Article information
2004 , Volume 9, Special issue, p.111-116
Polovinkin V.I.
Uniform convergence of cubature processes in linear normed spaces
Convergence of cubature processes on spaces H, which are completely and continuously embedded in , where is a bounded domain of integration, is investigated. It is shown that the error functionals of formulas from these sequences converge uniformly in . где , - ограниченная область интегрирования. Показывается, что функционалы ошибок формул из таких последовательностей сходятся равномерно в
Classificator Msc2000:- *46E15 Banach spaces of continuous, differentiable or analytic functions
- 65D32 Quadrature and cubature formulas
- 41A55 Approximate quadratures
Keywords: Steklov theorem, Banach-Steinhaus theorem, Sobolev imbedding theorem, optimal cubature formula
Author(s): Polovinkin V.I. Dr. , Professor Position: Professor Office: Krasnoyarsk state technical university Address: 660074, Russia, Krasnoyarsk
Phone Office: (3912) 46 75 46 E-mail: polovinkin@fivt.krasn.ru
Bibliography link: Polovinkin V.I. Uniform convergence of cubature processes in linear normed spaces // Computational technologies. 2004. V. 9. Special issue. Selected papers presented at VII International workshop “Cubature formulae and their applications”. Krasnoyarsk, August 2003. P. 111-116
|
|
|