Article information
2025 , Volume 30, ¹ 1, p.120-131
Chubich V.M., Chernikova O.S.
A study of the effectiveness of adaptive filtering algorithms for modelling of orbital motion
Appropriate measurement data and a qualitatively constructed model of radiation pressure are required for designing an effective model for the motion of the center of mass of an spacecraft. The construction of a matching radiation pressure model involves determining its parameters, taking into account the individual characteristics of the orbital motion of the navigation satellite. The main reasons for the error in modelling the trajectory of orbital motion are the effect of various noises on the center of mass of the device, arising from errors in the orientation of solar panels to the Sun, design features, and operation of on-board systems. The noise intensity may change over time due to various factors, such as solar surges, wear of system components, or deterioration of measuring equipment. The paper provides a comparative analysis of modifications specially adapted for the sigma-point filter, which allows recursive restoring for covariance matrices of system noise and measurements with an estimate of the state vector. Based on the maximum likelihood method, the accuracy of finding the parameters of the radiation pressure model using various adaptive modifications is estimated. The effectiveness of adaptive filtering algorithms in determining the parameters of the radiation pressure model and in solving the problem of determining the motion of the center of mass of a navigation spacecraft is shown. It was found that for devices located on the first and third orbital planes, the greatest accuracy of finding satellite coordinates is achieved using adaptive modification 3, whereas for spacecraft located on the second orbital plane — with adaptive modification No. 4. The percentage of increasing the accuracy of finding the coordinates of satellites located on the second orbital plane using adaptive filtering algorithms No. 3 and No. 4 turned out to be comparable. Thus, when constructing the trajectory of the center of mass of the spacecraft, taking into account the refinement of the solar radiation pressure model parameters based on the maximum likelihood method, it is recommended to use adaptive modification 3.
[link to elibrary.ru]
Keywords: stochastic nonlinear continuous-discrete system, adaptive unscented Kalman filter, parametric identification, ML method, spacecraft motion model, solar radiation model
doi: 10.25743/ICT.2025.30.1.011
Author(s): Chubich Vladimir Mikhailovich Dr. , Professor Position: Head of Chair Office: Novosibirsk State Technical University Address: 630073, Russia, Novosibirsk, 20 Prospekt K. Marksa
Phone Office: (383) 3460600 E-mail: chubich@ami.nstu.ru SPIN-code: 5198-6679Chernikova Oksana Sergeevna PhD. , Associate Professor Office: Novosibirsk State Technical University Address: 630073, Russia, Novosibirsk, 20 Prospekt K. Marksa
Phone Office: (383)3460600 E-mail: chernikova@corp.nstu.ru SPIN-code: 5520-2336 References: 1. Panyushin A.N., Kuropyatnikov A.D. Improving the accuracy of radiation pressure modeling when calculating GLONASS satellite ephemerides. Geodesy and Cartography. 2001; (8):8–13. (InRuss.)
2. Pasynkov V.V., Braginets V.F., Zhukov A.N., Zotov S.M., Korobkin V.A., Titov E.V., Suevalov V.V., Khomyak R.V. Solving the problem of accuracy of the GLONASS system and prospects for its improvement in the coming years. Transactions of the Institute of Applied Astronomy of the Russian Academy of Sciences. 2015; (35):17–23. (In Russ.)
3. Crassidis J.L., Junkins J.L. Optimal estimation of dynamic systems. CRC Press; 2011: 749. DOI:10.1201/b11154.
4. Bar-Shalom Y., Li X.R., Kirubarajan T. Estimation with applications to tracking and navigation: theory algorithms and software. John Wiley & Sons; 2004: 592. DOI:10.1002/0471221279.ch11.
5. Särkkä S., Svensson L. Bayesian filtering and smoothing. Cambridge University Press; 2023: 430. DOI:10.1017/9781108917407.
6. Simon D. Optimal state estimation: Kalman, H-∞ and nonlinear approaches. John Wiley & Sons; 2006: 552. DOI:10.1201/b11154.
7. Sage A.P., Husa G.W. Adaptive filtering with unknown prior statistics. Proceedings of the 10th Joint Automatic Control Conference. 1969: 760–769. DOI:10.1109/JACC.1969.4169325.
8. Mohamed A.H., Schwarz K.P. Adaptive Kalman filtering for INS/GPS. Journal of Geodesy. 1999; (73):193–203. DOI:10.1007/S001900050236.
9. Akhlaghi S., Zhou N., Huang Z. Adaptive adjustment of noise covariance in Kalman filter for dynamic state estimation. IEEE Power and Energy Society General Meeting. 2017: 1–5. DOI:10.1109/PESGM.2017.8273755.
10. Hashlamon I. A new adaptive extended Kalman filter for a class of nonlinear systems. Journal of Applied and Computational Mechanics. 2020; (6):1–12. DOI:10.22055/JACM.2019.28130.1455.
11. Montenbruck O., Gill E. Satellite orbits: models, methods and applications. Berlin, Heidelberg: Springer-Verlag; 2000: 371. DOI:10.1007/978-3-642-58351-3.
12. NAPEOS mathematical models and algorithms: technical report document No. DOPS SYS-TN-0100-OPS-GN. ESA/ESOC; 2009. Available at: http://navigation-office.esa.int/attachments/32834429/1/NAPEOS_MathModels_Algorithms.pdf.
13. Bordovitsyna T.V., Avdyushev V.A. Teoriya dvizheniya iskusstvennykh sputnikov Zemli. Analiticheskie i chislennye metody: uchebnoe posobie [Theory of motion of artificial Earth satellites. Analytical and numerical methods: textbook]. Tomsk: TGU; 2016: 254. (In Russ.)
14. Pardal P.C.P.M., Moraes R.V., Kuga H.K. Orbit determination using nonlinear particle filter and GPS measurements. Advances in the Astronautical Sciences. 2014; (150):1077–1092.
15. Chen J., Wang J.-X.Models of solar radiation pressure in the orbit determination of GPS satellites. Chinese Astronomy and Astrophysic. 2007; (31):66–75. DOI:10.1016/j.chinastron.2007.01.002.
16. Arnold D., Meindl M., Beutler G., Dach R., Schaer S., Lutz S., Prange L., Sośnica K.,Mervart L., Jäggi A. CODE’s new solar radiation pressure model for GNSS orbit determination. Journal of Geodesy. 2015; (8):775–791. DOI:10.1007/s00190-015-0814-4.
17. Duan B., Hugentobler U., Hofacker M., Selmke I. Improving solar radiation pressure modeling for GLONASS satellites. Journal of Geodesy. 2020; (8):14. DOI:10.1007/s00190-020-01400-9.
18. Chang X., Männel B., Schuh H. An analysis of a priori and empirical solar radiation pressure models for GPS satellites. Advances in Geoscince. 2021; (55):33–45. DOI:10.5194/adgeo-55-33-2021.
19. Chernikova Î.S., Tolstikov À.S., Chetvertakova Yu.S. Application of adaptive identification methods for refining parameters of radiation pressure models. Computational Technologies. 2020; (3):35–45. DOI:10.25743/ICT.2020.25.3.005. (In Russ.) Bibliography link: Chubich V.M., Chernikova O.S. A study of the effectiveness of adaptive filtering algorithms for modelling of orbital motion // Computational technologies. 2025. V. 30. ¹ 1. P. 120-131
|