Article information
2025 , Volume 30, ¹ 1, p.80-88
Royak M.E., Stupakov I.M., Burlakov V.S., Ishutin M.A., Pavlov S.A.
Possibility to reduce the number of measurements for design of volumetric magnetic field map
The article addresses ways to reconstruct a field map using a significantly fewer number of measurements (for example, using measurements on the surface of a volume), that will reduce full measurement time by an order of magnitude. Two approaches have been presented: the first one is based on the selection of the Neumann boundary conditions. The method of field reconstruction by a limited number of measurements uses the fact that there are no field sources and magnetic materials in the solenoid volume. Such restrictions allow reducing the problem to the solution of the Laplace equation. Boundary conditions for this problem are selected so that the solution to the problem has a minimal deviation from the measurement values at a given set of points. The second approach relies on the formula that can be obtained from the Stratton–Chu formula. To calculate the field inside the domain using this formula, the integral on the boundary of the domain must be calculated. Also, for both approaches, a field separation method can be used to improve obtained results. Computational experiments have shown that both proposed methods of field restoration enable a significant reduction in the number of measurements. Calculations for the second method are much simpler, but require uniform measurements over the entire boundary of the volume, while the f irst method does not impose fundamental restrictions on the location of measurements.
[link to elibrary.ru]
Keywords: accelerator magnets, magnetic field, finite element method, boundary element method
doi: 10.25743/ICT.2025.30.1.008
Author(s): Royak Mikhail Emmanuilovich Dr. , Professor Position: Professor Office: Novosibirsk State Technical University Address: 630073, Russia, Novosibirsk, 20 Prospekt K. Marksa
Phone Office: (383) 346-27-76 E-mail: royak@ami.nstu.ru SPIN-code: 4884-8317Stupakov Ilya Mikhailovich PhD. , Associate Professor Position: Associate Professor Office: Novosibirsk State Technical University Address: 630073, Russia, Novosibirsk, 20 Prospekt K. Marksa
Phone Office: (383) 346-27-76 E-mail: istupakov@gmail.com SPIN-code: 7553-1758Burlakov Vladimir Sergeevich Office: Novosibirsk State Technical University Address: 630073, Russia, Novosibirsk, 20 Prospekt K. Marksa
Phone Office: (383) 346-27-76 E-mail: vladimir.boorlakov@gmail.com Ishutin Mikhail Aleksandrovich Position: Master student Office: Novosibirsk State Technical University Address: 630073, Russia, Novosibirsk, 20 Prospekt K. Marksa
Phone Office: (383) 346-27-76 E-mail: pm93.ishutin@gmail.com Pavlov Sergey Alekseevich Position: Master student Office: Novosibirsk State Technical University Address: 630073, Russia, Novosibirsk, 20 Prospekt K. Marksa
Phone Office: (383) 346-27-76 E-mail: sergopavlov000@gmail.com
References: 1. Liebsch M., Russenschuck S., Kurz S. BEM-based magnetic field reconstruction by ensemble Kalman filtering. Computational Methods in Applied Mathematics. 2023; 23(2):405–424. DOI:10.1515/cmam-2022-0121.
2. Ion I.G., Liebsch M., Simona A., Loukrezis D., Petrone C., Russenschuck S., de Gersem H., Schöps S. Local field reconstruction from rotating coil measurements in particle accelerator magnets. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2021; (1011):165580. DOI:10.1016/j.nima.2021.165580.
3. Li J., Wang K., Wang K., Yan X., Zhu K. Evaluation of field quality for curved magnets. IEEE Transactions on Applied Superconductivity. 2024; 34(6):1–8. DOI:10.1109/TASC.2024.3369973. Available at: https://ieeexplore.ieee.org/document/10444912.
4. Casalbuoni S., Glamann N., Grau A., Holubek T., de Jauregui D.S., Boffo C., Gerhard T.,Turenne M., Walter W. Magnetic field measurements of full-scale conduction-cooled super-conducting-undulator-coils. IEEE Transactions on Applied Superconductivity. 2018; 28(3):1–4. DOI:10.1109/TASC.2018.2791953.
5. Stupakov I., Royak M., Kondratyeva N. Coupled finite and boundary element method for solving magnetic hysteresis problems. WIT Transactions on Engineering Sciences. 2019; (126):125–135. DOI:10.2495/BE420111.
6. Stupakov I.M., Royak M.E. Using anisotropic magnetic permeability for solution of nonlinear problems of magnetostatics for structures with lamination steel. Technical Physics Letters. 2019; 45(9):862–865. DOI:10.1134/S1063785019090128.
7. Elliot R.S. Antenna theory and design. John Wiley & Sons; 2006: 1072.
8. Fong D.C.L., Saunders M. LSMR: aniterative algorithm for sparse least-squares problems. SIAM Journal on Scientific Computing. 2011; 33(5):2950–2971. DOI:10.1137/10079687X.
9. Schenk O., Gärtner K., Fichtner W., Stricker A. PARDISO: a high-performance serial and parallel sparse linear solver in semiconductor device simulation. Future Generation Computer Systems. 2001; 18(1):69–78. DOI:10.1016/S0167-739X(00)00076-5.
10. Li X.S. An overview of SuperLU: algorithms, implementation, and user interface. ACM Transactions on Mathematical Software. 2005; 31(3):302–325. DOI:10.1145/1089014.1089017. Bibliography link: Royak M.E., Stupakov I.M., Burlakov V.S., Ishutin M.A., Pavlov S.A. Possibility to reduce the number of measurements for design of volumetric magnetic field map // Computational technologies. 2025. V. 30. ¹ 1. P. 80-88
|