| 
					             Article information  
            2025 ,  Volume 30, ¹ 2, p.87-99
 Bychkov I.V., Feoktistov A.G., Voskoboinikov M.L., Edelev Y.A.
Development of service-oriented access to a high-performance computing environment based on the WPS standard
Geographic information systems may be applied for integration of spatio-temporal data within  environmental monitoring of natural territories by both scientific communities and the organizations  responsible for environmental management. Users of such systems can download the necessary data  from these systems and process them using local computational resources. However, the large volume  and the data heterogeneity of data make their processing complicated. This problem is solved by  using WPS services, which are interfaces for data processing. Unfortunately, there are no high-level  tools available today that significantly simplify the development and deployment of WPS services for  a wide range of applications for environmental modelling and forecasting. In addition, the process of  data processing often requires the use of high-performance computing systems. Organizing access to  such systems using WPS services is a difficult task because WPS servers do not have the means to  prepare and execute parallel and distributed computing. In this paper, we present a new approach  to automate the support of high-performance processing of spatio-temporal data in a heterogeneous  distributed computing environment.
 [link to elibrary.ru]
  Keywords: environmental monitoring, scientific applications, workflows, WPS services, distributed environment, high-performance computing
  doi: 10.25743/ICT.2025.30.2.007
 Author(s): Bychkov Igor Vyacheslavovich Dr. , Academician RAS, Professor Position: Director Office: Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of Sciences Address: 664033, Russia, Irkutsk, Lermontova st., 134 
Phone Office: (3952) 45-30-61 E-mail: idstu@icc.ru SPIN-code: 5816-7451Feoktistov Alexander Gennadievich Dr. , Associate Professor Position: Leading research officer Office: Institution of the Russian Academy of Sciences Institute for System Dynamics and Control Theory of SB RAS Address: 664033, Russia, Irkutsk, Lermontova st., 134 
Phone Office: (3952) 45-31-54 E-mail: agf@icc.ru SPIN-code: 5743-1777Voskoboinikov Mikhail Leontevich Position: Junior Research Scientist Office: Institute for System Dynamics and Control Theory Siberian Branch of RAS, Irkutsk Scientific Center of Siberian Branch of Russian Academy of Sciences Address: 664033, Russia, Irkutsk, Lermontova st., 134 
Phone Office: (3952) 45-30-17 E-mail: mikev1988@mail.ru SPIN-code: 3417-0258Edelev Yaroslav Alekseevich Position: engineer Office: Institute for System Dynamics and Control Theory Siberian Branch of RAS, Irkutsk Scientific Center of Siberian Branch of Russian Academy of Sciences Address: 664033, Russia, Irkutsk, Lermontova st., 134 
Phone Office: (3952) 45-30-17 E-mail: yarvaleev07@bk.ru
  References: 1. Bychkov I.V., Ruzhnikov G.M., Hmelnov A.E., Fedorov R.K., Madzhara T.I., Popova A.K. Digital monitoring of lake Baikal and its coastal area. Proceedings of the 2nd Workshop on  Information Technologies: Algorithms, Models, Systems (ITAMS 2019). Irkutsk; 2019: (2463):13–23.   2. Breunig M., Bradley P.E., Jahn M., Kuper P., Mazroob N., R¨osch N., Al Doori M.,  Stefanakis E., Jadidi M. Geospatial data management research: progress and future directions.  ISPRS International Journal of Geo-Information. 2020; 9(2):95. DOI:10.3390/ijgi9020095.   3. Hempelmann N., Ehbrecht C., Plesiat E., Hobona G., Simoes J., Huard D., Smith T.J.,  McKnight U.S., Pechlivanidis I.G., Alvarez-Castro C. Deployment of AI-enhanced services in  climate resilience information systems. The International Archives of the Photogrammetry, Remote  Sensing and Spatial Information Sciences. 2022; (48):187–194. DOI:10.5194/isprs-archives-XLVIII-4 W1-2022-187-2022.
    4. Open Geospatial Consortium. OGC WPS 2.0 Interface Standard. Available at: https://repository.  oceanbestpractices.org/handle/11329/1140 (accessed January 21, 2025).   5. Giuliani G., Nativi S., Lehmann A., Ray N. WPS mediation: an approach to process geospatial  data on different computing backends. Computers & Geosciences. 2012; (47):20–33. DOI:10.1016/  j.cageo.2011.10.009.   6. Mazzetti P., Roncella R., Mihon D., Bacu V., Lacroix P., Guigoz Y., Ray N., Giuliani G.,  Gorgan D., Nativi S. Integration of data and computing infrastructures for earth science: an image  mosaicking use-case. Earth Science Informatics. 2016; (9):325–342. DOI:10.1007/s12145-016-0255-5.   7. Li Z. Geospatial big data handling with high performance computing: current approaches and future  directions. Geotechnologies and the Environment. 2020; (23):53–76. DOI:10.1007/978-3-030-47998 5_4.   8. Slocum Z., Tang W. Integration of web GIS with high-performance computing: a container based  cloud computing approach. Geotechnologies and the Environment. 2020; (23):135–157. DOI:10.1007/  978-3-030-47998-5_8.   9. Bigagli L., Santoro M., Mazzetti P., Nativi S. Architecture of a process broker for interoperable  geospatial modeling on the web. ISPRS International Journal of Geo-Information. 2015; 4(2):647–660.  DOI:10.3390/ijgi4020647.   10. Bychkov I.V., Feoktistov A.G., Gorsky S.A., Kostromin R.O., Fedorov R.K. Automating  the integration of services for the web processing of environmental monitoring data with distributed  scientific application. Optoelectronics, Instrumentation and Data Processing. 2022; 58(4):373–380.  DOI:10.3103/S8756699022040045.   11. Feoktistov A., Edelev A., Tchernykh A., Gorsky S., Basharina O., Fereferov E. An  approach to implementing high-performance computing for problem solving in workflow based energy  infrastructure resilience studies. Computation. 2023; 11(12):243. DOI:10.3390/computation11120243.
  12. Danilov G., Voskoboinikov M. Testbed-based approach to testing a library for evaluating network  reliability algorithms. Proceedings of the International Workshop on Critical Infrastructures in the  Digital Worl (IWCI-2024). Bolshoe Goloustno; 2024: 3–4.   13. DaSilva R.F., Filgueira R., Pietri I., Jiang M., Sakellariou R., Deelman E.Acharacterization  of workflow managementsystems for extreme-scale applications. Future Generation Computer Systems.  2017; (75):228–238. DOI:10.1016/j.future.2017.02.026.   14. Hossain M.M., Roy B., Roy C., Schneider K. Extensibility challenges of scientific workflow  management systems. Lecture Notes in Computer Science. 2023; (14016):51–70. DOI:10.1007/978-3 031-35129-7_4.   15. Gorsky S., Kostromin R., Feoktistov A., Bychkov I.OrlandoTools: supporting high performan ce computing in distributed environments. Proceedings of the 6th International Conference on Infor mation Technology and Nanotechnology (ITNT 2020). Samara; 2020: 1–6. DOI:10.1109/ITNT49337.  2020.9253290.
  16. Tyugu E.Kh. Konceptual’noe programmirovanie [Conceptual programming]. Moscow: Nauka; 1984:  256. (In Russ.)   17. Margolis B. SOA for the business developer: concepts, BPEL, and SCA. MC Press, LLC; 2007: 309.   18. Iwanaga T., Usher W., Herman J. Toward SALib 2.0: advancing the accessibility and interpre tability of global sensitivity analyses. Socio-Environmental Systems Modelling. 2022; (4):18155.  DOI:10.18174/sesmo.18155.
  19. Edelev A.V., Senderov S.M., Sidorov I.A. The application of distributed computations for  identification of critical facilities in the gas transport network of Russia. Information and Mathematical  Technologies in Science and Management. 2016; (1):55–62. (In Russ.)   20. Edelev A.V., Karamov D.N., Basharina O.Yu.Vulnerability analysis of autonomous microgrids.  Information and Mathematical Technologies in Science and Management. 2024; 1(33):112–121.  DOI:10.25729/ESI.2024.33.1.010. (In Russ.  Bibliography link:  Bychkov I.V., Feoktistov A.G., Voskoboinikov M.L., Edelev Y.A. Development of service-oriented access to a high-performance computing environment based on the WPS standard // Computational technologies. 2025. V. 30. ¹ 2. P. 87-99 					
 				 |