Моделирование начальной стадии отрывного обтекания разомкнутого контура методом дискретных вихрей

Д. Н. ГОРЕЛОВ

Омский филиал Института математики СО РАН, Россия e-mail: gorelov@ofim.oscsbras.ru

А. И. ГОВОРОВА Омский государственный университет, Россия e-mail: govorovaai@mail.ru

В нелинейной теории крыла в плоском нестационарном потоке одной из нерешенных проблем является решение задачи в начальной стадии движения крыла. В настоящей работе предложено решение этой проблемы для отрывного обтекания разомкнутого контура в рамках модели идеальной несжимаемой жидкости. Начально-краевая задача сводится к решению системы нелинейных интегродифференциальных соотношений при заданных начальных условиях. Новыми элементами в постановке задачи являются нелинейные дифференциальные соотношения в точках схода вихревых следов с контура и условия непрерывности вихревых слоев, моделирующих контур и вихревые следы, в тех же точках. Введение этих условий позволило получить нелинейное уравнение для определения координат свободных дискретных вихрей, сходящих с кромок контура в рассматриваемые моменты времени. Построена асимптотика решения в окрестности начального момента времени, разработан алгоритм расчета координат свободных дискретных вихрей, скорости схода и интенсивности вихрей, сходящих с контура в вихревые следы. Приведены результаты численного эксперимента для задачи отрывного обтекания пластинки, начавшей движение с постоянной скоростью из состояния покоя.

Ключевые слова: нелинейная начально-краевая задача, отрывное обтекание контура, вихревые следы, метод дискретных вихрей.

Задача нестационарного отрывного обтекания разомкнутого контура решалась многими авторами. Главной ее особенностью является существенная нелинейность течения жидкости вблизи кромок контура в начальные моменты времени, когда начинают формироваться вихревые следы. Для некоторых модельных течений была изучена асимптотика решения в малой окрестности начального момента времени (см., например, [1, 2]). Но основным направлением исследований остается численный эксперимент. В известных алгоритмах решения вихревые следы моделируются системой свободных дискретных вихрей, а задача Коши решается с применением процедуры пошаговой дискретизации по времени. При этом определение координат свободных вихрей, сходящих с кромок контура в начальные моменты времени, остается проблемой с середины XX века. Обычно эти координаты задаются априорно. В настоящей работе предложен алгоритм, который дает решение задачи для начальной стадии отрывного обтекания контура, включая определение координат свободных вихрей.

1. Постановка задачи

Рассмотрим нелинейную начально-краевую задачу нестационарного отрывного обтекания разомкнутого гладкого контура L, начавшего движение с постоянной скоростью в идеальной несжимаемой жидкости. В системе координат 0xy, связанной с контуром L, скорость жидкости в бесконечном удалении от контура L равна $\mathbf{v}(t) = 0$ для $t \leq 0$ и $\mathbf{v}(t) = \mathbf{v}_{\infty}$ для t > 0. В такой постановке задачи для моментов времени t > 0 циркуляция скорости $\Gamma(t)$ вокруг контура L меняется с течением времени, в результате чего с кромок контура (точки A, B) начинают сходить вихревые следы L_{w1}, L_{w2} (рис. 1). Границами области течения являются бесконечно удаленная точка $z = \infty$, z = x + iy, контур Lи вихревые следы $L_{wj}(t)$, которые эволюционируют с течением времени t. Следуя [3], начально-краевая задача для комплексной скорости $\bar{v}(z,t)$ может быть сформулирована следующим образом. Вне контура L и вихревых следов $L_{wj}, j = 1, 2$, комплексная скорость представима в виде

$$\bar{v}(z,t) = \bar{v}_{\infty} + \frac{1}{2\pi i} \int_{L} \frac{\gamma(s,t) \, ds}{z - \zeta(s,t)} + \sum_{j=1}^{2} \frac{1}{2\pi i} \int_{L_{wj}(t)} \frac{\gamma_{wj}(\sigma,t) \, d\sigma}{z - z_{wj}(\sigma,t)},\tag{1}$$

где $\zeta(s,t) \in L$; $z_{wj}(\sigma,t) \in L_{wj}(t)$; s, σ — дуговые координаты ($s_A = s_{*1} = 0, s_B = s_{*2} = l,$ $z_{w1}(0,t) = z_A, z_{w2}(0,t) = z_B$); l — длина контура L; $\gamma(s,t), \gamma_{wj}(\sigma,t)$ — интенсивности вихревых слоев, моделирующих контуры L, L_{wj} .

В начальный момент времени t = 0 комплексная скорость $\bar{v}(z, 0) = 0$, циркуляция скорости $\Gamma(0) = 0$, а вихревые следы отсутствуют. Граничными условиями являются: затухание возмущенных скоростей в бесконечно удаленной точке (выражение (1) удовлетворяет этому условию), условие непротекания жидкости через контур L (в точках $z \in L$)

$$Im\left\{e^{i\theta(z,t)}\left[\bar{v}_{\infty} + \frac{1}{2\pi i}\int_{L}\frac{\gamma(s,t)\,ds}{z-\zeta(s,t)} + \sum_{j=1}^{2}\frac{1}{2\pi i}\int_{L_{wj}(t)}\frac{\gamma_{wj}(\sigma,t)\,d\sigma}{z-z_{wj}(\sigma,t)}\right]\right\} = 0 \qquad (2)$$

и условия непрерывности давления и нормальной составляющей скорости жидкости на L_{wj} . Граничные условия на L_{wj} выполняются при свободном перемещении точки $z_{wj} \in L_{wj}$ вместе с жидкостью. Это имеет место, если комплексная координата $z_{wj}(\sigma, t)$ вихря, сошедшего с точки z_{*j} контура L ($z_{*1} = z_A, z_{*2} = z_B$) в некоторый момент времени τ ($0 \le \tau < t$), является решением задачи Коши

Рис. 1. Отрывное обтекание разомкнутого контура L

$$\frac{d}{dt} \,\bar{z}_{wj}(\sigma,t) = \bar{v}(z_{wj}(\sigma,t),t), \quad \bar{z}_{wj}(0,\tau) = \bar{z}_{*j}(\tau), \quad \tau \in [0,t), \quad \bar{v}(z,0) = 0.$$
(3)

Здесь $\bar{v}(z_{wj}(\sigma,t),t)$ определяется формулой (1), в которой сингулярные интегралы по контурам $L_{wj}(t)$ понимаются в смысле главного значения по Коши. К соотношениям (1)-(3) следует добавить условие постоянства суммарной циркуляции скорости по контурам L, L_{w1}, L_{w2} (теорема Кельвина о постоянстве циркуляции скорости по замкнутому жидкому контуру):

$$\frac{d}{dt} \left[\Gamma(t) + \sum_{j=1}^{2} \Gamma_{wj}(t) \right] = 0, \quad \Gamma(t) = \int_{L} \gamma(s,t) ds, \quad \Gamma_{wj}(t) = \int_{L_{wj}} \gamma_{wj}(\sigma,t) d\sigma.$$
(4)

Кроме того, будем требовать ограниченность комплексной скорости в кромках контура L (постулат Жуковского) и в концевых точках вихревых следов. Постулат Жуковского выполняется при условиях схода вихревых следов с кромок по касательной к L и непрерывности вихревого слоя в точках схода:

$$\gamma(s_{*j}, t) = \gamma_{wj}(0, t), \quad j = 1, 2, \quad s_{*1} = 0, \quad s_{*2} = l.$$
(5)

Начально-краевая задача (1)–(5) в общем случае не имеет аналитических решений. В настоящее время задачи такого типа обычно решают путем применения процедуры дискретизации по времени и моделирования вихревых следов системой свободных дискретных вихрей, перемещающихся вместе с жидкостью [4–9]. Это позволяет свести исходную нелинейную задачу с неизвестными границами, зависящими от времени, к последовательному решению краевых задач в фиксированных областях для ряда значений времени $t_1, ..., t_n$.

Переход от одного значения времени к другому требует достаточной гладкости решения в зависимости от t. Это, как правило, имеет место для t_n , n > 2. Однако на первых шагах, особенно для t_1 , исходная начально-краевая задача может быть настолько нелинейной, что ее решение становится проблематичным.

Цель настоящей работы — построение алгоритма решения исходной нелинейной задачи для начальной стадии обтекания контура, включая определение координат свободных дискретных вихрей и основных характеристик отрывного нестационарного течения в точках схода вихревых следов с контура.

2. Общий алгоритм решения

В соответствии с методом дискретных вихрей [4, 7] контур L моделируем системой дискретных вихрей $\Gamma_m(t), m = 1, ..., N$, расположенных в точках $z_m \in L$, а вихревые следы $L_{wj}(t_n)$, сошедшие с контура L за время t_n , моделируем соответственно системой свободных дискретных вихрей $\Gamma_{wk}^j, k = 1, ..., n, j = 1, 2$, которые в момент времени t_n находятся в точках $z_{wk}^j(t_n)$. Величины Γ_{wk}^j определяют суммарную интенсивность элемента $\Delta L_{wk}^j(t)$ вихревого следа L_{wj} , сошедшего с контура L за время $\Delta t_k = t_k - t_{k-1}$. Этот элемент деформируется с течением времени, но его суммарная интенсивность остается постоянной. При таком моделировании контура L и вихревых следов формула (1) для комплексной скорости $\bar{v}(z, t)$ принимает вид

$$\bar{v}(z,t) = \bar{v}_{\infty} + \frac{1}{2\pi i} \sum_{m=1}^{N} \frac{\Gamma_m(t)}{z - z_m} + \frac{1}{2\pi i} \sum_{j=1}^{2} \sum_{k=1}^{n} \frac{\Gamma_{wk}^j}{z - z_{wk}^j(t)}.$$
(6)

Потребуем выполнения условия (2) непротекания жидкости через контур L в N + 1контрольных точках $z_{0p} \in L$, p = 1, ..., N + 1, полагая $z_{01} = z_{*1}$, $z_{0,N+1} = z_{*2}$, а дискретные вихри Γ_m разместим между контрольными точками. Тогда для момента времени t_n получим систему из N + 1 уравнений (p = 1, ..., N + 1):

$$Im\{e^{i\theta(z_{0p},t_n)}[\bar{v}_{\infty} + \frac{1}{2\pi i} \sum_{m=1}^{N} \frac{\Gamma_m(t_n)}{z_{0p} - z_m} + \frac{1}{2\pi i} \sum_{j=1}^{2} \sum_{k=1}^{n} \frac{\Gamma_{wk}^j}{z_{0p} - z_{wk}^j(t_n)}]\} = 0.$$
(7)

Условие (4) постоянства суммарной циркуляции скорости по контурам L, L_{w1}, L_{w2} можно записать в виде

$$\sum_{n=1}^{N} [\Gamma_m(t_n) - \Gamma_m(t_{n-1})] + \sum_{j=1}^{2} \Gamma_{wn}^j = 0.$$
(8)

Искомыми величинами в системе N + 2 уравнений (7), (8) являются: интенсивности дискретных вихрей $\Gamma_m(t_n)$, m = 1, ..., N, на контуре L, интенсивности свободных дискретных вихрей Γ_{wn}^j , j = 1, 2, и координаты всех свободных дискретных вихрей в момент времени t_n . Но уравнения (7), (8) позволяют определять только интенсивности дискретных вихрей $\Gamma_m(t_n)$, Γ_{wn}^j при условии, что координаты свободных вихрей Γ_{wn}^j известны.

В настоящее время система уравнений (6)–(8) является основной при решении задач нестационарного обтекания разомкнутого контура методом дискретных вихрей. В известных алгоритмах решения рассматриваемой задачи применяются следующие процедуры. Для момента времени t_1 задаются координаты $z_{w1}^j(t_1)$ свободных вихрей Γ_{w1}^j , после чего решением системы уравнений (7), (8) определяются интенсивности дискретных вихрей $\Gamma_m(t_1)$ на контуре L и свободных дискретных вихрей Γ_{w1}^j . Затем по формуле (6) проводится расчет скорости жидкости в точках $z_{w1}^j(t_1)$, на основе которого с помощью уравнения (3) вычисляются новые координаты вихрей Γ_{w1}^j в момент времени t_2 . В дальнейшем для t_n , $n \ge 2$, расчет ведется по тому же алгоритму, включая задание координат $z_{wn}^j(t_n)$ свободных вихрей Γ_{wn}^j , сходящих с контура L. При этом для каждого момента времени t_n , $n \ge 2$, интенсивности свободных вихрей Γ_{wk}^j , k = 1, ..., n - 1, известны из решения задачи в предыдущие моменты времени, а их координаты в момент времени t_n определяются решением уравнения (3).

Таким образом, в известных алгоритмах численного решения рассматриваемого класса задач координаты свободных вихрей Γ_{wn}^{j} в момент времени t_{n} не определяются, а задаются априорно.

3. Решение задачи в начальные моменты времени

Для определения координат свободных дискретных вихрей, сходящих с контура в моменты времени t_n , к формулам (6)–(8) необходимо добавить новые независимые уравнения, в качестве которых выберем соотношения

$$\frac{d}{dt}\Gamma_{wj}(t) - \gamma_{wj}(0,t)w_j(t) = 0, \quad j = 1, 2,$$
(9)

и условия (5), которые имеют место в точках схода вихревых следов с контура L [3]. Здесь $w_i(t)$ — скорость схода вихревого следа L_{wi} с L. Условия (5), (9) записаны для непрерывного вихревого слоя, моделирующего контур L и вихревые следы L_{wj} . Система же уравнений (6)–(8) построена для определения интенсивностей дискретных вихрей $\Gamma_m(t)$ и Γ_{wn}^j , определяющих суммарные интенсивности вихревых слоев на соответствующих элементах контуров L и L_{wj} . Поэтому для получения единой системы уравнений для определения интенсивностей дискретных вихрей и координат $z_{wk}^j(t)$, которые входят в формулу (6), необходимо функции $\gamma(s_{*j}, t), \gamma_{wj}(0, t),$ $w_j(t)$ и $\Gamma_{wj}(t)$ представить через интенсивности дискретных вихрей Γ_m, Γ_{wn}^j .

Предварительно исследуем асимптотику рассматриваемых функций в малых окрестностях точек z_{*j} (концов контура L) и начального момента времени, полагая $t \in [0, t_1]$. Комплексная скорость, индуцируемая элементом вихревого следа $\Delta L_{w1}^j(t)$, определяется интегралом Коши (1). В классе функций, ограниченных на концах разомкнутого контура, плотность этого интеграла (функция $\gamma_{wj}(\sigma, t)$) должна быть равна нулю на конце контура $\Delta L_{w1}^j(t)$ с порядком убывания $[1 - \sigma/l_{wj}(t)]^{1/2}$, $\sigma \in [0, l_{wj}(t)]$, где $l_{wj}(t) -$ длина элемента $\Delta L_{w1}^j(t)$. Это следует, в частности, из формул обращения интеграла типа интеграла Коши [10].

В соответствии с поведением интенсивности вихревого слоя в конце следа функция $\gamma_{wj}(\sigma, t)$ на элементе $\Delta L_{w1}^{j}(t)$ в первом приближении меняется по параболическому закону:

$$\gamma_{wj}(\sigma, t) = \gamma_{wj}(0, t) [1 - \sigma/l_{wj}(t)]^{1/2}, \quad \sigma \in [0, l_{wj}(t)], \quad t \in [0, t_1].$$
(10)

В этом случае циркуляция скорости по элементу $\Delta L^j_{w1}(t)$

$$\Gamma_{wj}(t) = \int_{L_{wj}} \gamma_{wj}(\sigma, t) d\sigma = \frac{2}{3} \gamma_{wj}(0, t) l_{wj}(t), \quad L_{wj} = \Delta L_{w1}^j.$$
(11)

Дифференцируя (11) по t, имеем

$$\frac{d\Gamma_{wj}}{dt} = \frac{2}{3} \quad \left[l_{wj}(t) \frac{d}{dt} \gamma_{wj}(0,t) + \gamma_{wj}(0,t) \frac{d}{dt} l_{wj}(t) \right].$$
(12)

Предположим, что для $t \in [0, t_1]$ длина $l_{wj}(t)$ элемента $\Delta L_{w1}^j(t)$ изменяется только за счет схода вихревого слоя с контура L, а скорость схода при этом остается постоянной:

$$\frac{dl_{wj}}{dt} = w_j, \quad w_j = \text{const.}$$
(13)

Из (9)–(13) следует, что для $t \in [0, t_1]$

$$l_{wj}(t) = w_j t, \quad \frac{d\Gamma_{wj}}{dt} = 2w_j t \frac{d\gamma_{wj}}{dt}.$$
(14)

Сравнивая (14) с (9), придем к уравнению $2d\gamma_{wj}/\gamma_{wj} = dt/t$, решением которого является $\gamma_{wj}(0,t) = C\sqrt{t}$, C = const.

Полученные соотношения позволяют сделать вывод, что при параболическом законе (9) изменения интенсивности вихревого слоя на элементе $\Delta L_{w1}^{j}(t)$ и $w_{j}(t) = \text{const}$ для $t \in [0, t_{1}]$

$$l_{wj} = w_j t, \quad \gamma_{wj}(0,t) = C\sqrt{t}, \quad \Gamma_{wj} = \frac{2}{3} C w_j t^{3/2}, \quad \frac{d\Gamma_{wj}}{dt} = \frac{3}{2} \Gamma_{wj}/t.$$
 (15)

Выражения (15) определяют асимптотику соответствующих функций в окрестности начального момента времени $t \in [0, t_1]$.

Тем же путем можно исследовать асимптотику решения вблизи кромок контура L для моментов времени $t \in [t_{n-1}, t_n], n \geq 2$. В этом случае интенсивность вихревого следа $\gamma_{wj}(\sigma, t)$ на элементе $\Delta L_{wn}^j(t)$ мало отличается от значения $\gamma_{wj}(0, t)$, что позволяет полагать

$$\gamma_{wj}(\sigma,t) = \gamma_{wj}(0,t), \quad \sigma \in [0, l_{wj}(t)], \quad t \in [t_{n-1}, t_n].$$

Тогда асимптотические выражения (15) переходят в следующее:

$$w_{j} = \text{const}, \quad l_{wj} = w_{j}(t - t_{n-1}), \quad \gamma_{wj}(0, t) = \gamma(s_{*j}, t), \quad \Gamma_{wj} = \gamma_{wj}(0, t)w_{j}(t - t_{n-1}),$$
$$\frac{d\Gamma_{wj}}{dt} = \Gamma_{wj}/(t - t_{n-1}), \quad t \in [t_{n-1}, t_{n}].$$
(16)

Вернемся к условиям (5), (9), рассмотривая их в момент времени t_1 . Из (15) следует, что $d\Gamma_{wj}/dt = 3/2 \Gamma_{w1}^j/\Delta t$. Скорость схода $w_j(t_1)$ вихрей в след определяется формулой (6) как проекция вектора относительной скорости жидкости на касательные к контуру L в точках z_A , z_B . Условие непрерывности вихревого слоя (5) в кромках контура L позволяет заменить $\gamma_{wj}(0,t_1)$ на функцию $\gamma(s_{*j},t_1)$, которую можно выразить через дискретные вихри $\Gamma_m(t_1)$, применяя подходящую интерполяционную формулу. В частности, при достаточной гладкости функции $\gamma(s)$ вблизи концов контура L можно ограничиться формулами $\gamma_{w1}(0,t_1) = \gamma(s_{*1},t_1) = \Gamma_1(t_1)/\Delta$, $\gamma_{w2}(0,t_1) = \gamma(s_{*2},t_1) = \Gamma_N(t_1)/\Delta$, где $\Delta = l/N$. В результате все величины в (9) оказываются зависящими только от интенсивности дискретных вихрей $\Gamma_1(t_1), ..., \Gamma_N(t_1)$ и Γ_{w1}^1 , Γ_{w1}^2 . При заданном положении свободных вихрей Γ_{w1}^1 , Γ_{w1}^2 интенсивности всех этих вихрей определяются решением уравнений (7), (8), но при этом условия (13) будут выполняться только при некоторых значениях координат z_{w1}^1 , z_{w1}^2 , являющихся искомыми величинами в рассматриваемой задаче.

Построим алгоритм расчета координат свободного дискретного вихря Γ_{w1}^{j} , при которых могут быть выполнены все условия задачи (5)–(9). Представим искомые координаты z_{w1}^{1}, z_{w1}^{2} в виде

$$z_{w1}^{j} = z_{*j} + (-1)^{j} e^{i\theta_{*j}} \zeta_{wj},$$

$$f_{wj} = \xi_{wj} + i\eta_{wj} = (\delta_{1j} + i\delta_{2j})\Delta, \quad j = 1, 2, \quad \Delta = l/N,$$
 (17)

где θ_{*j} — значения угла θ в концах контура L, а безразмерные величины δ_{1j}, δ_{2j} определяют комплексные координаты ζ_{wj} вихря Γ_{w1}^{j} в системе координат ξ_{wj}, η_{wj} (рис. 2). Из (17) следует, что каждой паре величин δ_{1j}, δ_{2j} соответствуют свои комплексные координаты z_{w1}^{j} свободных вихрей, сходящих с контура L за время Δt . Подставляя эти

Рис. 2. Моделирование элемента $\Delta L^j_{w1}(t_1)$ вихревого следа дискретным вихрем

координаты в уравнения (7) и решая данные уравнения совместно с (8), определим интенсивности дискретных вихрей $\Gamma_1(t_1), ..., \Gamma_N(t_1)$ и $\Gamma_{w1}^1, \Gamma_{w1}^2$, после чего с помощью (6) вычислим скорости схода $w_j(t_1)$ с контура L. Полученные результаты позволяют вычислить функции

$$f_j(\delta_{1j}, \quad \delta_{2j}) = \mu \Gamma_{w1}^j - w_j(t_1) \gamma(s_{*j}, t_1) \Delta t_1, \quad j = 1, 2, \quad \mu = 3/2.$$
(18)

При произвольных значениях δ_{1j} , δ_{2j} функции $f_j(\delta_{1j}, \delta_{2j}) \neq 0$ и определяют в принятом приближении невязку соотношений (9). Пусть пара величин δ_{1j} , δ_{2j} обращает функцию f_j в ноль. Тогда при соответствующих им координатах z_{w1}^j свободных дискретных вихрей задача отрывного обтекания контура решается с выполнением всех поставленных условий (5)–(9).

Таким образом, задача определения координат свободных вихрей, сходящих с контура L за время $\Delta t = t_1$, свелась к расчету корней нелинейного уравнения (18). Аналогичным образом можно построить решение задачи определения комплексных координат z_{wn}^1 , z_{wn}^2 для любого момента времени t_n , $n \ge 2$, но при этом в соответствии с (16) коэффициент μ в формуле (18) должен быть равен $\mu = 1$.

4. Численный эксперимент

Предложенный алгоритм был применен для решения задачи отрывного нестационарного обтекания пластинки, начавшей движение с постоянной скоростью из состояния покоя. Пластинка была установлена под углом $\Theta = 90^{\circ}$ к вектору скорости \mathbf{v}_{∞} . Шаг по времени выбирался равным $\Delta t = t_n - t_{n-1} = T/N$, $T = l/|\mathbf{v}_{\infty}|$, N = 20.

Нелинейное уравнение $f_j(\delta_{1j}, \delta_{2j}) = 0$ решалось численно путем перебора переменных δ_{1j}, δ_{2j} в некоторой заданной области с учетом градиента функции f_j по этим переменным. Расчет показал, что уравнение $f_j(\delta_{1j}, \delta_{2j}) = 0$ имеет бесконечное множество корней δ_{1j}, δ_{2j} , определяющих координаты свободных вихрей, сходящих с контура L за время Δt . Каждому положению свободных вихрей соответствует свое решение. Результаты расчета безразмерных координат δ_{1j}, δ_{2j} свободных вихрей, сходящих с контура в моменты времени t_1, t_2, t_3 , и соответствующие им скорости схода вихревых следов с контура показаны на рис. 3. Следует отметить, что в момент времени t_1 все возможные значения δ_{2j} оказываются положительными, тогда как в последующие моменты времени координата δ_{2j} может иметь отрицательные значения. На рисунке представлены данные только для $\delta_{2j} \geq 0$, так как значения $\delta_{2j} < 0$ в рассматриваемой задаче отрывного обтекания пластинки не имеют физического смысла.

Таким образом, нелинейная задача (6)–(9) методом дискретных вихрей имеет бесконечное множество решений. В связи с этим возникает проблема выделения из бесконечного множества корней δ_{1j}, δ_{2j} уравнения $f_j(\delta_{1j}, \delta_{2j}) = 0$ той пары значений δ_{1j}, δ_{2j} , для которой решение рассматриваемой задачи имеет физический смысл. В общем случае каждому значению δ_{1j} при $\delta_{1j} \in (0, \delta_{1*})$ соответствуют два значения δ_{2j} , но при $\delta_{1j} = \delta_{1*}$ оба эти значения становятся равными $\delta_{2j} = \delta_{2*}$. Иначе говоря, при

$$\delta_{1j} = \delta_{1*}, \quad \delta_{2j} = \delta_{2*} \tag{19}$$

решение задачи (6)–(9) становится единственным и имеющим физический смысл. На рис. 3 решения, соответствующие координатам (19), показаны точками.

Рис. 3. Результаты расчета безразмерных координат δ_{1j} , δ_{2j} свободных дискретных вихрей, сходящих с контура в моменты времени t_1 , t_2 , t_3 (*a*), и соответствующие им скорости схода следов с контура (б)

На рис. 4 представлены результаты расчета координат z_{wn}^2 свободных дискретных вихрей (точки), сходящих с верхней кромки пластинки (j = 2), для моментов времени $t_1, ..., t_5$. Приведенные данные позволяют сделать вывод, что в первые моменты времени, когда след только зарождается, основное влияние на форму следа оказывает набегающий поток. Но с течением времени след растет и начинает жить самостоятельно, что проявляется в его интенсивной эволюции и в тенденции к скручиванию. Расчет показал, что начальный участок вихревого следа, примыкающий к кромке контура, практически не деформируется. Это обстоятельство позволяет упростить алгоритм расчета нестаци-

Рис. 4. Развитие вихревого следа, сходящего с верхней кромки пластинки, в начальные моменты времени t_1, t_2, t_3, t_4, t_5

онарного отрывного обтекания контура, полагая координаты свободных вихрей Γ_{wn}^{j} , сходящих с контура в момент времени t_n , $n \geq 2$, заданными (из расчета для $t = t_1$).

Как уже отмечалось, в известных алгоритмах координаты z_{wn}^j свободных вихрей Γ_{wn}^j , сходящих с контура в каждый момент времени t_n , задаются априорно. Наиболее часто сходящие вихри размещают по касательной к контуру на расстоянии $\Delta/2$, $\Delta = l/N$, от кромки. В представленном примере этому положению на рис. 4 соответствует кружочек на оси ординат. При таком задании координат сходящих вихрей соотношения (9) не выполняются, а эволюция вихревых следов будет отличаться от данных на рис. 4. Оценить точность решения рассматриваемой начально-краевой задачи при таком задании координат z_{wn}^j трудно. Для этого нужно сравнивать не только кинематическую картину течения, но и гидродинамические реакции на контур. В настоящей работе описана только кинематика отрывного нестационарного течения. Расчет гидродинамических реакций на контур авторы планируют провести в следующей работе.

Заключение

Разработан алгоритм решения начальной стадии отрывного обтекания разомкнутого контура методом дискретных вихрей в рамках нелинейной теории крыла в нестационарном потоке, позволяющий решать задачу в полном объеме, включая расчет координат свободных дискретных вихрей, сходящих с контура. Традиционная постановка задачи была дополнена требованием выполнения в кромках контура дифференциальных соотношений, связывающих цикуляцию скорости вокруг вихревого следа, интенсивность вихрей и скорость их схода с контура. С помощью этих соотношений построена асимптотика решения в окрестности начального момента времени, определены координаты свободных дискретных вихрей и локальные характеристики течения. Установлено, что рассмотренная нелинейная задача допускает бесконечное множество решений. Предложен способ выделения из этого множества единственного решения.

Список литературы

- [1] НИКОЛЬСКИЙ А.А. О второй форме движения идеальной жидкости около обтекаемого тела (исследование отрывных вихревых потоков) // Докл. АН СССР. 1957. Т. 116, № 2. С. 193–196.
- [2] БЕТЯЕВ С.К. Эволюция вихревых пелен //Динамика сплошной среды со свободными поверхностями: Сб. науч. тр. Чебоксары: Чувашский гос. ун-т, 1980. С. 27–38.
- [3] ГОРЕЛОВ Д.Н. К постановке нелинейной начально-краевой задачи нестационарного отрывного обтекания профиля // ПМТФ. 2007. Т. 48, № 2. С. 48–56.
- [4] САРПКАЙЯ Т. Вычислительные методы вихрей. Фримановская лекция (1988) // Тр. Американского общества инж.-мех. Машиностроение. Сер. А. 1989. № 10. С. 1–60.
- [5] GIESING J.P. Nonlinear two-dimensional unsteady potentional flow with lift // J. Aircraft. 1968. Vol. 5, No. 2. P. 135-143.
- [6] ИЛЬИЧЕВ К.П., ПОСТОЛОВСКИЙ С.Н. Расчетное исследование нестационарного отрывного обтекания тел плоским потоком невязкой жидкости // Изв. АН СССР. МЖГ. 1972. № 2. С. 72–82.
- [7] БЕЛОЦЕРКОВСКИЙ С.М., НИШТ М.И. Отрывное и безотрывное обтекание тонких крыльев идеальной жидкостью. М.: Наука, 1978. 352 с.
- [8] ГОЛОВКИН В.А. Нелинейная задача о неустановившемся обтекании произвольного профиля со свободно деформирующимся вихревым следом // Уч. зап. ЦАГИ. 1972. Т. 3, № 3. С. 1–11.
- [9] МОЛЧАНОВ В.Ф. Некоторые вопросы расчета течений с тангенциальными разрывами// Уч. зап. ЦАГИ. 1975. Т. 6, № 4. С. 1–11.
- [10] ГАХОВ Ф.Д. Краевые задачи. М.: Физматгиз, 1963. 640 с.

Поступила в редакцию 10 июня 2009 г., с доработки — 18 января 2010 г.