta t$, $t_2 = 2\Delta t, ..., t_N = N\Delta t = t_*$. Значения ломаных в точках t_i обозначим $\hat{\delta}_{\ell}(t_i)$, $\hat{u}_{\ell}(t_i)$, $\hat{p}_{\ell}(t_i)$. Покажем, что при любом N утверждение теоремы 2 выполняется для всех ломаных.

В момент $t_0 = 0$ начальные условия определяют набор ненулевых ломаных, чьи индексы кратны их наибольшему общему делителю. Пусть на момент t_i построены ломаные $\hat{\delta}_{\ell}, \hat{u}_{\ell}, \hat{p}_{\ell}$ и найдены их значения $\hat{\delta}_{\ell}(t_i), \hat{u}_{\ell}(t_i), \hat{p}_{\ell}(t_i)$ в точке t_i , где индекс ℓ , согласно теореме 1, принимает значения из множества, образованного кратными значениями чисел множества L. Обозначим это множество как id. Найдём производные функций $\delta_{\ell}(t)$, $u_{\ell}(t), p_{\ell}(t)$ в точке t_i , вычисляя правые части в уравнениях (6)–(9). За счёт двойных сумм получим ненулевые производные $\delta'_{\ell}(t_i), u'_{\ell}(t_i), p'_{\ell}(t_i)$ для индексов ℓ , не входящих в множество id. Действительно, в двойных суммах, находящихся в строчках, чьи индексы получаются из всевозможных сумм и разностей индексов множества id, будут появляться, как и в теореме 1, ненулевые слагаемые. Поэтому, возможно, появятся новые ненулевые производные и, следовательно, в свою очередь в момент t_{i+1} появятся ненулевые значения у ломаных Эйлера с индексами, не входящими в множество *id*. Будем включать при каждом шаге по времени в множество *id* индексы вновь образованных ломаных. Их число станет возрастать, и в конечный момент времени $t_N = t_*$ множество *id* можно представить как некоторое подмножество кольца целых чисел, полученное из конечного набора образующих $\ell_0, \ell_1, ..., \ell_m$ с помощью операций сложения и вычитания. При этом берутся только ненулевые, положительные значения элементов. Множество id есть подмножество некоторого идеала I, образованного конечным набором элементов $\ell_0, \ell_1, ..., \ell_m$ в кольце целых чисел ($id \subset I$). Так как кольцо целых чисел есть кольцо главных идеалов, то в І существует наименьший положительный элемент d такой, что все элементы I, а значит и элементы id, будут иметь значения, кратные d. Этот элемент является наибольшим общим делителем чисел $\ell_0, \ \ell_1..., \ell_m,$ т.е. $d = \text{HOД}(\ell_0, \ell_1, ..., \ell_m)$ [7]. Следовательно, в конечный момент времени t_* среди ненулевых ломаных появятся ломаные с индексами, кратными d. Покажем, что среди них, возможно, есть ломаная с индексом d. Если в начальный набор индексов входили всего два индекса ℓ_0, ℓ_1 , то их наибольший общий делитель можно записать в виде $d = \alpha \ell_0 - \beta \ell_1$, где α и β — целые положительные числа [7]. Согласно теореме 1, в решении образуются ломаные с индексами, кратными ℓ_0 и ℓ_1 . Поэтому при больших значениях Kи N в какой-то момент t_i образуется ломаная с индексом d, равным разности значений $\alpha \ell_0, \beta \ell_1$. С этого момента начнут появляться ломаные с индексами, кратными d. Если в начальных условиях значения с индексами $\ell_0, \ell_1, ..., \ell_m$ отличны от нуля, то имеет место цепочка равенств [8]

$$d_1 = \text{HOA}(\ell_0, \ell_1), \quad d_2 = \text{HOA}(d_1, \ell_2), \quad d_3 = \text{HOA}(d_2, \ell_3), \dots,$$

 $d_m = \text{HOA}(d_{m-1}, \ell_m), \quad d = d_m.$

Поэтому за конечное число шагов будут появляться ломаные с индексами $d_1, d_2, ..., d_{m-1}$ и в результате появится ломаная с индексом d.

Покажем, что ненулевых ломаных с индексом ℓ , не кратным d, быть не может.

В самом деле, начальные значения с индексами, отличными от $\ell_0, \ell_1, ..., \ell_m$, равны нулю по предположению и, следовательно, при $t_0 = 0$ значения ломаных $\hat{\delta}_{\ell}(t_0), \hat{u}_{\ell}(t_0), \hat{p}_{\ell}(t_0)$ с индексами $\ell \neq \text{HOД}(\ell_0, \ell_1, ..., \ell_m)$ также равны нулю. По индукции, если в момент $t = t_i$ значения $\hat{\delta}_{\ell}(t_i), \hat{u}_{\ell}(t_i), \hat{p}_{\ell}(t_i)$ с индексами ℓ , не кратными d, равны нулю, то производные в левой части системы (6)–(9) для этих индексов равны нулю. Действительно, их слагаемые в правой части, не входящие в двойные суммы, равны нулю, так как вычисляются через нулевые значения $\hat{\delta}_{\ell}(t_i), \hat{u}_{\ell}(t_i), \hat{p}_{\ell}(t_i)$, а двойные суммы в правой части равны нулю по лемме 2. Поэтому и в момент $t = t_{i+1}$ значения $\hat{\delta}_{\ell}(t_{i+1}), \hat{u}_{\ell}(t_{i+1}), \hat{p}_{\ell}(t_{i+1})$ останутся равными нулю. Утверждение теоремы 2 проверено для ломаных. Переходя к пределу при $N \to +\infty$, получим, что утверждение теоремы 2 справедливо и для решений системы (6)–(10).

Замечание 1. Теорема 1 есть частный случай теоремы 2.

Замечание 2. Если наибольший общий делитель d = 1, то в решении системы (6)–(10) отличными от тождественного нуля могут быть функции $\delta_{\ell}(t)$, $u_{\ell}(t)$, $p_{\ell}(t)$ при любом $\ell \leq K$.

1.3. Выводы

1. Если в начальных условиях (5) для системы уравнений (1)–(3) в суммах присутствуют гармоники только с частотами $\ell_0, \ell_1, ..., \ell_m$, приближённое решение (4) при конечном значении K на основании теоремы 2 имеет вид

$$\delta(t, x) = 1 + \sum_{k=1}^{dk \le K} \delta_{dk}(t) \cos(dkx),$$
$$u(t, x) = \sum_{k=1}^{dk \le K} u_{dk}(t) \sin(dkx),$$
$$p(t, x) = 1 + \sum_{k=0}^{dk \le K} p_{dk}(t) \cos(dkx),$$
(11)

где $d = \text{HOД}(\ell_0, \ell_1, ..., \ell_m)$. Другими словами, приближённое решение есть сумма волн с кратными d частотами, т. е., пользуясь терминами из акустики, звучать будут основной тон на частоте d и его обертоны на кратных ему частотах [9, 10].

2. Газодинамические параметры $\delta(t, x)$, u(t, x), p(t, x) в формулах (11) являются периодическими функциями с периодом $2\pi/d$ и описывают колебания газа между точками (узлами) $x_i = \pi i/d$, i = 0, 1, ..., d, в которых при любом значении t скорость $u(t, x_i) = 0$.

Эти колебания синхронны по времени и происходят в противоположных фазах на прилегающих к узлам интервалах. Графики функций $\delta(t, x)$, p(t, x) в каждый момент времени обладают зеркальной симметрией относительно вертикальных прямых $x = x_i$, i = 1, 2, ..., d-1, а для графика скорости u(t, x) внутренние узлы во все моменты времени будут точками центральных симметрий. Поэтому построенные приближённые решения можно назвать стоячими волнами.

3. Из доказательств теорем 1, 2 следует, что в приближённой математической модели (6)–(10) при конечном значении K на гармонику с частотой ℓ оказывают влияние гармоники с частотами k, m, для которых $\ell = k + m$ или $\ell = |k - m|$, т.е. гармоники как с нижними, так и с верхними частотами.

1.4. Сравнение решений, иллюстрация содержания теоремы 1

Решения задачи (6)–(10) вида (11) будут приближёнными решениями задачи (1)–(3). Естественно ожидать, что при $K \to +\infty$ данные решения сходятся к её точному решению. Поэтому формулируемые выводы 1–3 о свойствах решений скорее всего будут справедливыми и для точных решений системы (1)–(3).

Проверка этих предположений проводилась путём сравнения численных решений задачи (6)–(10) с решениями задачи (1)–(3), полученными разностным методом. В обоих случаях выбирались параметры $\gamma = 1.4$, $\mu_0 = 0.001$, $\varkappa_0 = 1.458333\mu_0$. Решения СОДУ были найдены по стандартным программам в системе MatLab при K = 50 с абсолютной погрешностью 1е–10. В разностном методе проводилась дискретизация вида

$$u_t \approx \frac{u_i^{n+1} - u_i^n}{\tau}, \quad u_x \approx \frac{u_{i+1}^n - u_{i-1}^n}{2h}, \quad u_{xx} \approx \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{h^2}$$

с шагом по пространству h = 0.005, по времени $\tau = 0.0001$.

Ниже приводятся примеры результатов этой проверки для различных начальных условий. Численные решения, полученные методом сеток, проецировались на систему базисных функций, и обычным способом вычислялись коэффициенты тригонометрических рядов, приближающих данные решения.

Пример 1. В момент времени t = 0 заданы начальные условия вида

$$p(x,0) = 1 + 0.1\cos(5x), \quad \delta(x,0) \equiv 1, \quad u(x,0) \equiv 0.$$

График давления и его спектр при t = 0 изображены на рис. 1. В начальных условиях присутствует одна гармоника с частотой, равной 5.

Рис. 1. График давления p(x) и его спектр при t = 0

Графики давления, скорости и удельного объёма для t = 10 приведены на рис. 2–4. При изображении спектров были выбраны амплитуды первых 30 гармоник.

Рис. 2. График давления p(x) и его спектр при t = 10, полученные при решении СОДУ (a) и разностным методом (b)

Рис. 3. График скорости u(x) и её спектр при t = 10, полученные при решении СОДУ (a) и разностным методом (δ)

Рис. 4. График удельного объёма $\delta(x)$ и его спектр при t = 10, полученные при решении СОДУ (a) и разностным методом (b)

Небольшие отличия от нуля в спектрах решений, полученных разностным методом, объясняются погрешностями при построении решения методом сеток, а также при численном нахождении коэффициентов тригонометрических рядов.

Из рис. 2–4 видно, что в решении присутствуют гармоники с частотами, кратными 5. По музыкальной терминологии [11] в данном простейшем случае начальные условия в виде одной гармоники частоты $\ell_0 = 5$ заставляют звучать гармоники на кратных ей частотах, т. е. в решении кроме основного тона с частотой ℓ_0 появятся и его обертоны.

1.5. Результаты расчётов, иллюстрирующих выводы 1, 2

Результаты расчётов в последующих примерах получены разностным методом при указанных в разделе 1.4 значениях параметров γ, μ₀, κ₀, h, τ.

Пример 2. Пусть в начальный момент времени заданы условия для скорости u(x), содержащие частоты 8, 12, 20, т. е. задан аккорд (рис. 5)

$$u(x,0) = 0.1\sin(8x) + 0.1\sin(12x) + 0.1\sin(20x), \quad p(x,0) \equiv 1, \quad \delta(x,0) \equiv 1$$

В этом случае в решении появились новый тон частоты 4 и его обертоны, содержащие в качестве подмножества гармоники исходного аккорда вместе с обертонами, унтертонами и комбинационными тонами его составляющих частот. Новая основная частота равна наибольшему общему делителю исходных частот.

График функции p(t, x) в каждый момент времени обладает зеркальной симметрией относительно вертикальных прямых $x = \pi/4$, $x = \pi/2$, $x = 3\pi/4$ (рис. 6), а для графика скорости u(t, x) точки пересечения этих прямых с осью Ox при любом t будут точками центральных симметрий (рис. 7).

Рис. 5. График скорости u(x) и её спектр при t = 0

Рис. 6. График давления p(x) и его спектр при t = 10

Рис. 7. График скорости u(x) и её спектр при t = 10

2. Моделирование внешнего воздействия на процесс стабилизации одномерного течения газа

Смоделируем в какой-то промежуточный момент времени $t = t^* > 0$ мгновенное внешнее возмущение на процесс колебания газа, изменив решение путём добавления к функциям $p(t^*, x)$ или $\delta(t^*, x)$ гармоники вида $C_{\ell} \cos(\ell x)$ или к функции $u(t^*, x)$ гармоники вида $C_{\ell} \sin(\ell x)$ при ℓ , взаимно простым с d. Затем продолжим решение системы (1) на промежуток $[t^*, t_*]$, приняв за начальные условия при t^* измененные функции. Тогда характер решения на промежутке $[t^*, t_*]$ кардинально изменится по сравнению с решением на промежутке $[0, t^*]$. Поскольку при $t \ge t^*$ в качестве нового значения d выступает единица, то при $t \ge t^*$ в решении появляются гармоники со всеми частотами. За счёт такого "перемешивания частот" мгновенное воздействие при малых значениях коэффициента вязкости μ_0 приводит к хаотическим колебаниям газодинамических параметров.

Рис. 8. Графики давления для t = 3, 6, 10 и спектр измененного давления при t = 10

Рис. 9. Графики давления для t = 10, 13, 16, 19 и спектр давления при t = 19

Пример 3. Рассмотрим начальные условия, когда задана одна гармоника с частотой 5 для давления (см. рис. 1). В момент t = 10 (рис. 2, δ) добавим к функции p(x, 10) гармонику 0.1 соз 3x с частотой 3. В спектре давления кроме частот, кратных числу 5, появится частота 3 (рис. 8).

Так как при $t \ge t^*$ наибольший общий делитель НОД(3,5) = 1, то при t > 10 спектры давлений будут содержать все частоты, а дальнейшие изменения давления будут носить хаотический характер (рис. 9).

Заключение

На основании утверждений, полученных при доказательстве теорем 1, 2, а также численного моделирования можно выдвинуть две гипотезы о структуре решений ПСУНС в одномерном случае.

Пусть для полной системы уравнений Навье — Стокса (1), описывающей течение сжимаемого вязкого теплопроводного газа на границах $0 \le x \le \pi$, выполняются условия прилипания и теплоизоляции (3).

Гипотеза 1. Если начальные данные (2) для ПСУНС заданы суммами гармоник (5) с конечным набором частот $\ell_0, \ell_1, ..., \ell_m$, то решение начально-краевой задачи будет содержать гармоники вида (4) только с частотами, кратными $d = \text{HOД}(\ell_0, \ell_1, ..., \ell_m)$.

Гипотеза 2. Механизм взаимного влияния гармоник в решениях ПСУНС определяется суммой и разностью их частот. Именно, на гармоники с частотой ℓ оказывают влияние гармоники с частотами k, m, для которых $\ell = k + m, \ \ell = |k - m|$.

Автор благодарен профессору С.П. Баутину за полезные советы и помощь в работе.

Список литературы

- [1] БАУТИН С.П. Характеристическая задача Коши и её приложения в газовой динамике. Новосибирск: Наука, 2009.
- [2] Титов С.С. Решение нелинейных уравнений в аналитических полиалгебрах. I // Изв. вузов. Математика. 2000. Т. 1(452). С. 66–77.
- [3] БАУТИН С.П., ЗАМЫСЛОВ В.Е. Представление приближённых решений полной системы уравнений Навье—Стокса в одномерном случае // Вычисл. технологии. 2012. Т. 17, № 3. С. 3–12.
- [4] Антонцев С.Н., Кажихов А.В., Монахов В.Н. Краевые задачи механики неоднородных жидкостей. Новосибирск: Наука, 1983.
- [5] КАЖИХОВ А.В. Избранные труды. Математическая гидродинамика. Новосибирск: Ин-т гидродинамики СО РАН, 2008.
- [6] ПЕТРОВСКИЙ И.Г. Лекции по теории обыкновенных дифференциальных уравнений. М.: Наука, 1970.
- [7] ВАН ДЕР ВАРДЕН Б.Л. Алгебра. М.: Наука, 1976.
- [8] ВИНОГРАДОВ И.М. Основы теории чисел. М.: Наука, 1972.
- [9] Руденко О.В., Солуян С.И. Теоретические основы нелинейной акустики. М.: Наука, 1975.
- [10] Лэмб Г. Динамическая теория звука. М.: ГИФМЛ, 1960.
- [11] Алдошина И., ПРИТТС Р. Музыкальная акустика. СПб.: Композитор, 2006.

Поступила в редакцию 15 мая 2012 г.